Dr. U. Pötter Statistik III

Aufgabenblatt 2

WS 2004/2005

Kovarianz

- 1) Zeigen sie, dass folgende Beziehungen gelten, wobei a, b Konstanten sind:
 - a) Cov(X,Y) = M(XY) M(X)M(Y)
 - b) Cov(aX, bY) = ab Cov(X, Y)
 - c) Cov(X + a, Y + b) = Cov(X, Y)
 - d) Ist Y konstant, gilt also $Y(\omega_1) = Y(\omega_2) = \ldots = Y(\omega_n)$, dann ist Cov(X,Y) = 0.
 - e) Ist M(X) = 0, dann ist Cov(X, Y) = M(XY).
 - f) Ist $\tilde{\mathcal{X}} \times \tilde{\mathcal{Y}} = \{0,1\} \times \{0,1\}$, dann ist $Cov(X,Y) = P[X,Y](\{(1,1)\}) P[X](\{1\})P[Y](\{1\})$.
- 2) Berechnen Sie die Kovarianz von (X, Y) für:

a)
$$(X,Y)(\omega_1) = (-0.6,2)$$
, $(X,Y)(\omega_2) = (1,-7)$, $(X,Y)(\omega_3) = (0.5,-0.5)$

b)
$$(X,Y)(\omega_1) = (-1,1)$$
, $(X,Y)(\omega_2) = (0,0)$, $(X,Y)(\omega_3) = (1,1)$

c)
$$(X,Y)(\omega_1)=(-2,-3)$$
 , $(X,Y)(\omega_2)=(-1,-1)$, $(X,Y)(\omega_3)=(0,1)$, $(X,Y)(\omega_4)=(1,3)$, $(X,Y)(\omega_5)=(2,5)$

3) Sei $\tilde{Y}\times \tilde{X}=\{0,1\}\times \{0,1\}.$ Bei n=200 Beobachtungen ergeben sich folgende Häufigkeiten:

(\tilde{x}, \tilde{y})	Häufigkeit
(1,1)	70
(1,0)	30
(0,1)	60
(0,0)	40

- a) Berechnen Sie die Kovarianz zwischen X und Y.
- b) Berechnen Sie $P[X|Y = 1](\{1\})$ und $P[Y|X = 1](\{1\})$

Tschebyscheffsche Ungleichung

- 4) Zeigen Sie, dass aus der Tschebyscheff Ungleichung $P[X](\{|X-M(X)| \geq a\}) \leq V(X)/a^2$ folgt: $P[X](\{|X-M(X)| < a\}) \geq 1 V(X)/a^2$. Hinweis: $\{\omega \mid |X-M(X)| \geq a\} \cup \{\omega \mid |X-M(X)| < a\} = \Omega$.
- 5) Sei X eine statistische Variable mit M(X)=0 und V(X)=1. Finden Sie für q=0.5,0.9,0.95 und 0.99 diejenigen Werte a, so dass $P[X](\{|X|< a\}) \geq q$ gilt.
- 6) Sei X eine statistische Variable mit V(X) > 0 und $P[X](\{|X M(X)| \le \sqrt{V(X)}\}) = 1$. Zeigen Sie, dass dann $P[X](\{X = M(X) a\}) = P[X](\{X = M(X) + a\}) = 1/2$ für ein $a \ne 0$ gilt.

Bedingte Verteilungscharakterisierungen

7) Zeigen Sie für zwei statistische Variable X, Y, dass die bedingten Mittelwerte M[Y|X] den Durchschnitt der quadratischen Abstände von Y minimieren, d.h. dass für alle Funktionen q(X) der Variablen X gilt:

$$M\left((Y - M(Y|X))^2\right) \le M\left((Y - g(X))^2\right)$$

 $\mathit{Hinweis:}$ Beachten Sie, dass $M\left((Y-M(Y|X))^2\right)=M(M[(Y-M(Y|X))^2|X])$ ist.