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Chapter 1

Introduction

The text is partitioned into chapters and sections as indicated in the ta-
ble of contents. A further subdivision into subsections is provided at the
beginning of each chapter.

1.1 Statistical methods

1. Statistical methods vs. case studies
2. Units of analysis
3. Two goals of statistical methods
4. Statistical descriptions

1.2 Educational processes

1. Learning frames
2. Frame-related educational processes
3. Overarching educational processes
4. Construction of statistical variables
5. Transitions and Sequences

1.3 Educational inequalities

1. Single learning frames
2. Inequalities in transitions
3. How to understand opportunities?
4. Measures of educational attainment
5. Inequalities between educational processes

1.4 Empirical illustrations

1. Description of the data
2. Inequalities in schooling outcomes
3. Comparing children with their parents
4. Dependencies on parents’ educational level
5. Considerations in terms of stages

This introductory chapter begins with a few general remarks about sta-
tistical methods, and distinguishes between two goals of such methods:
statistical descriptions of sets of units to which the data relate, and finding
rules for prediction and explanation.

In the second section, I consider the question of how to conceptualize
educational processes. I propose a general formal framework which is based
on a notion of ‘learning frames’, and briefly show how this framework can
be used for defining statistical variables suitable for describing educational
processes.
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The third section distinguishes four aspects of educational inequality:
inequalities (between individuals and between groups) in single learning
frames, inequalities in transitions, inequalities in outcomes of educational
processes, and inequalities between educational processes. Using data on
schooling outcomes from the ALLBUS, some of these aspects of educational
inequality are illustrated in the fourth section.

1.1 Statistical methods

1. Statistical methods vs. case studies

A few essential characteristics of statistical methods can best be character-
ized by contrasting statistical methods with case studies.1

– Case studies make in-depth investigations of a few identifiable cases;
statistical methods are based on observations of a ‘large’ number of
cases (so that statements about frequencies become sensible).

– In contrast to case studies, statistical methods presuppose the definition
of variables (which then determine what counts as a relevant observa-
tion).

– Case studies concern identifiable cases. Statistical methods do not re-
quire knowledge of identifiable cases; their input eventually only con-
sists of frequency distributions (given the presupposed variables). This
entails: Units having identical values in all variables are statistically
equal.

Both approaches are complementary. I focus on statistical methods.

2. Units of analysis

Statistical methods deal with ‘units of analysis’. I distinguish the follow-
ing kinds of units: individuals (= individual human beings), situations,
events, institutions (including organizations), collectives (sets of units of
some kind). It is important that there are different ways of referring to
units:

a) identifiable units,

b) quantified units (members of a definite reference set),

c) generic units (not members of a set, defined only by values of vari-
ables).

Institutions can be considered in two different ways: as units of analysis,
or as conditions for individual processes. The second approach allows one

1I here follow Gerring’s (2004) understanding of case study research.
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– to view institutions in parallel to several other kinds of social
environments (for educational processes), and

– include references to properties of institutions into models for
individual-based outcome variables.

In both approaches, institutions are conceived of not as identifiable units,
but as defined by properties.

3. Two goals of statistical methods

I distinguish two goals of statistical methods:

a) Description of statistical facts. Such facts concern frequency distribu-
tions defined for a sample or population (or quantities derived from
such distributions).

b) Finding rules for relationships between variables which can be used
for explanations and predictions.

Correspondingly, there are two kinds of statistical generalization:

– descriptive generalizations (from sample to population), and

– modal generalizations (from data to rules);

and two kinds of statistical models: descriptive models (for quantified
units), and analytical models (for generic units). This will be further dis-
cussed in Chapter 2.

4. Statistical descriptions

Statistical descriptions are derived from statistical variables . There are two
prerequisites:

a set of units (= reference set of a statistical variable), and

a conceptual framework for characterizing the units (= property space
of a statistical variable).

Formal representation:

X : Ω −→ X

X is the name of the variable, Ω is the reference set, and X is the variable’s
property space (domain). The notation is intended to show that statistical
variables are functions, different from logical variables. As will be argued
in 2.1.7, they are also different from random and modal variables. In
particular, one should avoid confusion between statistical variables and
their property spaces.
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Statistical variables can consist of several components. The distinction
between one- and multidimensional statistical variables is not essential,
however. It is always assumed that values of statistical variables have a
numerical representation (single real numbers, or m-tupels if a variable
consists of m components).

The frequency distribution of a statistical variable, say X , will be de-
noted by P[X ], special values will be denoted by P(X = x), that is, the
proportion of members of Ω with X = x. Further notations will be intro-
duced when needed.

1.2 Educational processes

Education is a process that develops in time. In order to apply statisti-
cal methods, individual educational processes must be defined in terms of
variables. This section introduces a formal framework for defining such
variables.

1. Learning frames

As a starting point, I take up the idea that education takes place in a wide
variety of ‘learning environments’ (Bäumer et al. 2011). Formal representa-
tions of such environments will be called learning frames and symbolically
denoted by σ. There definition should include:

a) characterization of the institutional (not necessarily ‘formal’) context;

b) characterization of the kind of capabilities that can be learned;

c) characterization of the ways by which these capabilities can be ac-
quired;

d) specification of entry requirements (if any);

e) definition of a property space, say Yσ, for the characterization of what
has been learned.

The general notion of learning frames covers both broad (e.g. ‘elementary
school’) and fine-grained (e.g. ‘learning reading in first grade elementary
school’) definitions. This must be taken into account when defining the out-
come space Yσ. In order to represent outcomes of broadly defined learning
frames it could be sensible to use outcome spaces that consist of two or
more domain-specific components.

A further question concerns the source of ‘observed’ outcome values.
There are two approaches: One can use the evaluations that are generated
in the learning frames (e.g. school certificates), or one can employ external
tests developed and applied by a researcher. Choosing one or the other
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approach depends on the research interest. The first approach corresponds
to an interest in learning how educational outcomes are actually generated
and evaluated in a society. The second approach corresponds to an interest
in developing scientific evaluations.

2. Frame-related educational processes

For each individual participating in a learning frame, say σ, one can think
of an educational process that generates a particular outcome, represented
by a value in Yσ. This will be called an individual frame-related educational
process (in contrast to educational processes that extend over several learn-
ing frames).

Statistical investigations of such processes start from defining a set of
individuals participating in a learning frame of the same type.2 This allows
one to define a statistical variable

Yσ : Ω −→ Yσ

where Ω denotes a set of individuals participating in the learning frame
σ. Of course, it will often be sensible to use a cohort approach where all
members of Ω enter the learning frame in the same temporal location (e.g.,
calendar year).

3. Overarching educational processes

It is more complicated to set up a formal framework for overarching edu-
cational processes which extend over several learning frames. My proposal
starts from a set of learning frames, say Σ, which are to be considered in an
investigation. (As mentioned, broad or fine-grained definitions of learning
frames can be used.) An individual educational process, for an individual
ω, can then be defined as a sequence of sets

Sτ (ω) ⊆ Σ

containing the learning frames (elements of Σ) in which ω participates at
age τ (τ = 0, 1, 2, . . .). In order to allow easy comparisons of individual
educational processes, I take τ to correspond to the calendar year in which
ω has the τth birthday (‘demographic age’).

Since participation in a learning frame can extend over two or more
years, it is also useful to define subsets

Sc
τ (ω) ⊆ Sτ (ω)

consisting of learning frames which ω completes at age τ . There is then,

2If not explicitly said otherwise, I use the term ‘learning frame’ in a generic sense, that
is, they are taken as types, not as particular institutions.
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for each σ ∈ Sc
τ (ω), a value Yσ(ω) ∈ Yσ which provides information about

how ω has completed the learning frame.

4. Construction of statistical variables

The proposed formal framework can be used as a starting point for both
statistical descriptions and analytical models. If to be used for statistical
descriptions, one needs to specify a set of individuals, say Ω, whose ed-
ucational processes have been observed and are to be described. So the
question arises how to demarcate such sets.

Most often it is sensible to define these sets as cohorts. There are two
possibilities:

a) One specifies a calendar year, t∗, and an age, τ∗, and includes all indi-
viduals who are of age τ∗ in year t∗. (Of course, one can use a range of
years instead of just one single year.)

b) One specifies a calendar year, t∗, and a learning frame, σ∗, and includes
all individuals who begin participating in σ∗ in year t∗.

Following the second approach, basic statistical variables for the reference
set Ω can easily be defined. For all σ ∈ Σ, t ≥ t∗, and ω ∈ Ω:

St,σ(ω) = 1 if ω participates in σ in year t, otherwise zero.

Se
t,σ(ω) = 1 if ω begins participation in σ in year t, otherwise zero.

Sc
t,σ(ω) = 1 if ω completes participation in σ in year t, otherwise zero.

Yt,σ(ω) takes a value in Yσ (representing the outcome of ω’s participa-
tion in σ) if Sc

t,σ(ω) = 1; otherwise there is no valid value.

To these variables which provide the basic information about an individual
educational process one can add any number of further variables repre-
senting, for example, age, sex, health condition, family background, and
characteristics of the home environment and personal networks.

5. Transitions and Sequences

The proposed framework can be used to describe transitions which consist
in entering a learning frame. In order to define a transition rate, one needs
a risk set and an event set. The event set for entering a learning frame, say
σ, can easily be defined:

Et,σ := {ω ∈ Ω |Se
t,σ(ω) = 1}

The corresponding risk set, Rt,σ, contains all members of Ω who do not
participate in σ in year t and meet the entry conditions for σ (if any). A
transition rate can then be defined by |Et,σ|/|Rt,σ|.

The framework does not presuppose that individuals sequentially partic-
ipate in learning frames. Any kinds of temporal relationships are possible.
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Of course, there often will be entry requirements for the participation in
a learning frame which require successful completion of previous learning
frames. In the most simple case, there is a linear ordering where successful
completion of σt is a sufficient precondition for entering σt+1 (Mare 1980,
1981). Graphically:

σ1 σ2 σ3 σm

-
6 6 6

- - - · · · -

More complicated sequential schemes have been used, among others, by
Hansen (1997), Breen and Jonsson (2000), Goldrick-Rab (2006), Tieben
and Wolbers (2010), Schneider and Tieben (2011).

1.3 Educational inequalities

Educational inequalities can be viewed in different ways. In this section I
briefly consider four approaches.

1. Single learning frames

I begin with notions of educational inequality which relate to a variable
Yσ : Ω −→ Y representing the educational outcome of a single learning
frame (σ). A first notion of inequality directly relates to Yσ and considers
the amount of variation in its values as representing educational inequality.
Suitable measures depend on Y, the property space of Yσ. For example:

a) In the most simple case one can use the proportion of individuals who
successfully completed the learning frame.

b) If Yσ can be treated as a metric variable having an approximately sym-
metric distribution, one can use its variance.

c) If Yσ is a qualitative (or non-metric quantitative) variable with property
space Y = {1, . . . ,m}, one can use a diversity index defined as

1−
∑

j=1,m

P(Yσ=j)2 (1.1)

Using a probabilistic model, this quantity can be interpreted as the
probability of meeting two individuals having a different educational
outcome.3

A different approach is concerned with comparing educational outcomes

3For further discussion of this index see Agresti and Agresti (1977).
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between groups of individuals. The formal framework then consists of a
two-dimensional variable, say

(Xσ, Yσ) : Ω −→ X × Y

where X = {1, . . . , q} distinguishes q groups of individuals.4 The edu-
cational inequality between two groups, say x′ and x′′, then concerns the
difference between their educational outcomes. Formally, it is the difference
between two conditional distributions:

P[Yσ |Xσ=x′] and P[Yσ |Xσ=x′′]

Again, there are many different possibilities for quantifying differences be-
tween two distributions. If Yσ is a discrete variable, one can use the dis-
similarity index

1

2

∑

j=1,m

∣

∣P(Yσ=j |Xσ=x′)− P(Yσ=j |Xσ=x′)
∣

∣ (1.2)

It can be interpreted as the proportion of individuals in one of the two
groups who must attain a different educational outcome in order make the
two outcome distributions identical.5

2. Inequalities in transitions

I now consider a different kind of inequality that concerns differences, be-
tween groups, of entries into learning frames. A simple framework suffices
for an explanation of the basic idea. There are three variables:

(X,C, Y ) : Ω −→ X × {0, 1} × {0, 1}

X with property space X = {1, . . . , q} provides labels of q groups; C and
Y are binary variables (σ denotes a learning frame):

C(ω) = 1 if ω has the opportunity to enter σ

Y (ω) = 1 if ω actually enters σ

This framework allows one to make three kinds of comparisons between
groups, say x′ and x′′. A first possibility is to compare

P(C=1 |X=x′) and P(C=1 |X=x′′)

4In sociological research of education, the demarcation of groups is often based on
student’s sex and migration background, and on their parents’ educational level and
socio-economic status.

5This index is a special case of a general class of substitution metrics that rely on
evaluations of redistributions for quantifying differences between statistical distributions.
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This comparison shows inequalities in having the opportunity for entering
the learning frame. A second possibility is to compare

P(Y =1 |C=1, X=x′) and P(Y =1 |C=1, X=x′′)

This comparison shows inequalities in actually entering the learning frame,
given that there is an opportunity for doing so. Finally, both can be com-
bined using the equality

P(Y =1 |X=x) = P(Y =1 |C=1, X=x) P(C=1 |X=x)

This decomposition shows how the ‘unconditional’ inequality results from
inequalities in opportunities and inequalities in using an opportunity.

3. How to understand opportunities?

While the formal framework for a consideration of inequalities in transitions
is quite simple, there is a real difficulty that concerns the understanding
of ‘opportunities’. The difficulty is entailed by the following semantical
requirement:

To say that an individual has a particular opportunity pre-
supposes that the individual is aware of that opportunity and
believes in the possibility of making use of the opportunity.

Given this understanding, ‘opportunity’ is an essentially subjective notion,
and one often will not be able to find statistical data representing opportu-
nities in this sense. Instead, one has to rely on ‘objective’ definitions based,
e.g., on formally defined rights. As an example, one can think of formally
defined prerequisites for the right of attending a specified school type.

In any case, I propose that one explicitly distinguishes between opportu-
nities (which presuppose that there is a choice) and final outcomes resulting
from different opportunities and actual choices. Of course, a corresponding
distinction should be made in the talk of ‘chances’.

4. Measures of educational attainment

The notions of inequality considered so far concern temporally limited sit-
uations: single learning frames or single transitions. Further questions con-
cern inequalities in overarching educational processes. An easy approach
refers to final outcomes of such processes, often called ‘educational attain-
ment’. There are then three possibilities to construct variables.6

6I presuppose the understanding of qualitative, quantitative and metric variables pro-
posed in Rohwer and Pötter (2002).
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a) One can think in terms of qualitatively different outcomes. Formally,
one constructs a set of possible final outcomes, say Y, and treats each
element of Y as a qualitatively different type. Y can then be used as
the property space of a multinomial variable.

b) Starting from Y, one can propose a quantification, that is, a linear
ordering of the elements of Y. Y can then be used as the property
space of a quantitative (ordinal) variable.

c) Starting from Y, one can propose a metric, that is, a function which
assigns to each pair of elements a distance value. Y can then be used
as the property space of a metric variable. Often, but not necessarily,
the introduction of a metric follows a previous quantification. A simple
example is using ‘years of schooling (and training)’ for quantification
and differences of such values for the metric.

In any case, having defined a property space for ‘educational attainment’,
one can use the methods discussed in 1.3.1 to describe educational inequal-
ities.

5. Inequalities between educational processes

Finally, one can attempt to directly assess differences between individual
educational processes. This is difficult when starting from the very gen-
eral notion of such processes that was proposed in Section 1.2. There are
basically two methods.

a) One can calculate the frequency of each type of observed process. In
particular with fine-grained process frames, this is often not informative
because of the large number of different process types.

b) One can define a distance function for educational processes. Then,
with n different process types, one can calculate the n × n distance
matrix and finally use a method (e.g. MDS or cluster analysis) for
presenting its structure.

To achieve informative results, it could be sensible to partition the given
set of processes into a relatively small number of ‘typical’ trajectories. For-
mally, this means to construct a property space for educational processes,
say Yp. This allows one to define a statistical variable, say Yp, assigning
each individual to a particular educational process type.

To enhance information about educational inequality, one can investi-
gate relationships between Yp and other variables characterizing the indi-
viduals. For example, Goldrick-Rab (2006) used types of college pathways
as the dependent variable in a multinomial logit model.

However, while useful in descriptions of educational inequality, it is
questionable whether variables representing process types should be used as
dependent variables in explanatory models. If one conceives of educational
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processes as resulting from a multitude of temporally local events, also their
explanation should start from these events.

1.4 Empirical illustrations

To illustrate some possibilities to describe aspects of educational inequality,
I use data on schooling outcomes from the ALLBUS. This is a general
purpose social survey conducted in Germany biannually since 1980. I use a
cumulated version of the data set that covers the years from 1980 to 2008.

1. Description of the data

The variable of interest, outcome of schooling, is coded as follows:

1 = without Hauptschulabschluss

2 = Hauptschulabschluss

3 = Realschulabschluss

4 = Fachhochschulreife

5 = Abitur

The same information is available for the father and, since 1984, the mother
of the interviewed person. For constructing a single variable for ‘parents’
outcome of schooling’, I use the highest of the two values.

In order to get comparable data for a long range of birth cohorts, I only
include individuals who lived in West Germany when interviewed. This also
allows going without sampling weights (for different inclusion probabilities
in West and East Germany). I finally get data for age cohorts 1908 – 1986.
The number of persons with a valid information about schooling outcome
is 38461; for 36596 of these persons one also knows the parents’ outcome
of schooling.

2. Inequalities in schooling outcomes

Figure 1.1 uses the diversity index, defined in (1.1), to describes inequalities
in schooling outcomes. The increase in inequality is mainly due to an in-
creasing proportion of persons who attain higher schooling outcomes, start-
ing from a historical situation where most people finished with Hauptschule.

In order to show that there is a tendency towards higher schooling
outcomes, I use the following index:

dt :=
∑

j=1,5

(5− j) P(Yt=j) (1.3)

where Yt represents the schooling outcomes of persons belonging to birth
cohort t. This index compares the actual outcome distribution with an
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Figure 1.1 Development of the diversity index for schooling outcomes of men
(solid line) and women (dashed line) of the birth cohorts shown on the abscissa.
Based on data from the Cumulated ALLBUS 1980–2008; smoothed with running
means of length 7.
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0
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Figure 1.2 Development of the index dt for schooling outcomes of men (solid
line) and women (dashed line) of the birth cohorts shown on the abscissa. Based
on data from the Cumulated ALLBUS 1980–2008; smoothed with running means
of length 7.

ideal distribution which corresponds to a situation where each person leaves
school with an Abitur. The lower the value of dt, the smaller is the distance
between the actual and the ideal distribution of schooling outcomes. The
development of this index is shown in Figure 1.2.
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Figure 1.3 Development of the index DIt for men (solid line) and women
(dashed line) of the birth cohorts shown on the abscissa. Based on data from
the Cumulated ALLBUS 1980–2008; smoothed with running means of length 9.

3. Comparing children with their parents

I now compare the schooling outcomes of the interviewed persons (in the fol-
lowing also called ‘children’) with the schooling outcomes of their parents.
Starting point is the twodimensional variable (Xt, Yt) with Yt recording the
schooling outcome of persons belonging to birth cohort t, and Xt recording
the schooling outcome of their parents.

As a first approach, one can simply compare the distributions of school-
ing outcomes. That is, one compares P[Yt] with P[Xt]. This can be done
with a dissimilarity index

DIt :=
1

2

∑

j=1,5

∣

∣P(Yt=j)− P(Xt=j)
∣

∣ (1.4)

The development of this index is shown in Figure 1.3. Large values occur
in a historical situation where there is a large proportion of children who
attain a higher schooling outcome than their parents. Eventually, when
these children become parents of their own children, the index decreases.

4. Dependencies on parents’ educational level

A further question concerns how the schooling outcome of children depends
on the educational level of their parents. I compare two groups: children
whose parents have a Hautschulabschluss and children whose parents have
an Abitur. Figure 1.4 shows for these groups the proportion of children
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P(Yt=5|Xt=2)

P(Yt=5|Xt=5)

Figure 1.4 Proportion of men (solid lines) and women (dashed lines) who
attained Abitur, differentiated w.r.t. the educational level of their parents and
w.r.t. birth cohorts shown on the abscissa. Based on data from the Cumulated
ALLBUS 1980–2008; smoothed with running means of length 11.
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Figure 1.5 Development of the index DI∗t for men (solid line) and women
(dashed line) of the birth cohorts shown on the abscissa. Based on data from
the Cumulated ALLBUS 1980–2008; smoothed with running means of length 7.

who attain an Abitur. Formally, the comparison is between

P(Yt=5 |Xt=2) and P(Yt=5 |Xt=5)

Figure 1.4 shows how these proportions have changed across cohorts.
Another possibility is to compare the distribution of schooling outcomes
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in the two groups. I use again a dissimilarity index, now defined as

DI∗t :=
1

2

∑

j=1,5

∣

∣P(Yt=j|Xt = 2)− P(Yt=j|Xt = 5)
∣

∣ (1.5)

The development of this index is shown in Figure 1.5.

5. Considerations in terms of stages

Inequalities in educational attainment are often discussed in terms of stages
(Mare 1980, 1981; Shavit and Blossfeld 1993). One can then consider tran-
sition rates between stages. Depending on the definition of educational
stages, such rates can relate to transitions which can be actually performed
by students, or they are analytical tools for describing inequalities in educa-
tional attainment. Only knowing the final schooling outcomes, one cannot
reconstruct the actual transitions. The consideration of schooling outcomes
in terms of conditional frequencies is nevertheless informative. I use the
following stage variables:

T1t :=

{

1 if Yt ≥ 3
0 otherwise

and T2t :=

{

1 if Yt ≥ 4
0 otherwise

One can then define the following quantities, all conditional on a specified
educational level of the parents:

P(T1t=1|Xt=x), that is, the proportion of children who attain
at least Realschulabschluss in the set of all children.

P(T2t=1|Xt=x), that is, the proportion of children who attain
at least Fachhochschulreife or Abitur in the set of all children.

P(T2t = 1|T1t = 1, Xt = x), that is, the proportion of children
who attain at least Fachhochschulreife or Abitur in the set of
children who attain at least Realschulabschluss.

The following relationship holds between these quantities:

P(T2t=1|Xt=x) = P(T2t=1|T1t=1, Xt=x) P(T1t=1|Xt=x)

The development of these quantities across cohorts is shown for men in
Figure 1.6 and for women in Figure 1.7. The comparison is between persons
whose parents have Hauptschulabschluss (Xt = 2, solid lines) and persons
whose parents have Abitur (Xt = 5, dashed lines). Corresponding effects
can be defined as differences between the defined quantities, e.g.

P(T2t=1|Xt=5)− P(T2t=1|Xt=2)

represents the total effect of this contrast of parents’ educational level on
attaining Fachhochschulreife or Abitur.
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Figure 1.6 Proportion of men who attained at least Realschulabschluss
(T1t = 1) or Fachhochschulreife/Abitur (T2t = 1), dependent on the educational
level of their parents (solid line: Hauptschulabschluss, dashed line: Abitur),
for birth cohorts shown on the abscissa. Based on data from the Cumulated
ALLBUS 1980–2008; smoothed with running means of length 7.

1.4 EMPIRICAL ILLUSTRATIONS 17

1910 1920 1930 1940 1950 1960 1970 1980 1990
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1910 1920 1930 1940 1950 1960 1970 1980 1990
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1910 1920 1930 1940 1950 1960 1970 1980 1990
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(T1t=1|Xt=x)

P(T2t=1|T1t=1,Xt=x)

P(T2t=1|Xt=x)

Figure 1.7 Proportion of women who attained at least Realschulabschluss
(T1t = 1) or Fachhochschulreife/Abitur (T2t = 1), dependent on the educational
level of their parents (solid line: Hauptschulabschluss, dashed line: Abitur),
for birth cohorts shown on the abscissa. Based on data from the Cumulated
ALLBUS 1980–2008; smoothed with running means of length 7.
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In the introduction, I distinguished two goals of statistical methods: De-
scription of statistical distributions in a specified set of units (a sample
or population), and finding rules, most often about relationships between
variables, which can be used for predictions and explanations. There cor-
respondingly are two ways of using data:

– descriptive generalization: from descriptive statements about a sample
to descriptive statements about a corresponding population, and

– modal generalization: from statistical data to the formulation of more
general relationships between variables.

This distinction will be discussed in the first section. I then go on to
distinguish two kinds of statistical models. In the second section I very
briefly consider descriptive models which aim to describe distributions of
statistical variables defined for a sample or population. In the third section
I consider analytical models serving to formulate theoretical hypotheses
about relationships between variables.
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2.1 Two kinds of generalization

1. Descriptive statistical statements

I use the following definition:

Descriptive statistical statements are statements about the fre-
quency distribution of properties (or quantities derived thereof)
in a specified set of units.

As already indicated in the introduction, I use statistical variables as a
formal framework. The symbolic notation is

X : Ω −→ X

X is the name of the variable, Ω is the reference set, a finite set of actually
observed or assumed cases, and X is the property space (domain).

If the reference set consists of not actually observed cases, it is neverthe-
less required, for descriptive statements, that one can reasonably assume
that the cases do exist, or have existed in the past. For example, ‘all chil-
dren who attended Kindergarten in Germany in 2010’, but not: ‘all children
who (possibly) attend Kindergarten in Germany in 2015’.

2. Defining descriptive generalization

Statistical variables provide a useful framework for the definition of descrip-
tive generalization. Starting point is a statistical variable, X : Ω −→ X ,
representing the observations. Ω, the set of observed cases, is then consid-
ered as subset of another set, Ω∗, for which one can assume an analogously
defined statistical variable:

X∗ : Ω∗ −→ X

having the same property space as X .
This framework allows one to define: A descriptive generalization con-

sists in using the observed values of X for making descriptive statements
about the distribution of X∗ in Ω∗. It is noteworthy that the desired gener-
alization has the same linguistic form as the statistical statements derived
from the observations; there only is a change in the reference set.

I will not discuss here problems of statistical inference. It is obvious,
however, that the justification of a descriptive generalization must be based
on the data generating process that has generated the observations. Note
that I use the following distinction:

– The term ‘data generating process’ is used to refer to a process that
generates data, that is, information about already existing facts.

– In contrast, when referring to processes that generate new facts (out-
comes), I use the term ‘fact-generating process’.
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As an example think of a learning frame in which students can acquire
capabilities of a specified kind, and assume that individual learning results
can be captured by values of a variable, say Y . One can firstly think
of a fact-generating process in which each student eventually acquires a
particular capability. Afterwards, a data-generating process can take place,
that is, a process in which a researcher represents students’ capabilities by
particular values of Y .

3. Limitations of descriptive generalizations

Descriptive generalization intends to enlarge the knowledge about statisti-
cal facts, meaning here statistical distributions as they are actually realized
in specified populations. This very interest requires a narrow understanding
of ‘population’.

Limitations become obvious when the justification of descriptive gen-
eralization is based on probability sampling. This requires that Ω can be
viewed as a probability sample from Ω∗. Consequently, Ω∗ can only consist
of units having a positive selection probability when and where the sample
is drawn.

Particular difficulties arise when the interest concerns historical pro-
cesses. The basic question then is, How to define a population of processes?
From a methodological point of view, such populations are best defined as
cohorts. However, being interested in descriptive generalizations, this re-
quires to adopt a historical perspective that is confined to mostly completed
processes.

A special problem occurs in the NEPS which is based on different sam-
ples from different populations: Would it be possible to combine the data
in order to get a picture of overarching educational processes? This will
not be possible in the form of just one descriptive generalization (since no
combined sampling design is available). It might be possible, however, to
use the separate samples for modal generalizations (predictive rules) which,
taken together, would allow making comprehensive statements about edu-
cational processes.

4. Modal generalizations with rules

I now consider a different kind of generalization where the goal is, not a
descriptive statement about a set of units, but a predictive rule. I use the
term ‘rule’ in a general sense for statements having the form

If . . ., then . . .

Different kinds of rules can be distinguished w.r.t. the modalities used in
formulating the then-part; for example: If . . ., then . . . is possible, or prob-
able, or necessary, or normatively required.
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Empirical research is primarily interested in predictive rules . Example:
Let ω denote an individual who has finished school in Germany: If at least
one of ω’s parents has finished school with an Abitur, then it is highly
probable that also ω has an Abitur. Note that this is a generic rule,
meaning that its object is specified only by values of variables.

An important distinction can be made between static and dynamic pre-
dictive rules.

– A static predictive rules formulates a relationship between properties of
a unit. The general form is: If ω has property x, then ω (probably)
has property y. This kind of predictive rule is exemplified by the above
example.

– A dynamic predictive rules relates to a fact-generating process that gen-
erates an outcome that is to be predicted.

Example: If ω (a generically specified individual) regularly participates
in the instructions, she will (probably) be successful in the final exam.

5. Formulating predictive rules with variables

In the following, I only consider predictive rules which include a proba-
bilistic qualification of the prediction. When formulating such rules with
variables, a first question concerns how to understand the probabilistic
qualification. There are two forms:

a) Qualitative: If X=x, then Y=y is probable (in some qualified sense).

b) Quantitative: If X=x, then Pr(Y=y) = . . . [a specific, actually given
or assumed, numerical value].

Empirical research with statistical methods regularly uses quantitative for-
mulations. (Since there is a formal equivalence of frequency and probability
functions, researchers often ignore the conceptual distinction and present
their observed frequencies in terms of probabilities.)

The presupposition of quantifiable probabilities allows one to use math-
ematical functions for formulating the relationship between the if - and the
then-part of the rule. As a general form one can use

x −→ Pr[Y |X=x]

to be read as a function that assigns to each value x in the domain of X
a conditional probability distribution of Y . If Y is a discrete variable, one
can also use specific functions having the form

x −→ Pr(Y=y |X=x)

for each value y in the domain of Y . Another often used special form is

x −→ E(Y |X=x)
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which formulates the relationship with conditional expectations of Y .
Starting from such general formulations, one can think of more spe-

cific parametric forms. However, whatever the finally chosen functional
form, these forms must be distinguished from numerically specified func-
tions which actually allow one to calculate values of the function.

6. Predictive rules vs. descriptive statements

Predictive rules must be distinguished from descriptive statistical state-
ments.

– While descriptive statistical statements concern a reference set of par-
ticular units, a predictive rule concerns a generic unit which is only
specified by values of variables.

– Correspondingly, there is a conceptual difference between frequencies,

P(Y=y |X=x)

which presuppose a finite reference set, and probabilities,

Pr(Y=y |X=x)

which concern a generic unit. I therefore use different symbols: P for
frequencies, and Pr for probabilities.

A random generator can serve to illustrate the distinction. I use ‘throwing
a die’ as an example. The random generator can be defined by a rule, e.g.,

If the die is thrown, there are six possible outcomes, each can
occur with the same probability (1/6).

This rule is to be distinguished from a descriptive statement about frequen-
cies of outcomes in an actually realized set of throws.

Assume the die is thrown 100 times. Results can be represented by a
statistical variable Z : Ω −→ Z := {1, . . . , 6}. P[Z], the distribution of Z,
must be distinguished (numerically and conceptually) from the probability
distribution which is used in the formulation of the rule describing the
random generator.

Since predictive rules are different from descriptive statements (and
different from analytical truths), they cannot be true or false. They can
only be pragmatically justified, that is, with arguments showing that, and
how, a rule can help people in their activities.

7. Statistical and modal variables

The conceptual distinction between descriptive statements and predictive
rules suggests to make a corresponding distinction between the kinds of
variables involved. As already explained, descriptive statistical statements
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are derived from statistical variables which are known, or assumed, to rep-
resent realized properties of existing units. This is also true for conditional
frequencies: P(Y= y |X=x) is derived from a statistical variable, (X,Y ),
which is defined for a particular reference set.

When considering instead conditional probabilities, Pr(Y = y |X= x),
one must recognize that there are two different conceptual frameworks:

– One can assume that the conditional probabilities are derived from a
random variable (X,Y ). This understanding presupposes the existence
of joint and marginal probability distributions of the two variables.

– The situation is different when conditional probabilities serve to for-
mulate probabilistic predictive rules. In this framework, X is used to
formulate a hypothetical assumption, and so it is neither a random vari-
able (having a probability distribution) nor a statistical variable (having
a statistical distribution). Consequently, also Y has no unconditional
distribution, but can only be viewed as a random variable for specified
values of X .

In order to remind of the second context, I speak of modal variables and
use a special notation: Ẍ instead of X , and Ẏ instead of Y . The symbolic
notation for a probabilistic predictive rule then becomes

x −→ Pr[Ẏ | Ẍ=x]

8. Applications of predictive rules

Why do we need predictive rules? Part of the answer is obvious: they are
required for making observations relevant for predicting possible (future)
outcomes. However, can predictive rules also be used for explanations?

An influential tradition has sought to use probabilistic rules for expla-
nations of individual outcomes (often called ‘inductive-statistical explana-
tions’). This proposal was followed by a longstanding critical discussion.
One of the main points of criticism is easily understandable: That A makes
B to some degree probable does not show why B occurred.

The discussion mainly concerns differences between ‘explanation’ and
‘prediction’ and can therefore be ignored if one is only interested in pre-
dictions. On the other hand, being interested in explanations, one should
begin with rethinking the questions that should be answered by an expla-
nation and, in particular, distinguish ‘why’ and ‘how’ questions (see, e.g.,
Cross (1991) and Faye (1999)).

I will not take up this discussion which primarily concerns the explana-
tion of particular outcomes in individual cases. Instead, I briefly consider
statistical explanations which are concerned with statistically defined ex-
plananda (= statistical distributions or quantities derived from such distri-
butions).
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9. Statistical explanations

Statistical explanations , as I use this term here, are concerned with the ex-
planation of statistical distributions. Let P[Y ], the distribution of a statis-
tical variable Y : Ω −→ Y, denote the explanandum. In my understanding,
a statistical explanation uses two premisses:

– a statistical distribution, P[X ], X being defined for the same reference
set Ω, and

– a probabilistic rule: x −→ Pr[Ẏ |Ẍ= x], where Ẍ and Ẏ correspond,
respectively, to X and Y .

The formal part of the explanation then consists in using

Pr(Ẏ=y) :=
∑

x
Pr(Ẏ=y | Ẍ=x) P(X=x) (2.1)

to derive a probability distribution Pr[Ẏ ]. (This formulation presupposes
that all variables are discrete.)

The predictive claim is that Pr[Ẏ ] is approximately equal to P[Y ]. This
claim is trivially valid if the predictive rule is derived from the joint distri-
bution of X and Y . The idea that the predictive rule is a generalization
must therefore be taken seriously, and should be explicitly considered.

However, one also must reflect explanatory claims which are entailed
neither by the formal framework nor by any particular degree of predictive
success. I propose that the following considerations are important.

a) Whether values of explanatory variables can be understood as condi-
tions for processes generating values of the explanandum variable.

b) Whether there are relationships between explanatory variables, and one
can distinguish mediating and exogenous explanatory variables.

c) Whether there are potentially important explanatory variables not ex-
plicitly considered, and what might follow from their omission.

d) Whether, and to which degree, the rule used in the explanation depends
on the particular distribution of the explanatory variables (‘distribution-
dependent causation’).

e) Whether, and to which degree, the rule used in the explanation is his-
torically stable.
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2.2 Descriptive models

1. Descriptive models based on statistical Variables

Descriptive models , as understood in this text, are tools for describing
distributions of statistical variables. Starting point is a statistical variable,
X : Ω −→ X , often consisting of several components. A descriptive model
aims to describe the distribution of X , denoted by P[X ], or aspects of this
distribution, by using a simpler mathematical form.

As an example, one can think of describing the distribution of students’
‘ability scores’ by a normal distribution (Jackson et al. 2007).

2. Regression models with statistical variables

If X consists of two or more components, one is often interested in descrip-
tions of conditional distributions. This is done with regression functions
and regression models. The starting point is given by a two-dimensional
statistical variable, say

(X,Y ) : Ω −→ X × Y

A general regression function is a function

x −→ P[Y |X=x]

which assigns to each value x ∈ X the conditional frequency distribution of
Y , as given by the statistical variable (data). In order to create a descriptive
regression model, one uses a simpler mathematical representation of the
conditional distribution, say

g(x; θ) ≈ P[Y |X=x]

where θ is a parameter vector. A general regression model is then given by
the function x −→ g(x; θ).

Special regression models are used to represent aspects of P[Y |X=x].
Of widespread use is regression with mean values: m(x; θ) ≈ M(Y |X=x).
As an example, one can think of a linear model,

M(Y |X=x) ≈ α+ xβ

This model approximates the conditional mean value of Y by a linear func-
tion of the values of X that are used as conditions.

3. Descriptive models and descriptive generalizations

Descriptive models are primarily tools for comprehending aspects of com-
plex data sets. As suggested by a famous statistician, R.A. Fisher (1922:
311), this is a primary task of statistical methods:
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Briefly, and in its most concrete form, the object of statistical
methods is the reduction of data. A quantity of data, which
usually by its mere bulk is incapable of entering the mind, is to
be replaced by relatively few quantities which shall adequately
represent the whole, or which, in other words, shall contain as
much as possible, ideally the whole, of the relevant information
contained in the original data.

Descriptive models are also useful tools for descriptive generalizations.
Since these models relate to statistical variables, there is no conceptual
difference whether the reference set is a sample or a population. Starting
from a model intended to describe a population allows one to think in terms
of estimating its parameters with the information from a sample.

Notice that the term ‘estimation’ has a clear meaning in this context: It
means that one aims to find values of model parameters which are defined
by their hypothetical calculation for the complete population. This entails
that already their definition depends not only on the specified model, but
also on a particular method to calculate its parameters.

2.3 Analytical models

1. Relationships between variables

Analytical models , as understood in this text, are tools for thinking about
relationships between variables. The basic formal tool are functions (math-
ematically understood) which connect variables. So one can speak of ‘func-
tional relationships’ between variables, and the models are also called ‘func-
tional models’ (Rohwer 2010).

Two kinds of such functional relationships must be distinguished. Con-
sider two variables, X with domain X and Y with domain Y.

– A deterministic functional relationship consists of a function

x −→ y = f(x)

which assigns to each value x ∈ X exactly one value f(x) ∈ Y.

– A probabilistic functional relationship consists of a function

x −→ Pr[Y |X=x]

which assigns to each value x ∈ X a conditional probability distribution.

Notice that Pr[Y |X=x] is itself a function. If Y is a discrete variable, this
function can be written as

y −→ Pr(Y=y |X=x) (2.2)
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to be interpreted as the probability of Y=y given that X=x.

Since (2.2) is formally identical with a probabilistic predictive rule as
introduced in 2.1.6, functional models can also be understood as tools for
formulating probabilistic predictive rules.

2. A general notion of functional models

A general definition of functional models can be given as follows:

a) The structure of the model is given by a directed acyclic graph.

b) To each node of the graph corresponds a variable. Variables with
indegree zero are called exogenous variables and marked by two dots.
All other variables are called endogenous variables and marked by a
single dot. (The notation corresponds to the convention introduced
in 2.1.8.)

c) For each endogenous variable, there is a deterministic or probabilistic
function showing how the variable (its values or probability distribu-
tion) depends on values of the immediately preceding variables.

d) Without further assumptions, exogenous variables do not have an
associated distribution.

This is a formal framework. The arrows between variables have no specified
meaning. In many applications they can be understood as indicating some
kind of dependence relation.

3. Illustration with a simple example

To illustrate the notion of functional model, I begin with a simple example
which concerns the educational outcome of a generic child.

Model 2.3.1

Ẏ

Ż

Ẍ --

??�����*

����*

For simplicity, the variables are assumed to be binary and defined as follows:

Ẏ child’s educational outcome (1 successful, 0 otherwise)

Ẍ parents’ educational level (1 high, 0 low)

Ż school type (1 or 2)
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The model contains two probabilistic functions:

x −→ Pr[Ż | Ẍ=x]

(x, z) −→ Pr[Ẏ | Ẍ=x, Ż=z]

Since Ż and Ẏ are binary variables, it suffices to consider the functions

x −→ Pr(Ż=1 | Ẍ=x)

(x, z) −→ Pr(Ẏ=1 | Ẍ=x, Ż=z)

The first function is intended to show how the probability of attending a
specified school type depends on the parents’ educational level. The second
function is intended to show how the probability of educational success
depends both on the parents’ educational level and on the school type.

4. Assuming distributions for exogenous variables?

Exogenous variables of a functional model do not have an associated distri-
bution. However, there sometimes are reasons for assuming distributions
for exogenous variables.

a) Using the model for a statistical explanation (as defined in 2.1.9) w.r.t.
a particular reference set. Distributions of the model’s exogenous vari-
ables are then identified with the distributions of the corresponding
statistical variables.

b) Using the model for predicting the outcome for an individual that is
(only) known to belong to a particular reference set. One then employs
a reduced model that is derived from the original model by integrat-
ing over the distributions of the unobserved exogenous variables. As-
sume, for example, that one wants to use the model of the previous
subsection for predicting a child’s educational success. Not knowing
the educational level of the parents, one cannot use the model. How-
ever, substituting Ẍ by a variable Ẋ with a probability distribution
Pr[Ẋ |Z̈=z], one can derive a reduced model

Pr(Ẏ=1 | Z̈=z) =
∑

x
Pr(Ẏ=1 | Z̈=z, Ẋ=x) Pr(Ẋ=x|Z̈=z)

which only requires knowledge of the child’s school type.

c) Using the model for predicting the value of an exogenous variable based
on knowing values of endogenous variables. In order to apply Bayesian
inference, one must begin with a prior distribution for the exogenous
variables.
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5. Defining effects of explanatory variables

Assume that Ẏ depends on an exogenous variable Ẍ . To think of an effect
of Ẍ means to compare

Pr[Ẏ |Ẍ=x′] and Pr[Ẏ |Ẍ=x′′]

for (at least) two values, x′ and x′′, of Ẍ. This comparison concerns con-
ditional distributions and cannot, in general, be summarized by a single
number.

One therefore often uses a simplified definition which only compares
expected values:

E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) (2.3)

However, one has to take into account that Ẏ also depends on further
variables. Then, in general, effects cannot simply be attributed to a change
in Ẍ, but are context-dependent . Formally, assume that Ẏ also depends on
Z̈. The effect of a change in Ẍ must then be written as

E(Ẏ |Ẍ=x′′, Z̈=z)− E(Ẏ |Ẍ=x′, Z̈=z) (2.4)

and, in general, depends on the covariate context specified by Z̈=z.

6. Explained variance and statistical explanation

Authors who estimate regression functions often report some measure of
‘explained variance’. It is noteworthy that this notion cannot immedi-
ately be applied to functional models. Assume a simple functional model:
Ẍ −→→ Ẏ . Since there is no distribution for Ẍ, also Ẏ has no distribution,
and the idea of ‘explained variation’ cannot be applied.

It would be possible to refer to the variance of Ẏ conditional on values
of Ẍ: V(Ẏ |Ẍ= x). This could be used for quantifying the uncertainty of
predictions; but this is a different idea.

However, the notion of ‘explained variance’ can sensibly be used when
functional models are considered as tools for statistical explanations. As
proposed in 2.1.9, this application starts from a statistical variable, say

(X,Y ) : Ω −→ X × Y

One then uses P[X ], the distribution ofX , and a functional model Ẍ −→→ Ẏ
to construct a statistical variable, say Ŷ , whose distribution approximates
P[Y ]. Two approaches to the construction of P[Ŷ ] can be distinguished:

a) Using a prediction rule for individual outcomes to define individual
values of Ŷ , e.g. Ŷ (ω) := E(Ẏ | Ẍ = X(ω)).
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b) Directly deriving a distribution of Ŷ .

The first approach depends on specifying a prediction rule which can be
done in several different ways, in particular when the outcome variable
is qualitative. I therefore focus on the second approach which does not
require prediction rules for individual outcomes. Following this approach,
the construction of Ŷ ’s distribution begins with conditional values:

P(Ŷ=y |X=x) := Pr(Ẏ = y | Ẍ=x)

One then uses the known distribution of X to derive the corresponding
distribution of Ŷ :

P(Ŷ=y) =
∑

x
P(Ŷ=y |X=x) P(X=x)

Finally, the construction can be assessed with two considerations:

– One can compare P[Ŷ ] with P[Y ] (‘goodness of distributional fit’).

– One can calculate the part of the variation of Ŷ which can be attributed
to variation of X (‘explained variance’).1

7. Numerical illustration

To illustrate the construction, I use Model 2.3.1 and assume the following
data:

X Z Y =0 Y =1

0 1 300 300

0 2 80 320

1 1 40 160

1 2 80 720

The goodness of distributional fit depends on the parametric model that is
used to approximate the functional model. Using a saturated model, the
fit would be perfect. In the example:

Pr(Ẏ=1|Ẍ=x, Ż=z)=P(Y=1|X=x, Z=z) =⇒ P[Ŷ ]=P[Y ]

The fit would not be perfect if one had used, for example, a logit model
without an interaction effect. And, of course, there will be no perfect fit
when the statistical explanation concerns a set of data different from those
that are used to estimate the model.

Finally, one can calculate the explained variance, that is, the part of
the variance of Ŷ (not of Y ) which can be attributed to variation of X .

1Of cause, one could use other measures of variation instead of variance.
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Since the joint distribution of X and Ŷ is known, one can apply a standard
variance decomposition:

V(Ŷ ) = V[M(Ŷ |X)] + M[V(Ŷ |X)]

The first part can be interpreted as explained variation:

V[M(Ŷ |X)] =
∑

x
[M(Ŷ |X=x)−M(Ŷ )]2 P(X=x)

The second part is the residual variation:

M[V(Ŷ |X)] =
∑

x
V(Ŷ |X=x) P(X=x)

In our illustration, assuming a saturated model, one finds M(Ŷ ) = M(Y ) =
0.75 and V(Ŷ ) = V(Y ) = 0.1875, and finally:

– explained variation: V[M(Ŷ |X,Z)] = 0.0285,

– residual variation: M[V(Ŷ |X,Z)] = 0.1590,

– proportion of explained variation: 0.0285/0.1875≈ 15%.
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Estimating effects with logit models

3.1 Defining effects with logit models
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3. Modeling dependency relations
4. Continuing with Mood’s example
5. Comparing variables across models
6. Unobserved heterogeneity

Functional models as introduced in the previous chapter are primarily tools
for the formulation of hypotheses about relationships between variables. In
order to estimate the hypothesized relations one uses data and, most often,
parametric models. One of these parametric models, which is often used
when the outcome variable of interest is binary, is the logit model. In the
present chapter, I focus on the question of how to understand, and compare,
effects of explanatory variables estimated with such models.

3.1 Defining effects with logit models

1. A single explanatory variable

The most simple logit model corresponds to a functional model Ẍ −→→ Ẏ .
Ẍ is the explanatory variable, Ẏ is the binary outcome variable. As an
example, already introduced in Section 2.3, one can think that the model
concerns the dependence of children’s success in school (Ẏ = 1 if success,
Ẏ = 0 otherwise) on parents’ educational level represented by Ẍ (e.g. 0
low, 1 high). The functional model posits a functional relationship

x −→ Pr(Ẏ =1|Ẍ=x) = E(Ẏ |Ẍ=x) (3.1)

This function shows how the expectation of Ẏ depends on values of Ẍ. In
the present chapter, the interest concerns effects, that is, effects of changes
(differences) of values of Ẍ on the distribution of Ẏ . I use the notation

∆s(Ẏ ; Ẍ [x′, x′′]) := E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) (3.2)
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and refer to this as the stochastic (in contrast to: deterministic) effect of a
change in the variable Ẍ from x′ to x′′.

The logit model assumes a specific parametric representation of the
functional relationship (3.1). It is based on using a logistic link function

F (v) :=
exp(v)

1 + exp(v)
(3.3)

to approximate (3.1), resulting in the model

E(Ẏ |Ẍ=x) ≈ F (α+ xβx) (3.4)

Using here an equality sign instead of ≈ would presuppose that the model
is ‘correctly specified’. However, in particular when thinking of the possi-
bility that further explanatory variables should be included, this cannot be
assumed just from the beginning.

The effect of a change in Ẍ from x′ to x′′, as defined in (3.2), is then
approximated by

∆a(Ẏ ; Ẍ[x′, x′′]) := F (α+ x′′βx)− F (α+ x′βx) (3.5)

where the ‘a’ is intended to indicate ‘approximation’.

2. Adding another explanatory variable

I now consider the addition of another explanatory variable, say Z̈. To
continue with the example, one can imagine that the child’s success (Ẏ )
not only depends on the parents’ educational level (Ẍ), but also on the
school type (Z̈). Graphically depicted, the model then is (Ẍ, Z̈)−→→ Ẏ ,
and the corresponding functional relationship is

(x, z) −→ Pr(Ẏ =1|Ẍ=x, Z̈=z) = E(Ẏ |Ẍ=x, Z̈=z) (3.6)

In contrast to the simple model (3.1), effects of Ẍ can now be defined only
conditional on values of Z̈:

∆s(Ẏ ; Ẍ [x′, x′′], Z̈=z) := (3.7)

E(Ẏ |Ẍ=x′′, Z̈=z)− E(Ẏ |Ẍ=x′, Z̈=z)

Again, one can use a logit model as a parametric approximation to (3.6).
Including an interaction term, the model is

E(Ẏ |Ẍ=x, Z̈=z) ≈ F (α∗ + xβ∗
x + zβ∗

z + xzβ∗
xz) (3.8)

Of course, since this model differs from (3.4), also the parameters must be
distinguished. The parameterized effect then is

∆a(Ẏ ; Ẍ[x′, x′′], Z̈=z) := (3.9)

F (α∗ + x′′β∗
x + zβ∗

z + x′′zβ∗
xz)− F (α∗ + x′β∗

x + zβ∗
z + x′zβ∗

xz)
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Table 3.1 Fictitious data for the illustration.

x z y cases

0 0 0 600
0 0 1 600
0 1 0 240
0 1 1 560
1 0 0 40
1 0 1 160
1 1 0 80
1 1 1 720

To illustrate, I use the data shown in Table 3.1. Y represents the child’s
success (Y = 1), X represents the parents’ educational level (0 low, 1 high),
and Z represents the school type (0 or 1). Nonparametric estimates can
be derived directly from the observed frequencies as shown in the following
table:

x z E(Y |X=x, Z=z)

0 0 0.5
0 1 0.7
1 0 0.8
1 1 0.9

(3.10)

(Using the logit model (3.8) would result in identical estimates. Leaving
out the interaction effect would lead to slightly different values.) One then
finds the effects:

∆s(Ẏ ; Ẍ [0, 1], Z̈=0) = 0.8− 0.5 = 0.3 (3.11)

∆s(Ẏ ; Ẍ [0, 1], Z̈=1) = 0.9− 0.7 = 0.2

showing that there is no unique effect, but that the effect of the parents’
educational level depends on the school type.

3. Parameters in reduced models

The parameters βx and β∗
x cannot immediately be compared and must be

considered as belonging to different models. In order to stress this point,
I briefly criticize the idea that parameters in reduced models should be
viewed as ‘biased estimates’ of corresponding parameters in more compre-
hensive models. To illustrate the argument, I use an example taken from
Mood (2010: 71). The example assumes a correctly specified logit model

E(Ẏ |Ẍ=x, Z̈=z) = F (xβx + zβz) (3.12)
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Values of Ẍ and Z̈ are taken from two independent standard normal dis-
tributions. Written with a latent variable, the model is

Ẏl := xβx + zβz + L̇ (3.13)

where L̇ is a random variable with a standard logistic distribution, defined
by Pr(L̇ ≤ l) = F (l), implying that Ẏl ≥ 0 ⇐⇒ Ẏ = 1 (based on the
symmetry of the distribution of L̇).1 Mood uses this model with βx = 1
and three different values for βz . I begin with assuming that also βz = 1.

One can then consider a model which omits Z̈. Taken as a standard
logit model, it can be written in terms of a latent variable as

Ẏ r
l := xβr

x + L̇ (3.14)

Estimating this model with simulated data, Mood finds βr
x = 0.84, which

is obviously less than βx = 1, and concludes that the estimate is ‘clearly
biased towards zero’ (p. 71).2 However, this statement presupposes that
(3.14) has the task to estimate βx as defined by (3.12), and this is at least
debatable.

Viewing (3.14) as a reduced version of (3.12), it provides estimates of
probabilities which have a clear and sensible meaning: they approximate
probabilities which are averages w.r.t. the (a presupposed) distribution of
the omitted variable. In the example, F (xβr

x) approximates

EŻ(Pr(Ẏ =1|Ẍ=x, Ż)) :=

∫

z

F (xβx + zβz)φ(z) dz (3.15)

where φ(z) denotes the standard normal density function. This shows that
βr
x is the correct parameter to be used when being interested in approxi-

mating the probabilities defined in (3.15). Instead intending to estimate βx

would not be sensible. In fact, knowing βx without also knowing βz would
be almost useless because F (xβx) provides a correct estimate only for the
special case where z = 0.

Note that the proposed interpretation of the reduced model (3.14) holds
independently of the size of βz . For example, assuming βz = 2, Mood finds
βr
x = 0.61, even smaller than 0.84, but F (xβr

x) is still an (actually very
good) approximation to the average w.r.t. the omitted variable as defined
in (3.15).

1It is often said that the variance of the latent variable Ẏl is ‘not identified’ (e.g., Allison
1999, Cramer 2007). This is true in the following sense: When starting from a regression
model Ẏl = xβx+ zβz + ǫ with an arbitrary residual variable ǫ, and observations (values
of Ẏ ) only provide information about the sign of Ẏl, the variance of this variable cannot
be estimated. The statement is misleading, however, when the latent variable is derived
from a logit model. If Ẏl is defined by (3.13), a variance of Ẏl does exist only conditional
on values of the explanatory variables, and is already known from the model’s definition:
Var(Ẏl|Ẍ=x, Z̈=z) = Var(L̇) = π2/3.

2For similar views see Allison (1999), Cramer (2007), Wooldridge (2002: 470).
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3.2 Comparing effects across models

I now consider the question of how to compare the effects of Ẍ across the
two models, (3.1) and (3.6).

1. Consideration of composite effects

Obviously, an immediate comparison is not possible because in model (3.6)
effects also depend on values of Z̈. One therefore needs to define composite
effects based on a reduced version of (3.6). This requires to think of Z̈ as
a random variable, say Ż, that has an associated distribution. Taking into
account that the distribution of Ż could depend on values of Ẍ, one can
start from the equation

E(Ẏ |Ẍ=x) =
∑

z
E(Ẏ |Ẍ=x, Ż=z) Pr(Ż=z|Ẍ=x) (3.16)

Here I assume that Ż is a discrete variable as it is the case in the school
example; if Ż is continuous, as it is the case in Mood’s example, one would
use an integral instead of the sum. The effect defined in (3.2) can then be
expressed as

∆s(Ẏ ; Ẍ [x′, x′′]) =
∑

z
E(Ẏ |Ẍ=x′′, Ż=z) Pr(Ż=z|Ẍ=x′′) (3.17)

−
∑

z
E(Ẏ |Ẍ=x′, Ż=z) Pr(Ż=z|Ẍ=x′)

A simpler formulation is possible if Ż is independent of Ẍ. The composite
effect is then an average of the conditional effects:

∆s(Ẏ ; Ẍ [x′, x′′]) =
∑

z
∆s(Ẏ ; Ẍ[x′, x′′], Ż=z) Pr(Ż=z) (3.18)

Note, however, that even in this case the effect of Ẍ depends on the distri-
bution of Ż (presupposing that the effect of Ẍ depends on Ż).

To illustrate, I use Mood’s example where Ż has a normal distribution
independent of Ẍ. Corresponding to (3.18) one finds the approximation

∆s(Ẏ ; Ẍ [x′, x′′]) ≈

∫

z

(F (x′′βx + zβz)− F (x′βx + zβz))φ(z) dz

showing how effects of Ẍ also depend on the distribution of Ż. For example,
assuming Ż ∼ N (0, 1), one finds ∆s(Ẏ ; Ẍ[0, 1]) ≈ 0.7 − 0.5 = 0.2, but the
effect will increase when the variance of Ż becomes smaller and, conversely,
will decrease when the variance becomes larger.

2. Correlated explanatory variables

In social research, explanatory variables are most often correlated, and the
simple relationship (3.18) does not hold. A first problem then concerns how
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to think of correlations between observed explanatory variables. A further
problem that will be deferred to a later section concerns possibly relevant
omitted variables which, presumably, are correlated with already included
explanatory variables.

How to take into account correlations between observed explanatory
variables depends on the purpose of the model to be estimated. One pur-
pose of a model could be to describe the relationship between a dependent
and several explanatory variables as found in a given data set (and assumed
to exist in a correspondingly defined population). Given this purpose, one
can ignore correlations between explanatory variables and, assuming two
such variables, refer to a model as follows:

Model 3.2.1

Ẏ

Z̈

Ẍ --

�����*

����*

The model only concerns the dependency of the probability distribution
of Ẏ on values of the two explanatory variables and does not entail any-
thing about relationships between these variables. In other words, the
explanatory variables are treated as exogenous variables without associ-
ated distributions; and this entails that the model cannot be used to think
about correlations between these variables. Of course, the model can be
estimated also with data exhibiting correlations between the explanatory
variables. Think for example of the data in Table 3.1 where the statistical
variables corresponding to Ẍ and Z̈ are correlated.

Another purpose of a model could be to investigate effects of variables
as defined in the first section. For example, one might be interested in
the question of how the expectation of Ẏ (the child’s success) depends on
a change, or difference, in the variable Ẍ (the parents’ educational level).
Obviously, Model 3.2.1 cannot be used to answer this question because the
effect also depends on values of Z̈. The observation of correlations between
explanatory variables then leads to an important question: Can values of
Z̈ be fixed when referring to the effect of a change in the value of Ẍ?

Of course, given a function like (3.6), one can easily think of changes
in values of Ẍ, and consequently of effects of Ẍ, while holding Z̈ = z
fixed. However, in a more relevant understanding the question does not
concern possibilities to manipulate formulas, but the behavior of the social
processes which actually generate values of the variables represented in a
model (see Rohwer 2010: 82ff). In this understanding, the question moti-
vates to consider more comprehensive models which include assumptions
about relationships between explanatory variables.
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3. Modeling dependency relations

There are several different possibilities. Here I briefly consider two (further
possibilities will be considered in the next chapter). The first one can be
depicted as follows:

Model 3.2.2

Ẏ

Ż

Ẍ --

??�����*

����*

Ẍ is still an exogenous variable, but Z̈ has now changed into an endoge-
nous stochastic variable, Ż. In addition to the function (3.6), there is now
another function

x −→ Pr(Ż=z|Ẍ=x) (3.19)

showing how the distribution of Ż depends on values of Ẍ. In our example,
based on the data in Table 3.1, one finds Pr(Ż = 1|Ẍ = 0) = 0.4 and
Pr(Ż=1|Ẍ=1) = 0.8, showing how the child’s school type depends on the
parents’ educational level.

Given this model, a change in Ẍ entails a change in the distribution
of Ż and it is not possible to fix Ż = z when considering an effect of Ẍ.
Consequently, when considering this model, one can only define a total
effect of a change in Ẍ, and this total effect equals the effect (3.17) which
is derived from a reduced model resulting from omitting Ż; in the example:
∆s(Ẏ ; Ẍ[0, 1]) ≈ 0.88− 0.58 = 0.3. In other words, assuming Model 3.2.2,
marginalization w.r.t. Ż is required in order to define the effect of interest.

The situation is less clear when considering a model in which the ex-
planatory variable of interest is endogenous, for example:

Model 3.2.3

Ẏ

Z̈

Ẋ --

66
�����*

����*

While the model can well be used to define an effect of Z̈, there is no
straightforward answer to the question of how to define an effect of a change
in Ẋ. One could fix Z̈ = z and nevertheless think of different values of Ẋ
to be used for the calculation of an effect; but such effects are conditional
on Z̈=z and already available in Model 3.2.1. On the other hand, without
a distribution for Z̈, one cannot derive a reduced model. Thinking instead
of a variable Ż that can be assumed to have a distribution, the composite
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Table 3.2 Modification of the data in Table 3.1.

x z y cases

0 0 0 257
0 0 1 257
0 1 0 360
0 1 1 840
1 0 0 17
1 0 1 69
1 1 0 120
1 1 1 1080

effect of Ẋ depends on the actual choice. For example, deriving the distri-
bution of Ż from the data in Table 3.1, one finds the composite effect 0.3.
Using instead the data in Table 3.2 (which entail the same functional rela-
tionships as specified in (3.10)), one finds 0.25. Given this model, it seems
best not to attempt to attribute to Ẋ a definite (context-independent)
effect.

4. Continuing with Mood’s example

For further illustration of correlated explanatory variables, I use a modi-
fication of Mood’s example in which values of Ẍ and Z̈ are taken from a
bivariate normal distribution with correlation ρ 6= 0. One can again con-
sider the reduced model (3.14). For example, assuming ρ = 0.5, one finds
βr
x = 1.32, now larger than βx = 1 (this also shows that omitting a variable

not always leads to an ‘attenuated parameter’). As I have argued above,
this is not a ‘biased estimate’ of βx, but must be viewed as a parameter
of the reduced model (3.14). In this understanding, βr

x can be used to cal-
culate a sensible approximation to the expectation (3.16). In the example,
E(Ẏ |Ẍ=0) ≈ F (0) = 0.5, and E(Ẏ |Ẍ = 1) ≈ F (1.32) = 0.79.

These values could be used to calculate the effect ∆s(Ẏ ; Ẍ[0, 1]) ≈ 0.79−
0.5 = 0.29, obviously larger than the value 0.2 that was calculated for
Mood’s original model with uncorrelated explanatory variables. In order
to understand the difference, one needs an extended model that allows
one to interpret the correlation between the two explanatory variables. I
consider Model 3.2.2 which is based on the assumption that the distribution
of Ż depends on values of Ẍ. In the example, the conditional density of Ż,
given Ẍ = x, is a normal density φ(z;µ, σ) with µ = xρ and σ =

√

1− ρ2,

entailing that Ẍ and Ż are connected by a linear regression function.

This allows an easy interpretation of the effect. For example, if the
value of Ẍ changes from 0 to 1, this entails a change in the mean value of
Ż from 0 to ρ, and, if ρ > 0, the effect becomes larger compared with a
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Table 3.3 Modification of the data in Table 3.1.

x z y cases

0 0 0 400
0 0 1 600
0 1 0 100
0 1 1 400
1 0 0 200
1 0 1 300
1 1 0 200
1 1 1 800

situation where ρ = 0. In any case, assuming that Ż depends on Ẍ allows
one to attribute the total effect to the change in Ẍ.

5. Comparing variables across models

Neither parameters nor effects can directly be compared across models.
It is well possible, however, to compare the role played by explanatory
variables. For example, one can compare the role played by Ẍ across
the models (3.1) and (3.6). One can begin with a look at the estimated

parameters. Using the data in Table 3.1, one finds β̂x = 1.67 and β̂∗
x =

1.39. This does not show, however, that Ẍ is ‘less important’ when one
‘controls for’ values of Z̈. The total effect of Ẍ is essentially identical
in both models (differences only result from the parameterization of the
models). Of course, the enlarged model provides an opportunity to think
of this total effect in a more refined way.

Even if, by including a further variable, a parameter becomes zero one
cannot conclude that the corresponding variable has no effect. To illustrate,
I use the data in Table 3.3. Using these data to estimate (3.4) and (3.8), one

finds β̂x = 0.32 and β̂∗
x = 0. This shows that the effect of Ẍ, conditional

on values of Z̈, is zero. There nevertheless is a relevant total effect of Ẍ,
namely ∆s(Ẏ ; Ẍ[0, 1]) ≈ 0.73− 0.67 = 0.06.

How to interpret this effect depends on assumptions about the rela-
tionship between Ẍ and Z̈. In our example, assuming that the choice of a
school type depends on the parents’ educational level, one would use Model
3.2.2. The total effect of Ẍ can then be explained by the difference in the
probabilities Pr(Ż=1|Ẍ=0) = 1/3 and Pr(Ż=1|Ẍ=1) = 2/3.

6. Unobserved heterogeneity

So far, I have assumed observed explanatory variables. Further questions
concern ‘unobserved heterogeneity’. I take this expression to mean that
there are further unobserved explanatory variables that should be included
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in a model. So the question arises how the model would change if these
additional variables would have been included. A reliable answer is obvi-
ously not possible, but a few remarks can be derived from the foregoing
discussion.

As before, I only consider logit models and begin with assuming that
the interest concerns conditional expectations,

E(Ẏ |Ẍ=x) ≈ F (α+ xβx) (3.20)

When hypothetically adding a further explanatory variable, say Z̈, one
gets a more comprehensive model. However, in order to think of (3.20) as
a reduced version of that model, one needs to think of Z̈ as a variable Ż that
can be assumed to have a distribution (given, e.g., by values of Z̈ if such
values could be observed). Equation (3.16) then shows that E(Ẏ |Ẍ=x) can
be viewed as a mean value w.r.t. the distribution of Ż; and consequently
F (α+ xβx) can be viewed as an approximation to this mean value. As an
illustration remember Mood’s example. Not having observed Z̈, one can
estimate only the reduced model (3.14), but this model correctly provides
an approximation to the expectation defined in (3.15). As shown by (3.16),
this remains true when Ż is correlated with Ẍ .

The situation is more complicated when the interest concerns effects as
defined in (3.2). First assume that the hypothetically included unobserved
variable Ż is independent of the variable Ẍ. As shown by (3.18), the effect
derived from the reduced model can then be viewed as a mean of effects
which additionally condition on value of Ż. Of course, the not observed
effects ∆s(Ẏ ; Ẍ[x′, x′′], Ż = z) can have quite different, even positive and
negative, values. For example, one can easily modify the data in Table 3.1
to get conditional expectations as follows:

x z E(Ẏ |Ẍ=x, Z̈=z)

0 0 0.7
0 1 0.8
1 0 0.6
1 1 0.9

entailing effects ∆s(Ẏ ; Ẍ[0, 1], Z̈ = 0) = −0.1 and ∆s(Ẏ ; Ẍ [0, 1], Z̈ = 1) =
0.1. The observed effect is then positive if Pr(Ż = 1) > 0.5 and negative
otherwise.

When the omitted variable is correlated with observed explanatory vari-
ables, a critical question concerns the sources of the correlation. To conceive
of the observed effect of Ẍ as a total effect requires the presupposition of
a model in which the omitted variables functionally depends on Ẍ. Other-
wise, as I have argued above, no easy interpretation of the observed effect
seems possible.
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Relationships between explanatory

variables

4.1 Interactions of explanatory variables

1. A general definition of interaction
2. Interaction in parametric models
3. Implications for understanding effects
4. Assuming distributions for exogenous variables

4.2 Functional relations between explanatory variables

1. Functional relationships and interactions
2. Mediator and moderator variables
3. Effects of exogenous variables
4. Effects of endogenous variables
5. Direct and indirect effects
6. Counterfactual effect decompositions
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8. Effects of mediator variables
9. Indirectly connected explanatory variables

4.3 Linear regression models

1. Linear models for expectations
2. Linear models with interactions
3. Mediator variables and total effects
4. Direct and indirect effects
5. Omitting a confounding variable

Statistical explanations most often consider many explanatory variables.
The formulation of explanatory claims must include, then, an explication
of relationships between the explanatory variables. This chapter discusses
how functional models can be used to consider such relationships. The first
section deals with interactions between explanatory variables and points to
implications for understanding effects. The second section considers func-
tional relationships between explanatory variables (which are different from
interactions). In both sections, the discussion is general without presup-
posing a specific parametric form. The third section considers relationships
between explanatory variables in the context of linear models for expecta-
tions.
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4.1 Interactions between explanatory

variables

1. A general definition of interaction

The leading idea is: Ẍ and Z̈ are interactive conditions for the distribution
of Ẏ if the effect of a change in Ẍ [Z̈] depends on values of Z̈ [Ẍ]. The
formulation shows that the presence of interaction also depends on the
definition of ‘effect’. To illustrate, I use

Model 4.1.1

Ẏ

Z̈

Ẍ --

�����*

����*

with Ẏ = indicator of a child’s educational success; Ẍ = educational level of
the child’s parents (0 low, 1 high); Z̈ = type of school the child is attending
(0 or 1). The corresponding probabilistic function is

(x, z) −→ Pr[Ẏ |Ẍ=x, Z̈=z] (4.1)

The right-hand side denotes the probability distribution of Ẏ in a situation
where Ẍ=x and Z̈=x. Assuming that Ẏ is discrete, specific values of this
distribution will be denoted by Pr(Ẏ =y|Ẍ=x, Z̈=z).

A simple definition of the effect of a change from Ẍ = x′ to Ẍ = x′′ is
given by

∆s(Ẏ ; Ẍ[x′, x′′], Z̈=z) := E(Ẏ |Ẍ=x′′, Z̈=z)−E(Ẏ |Ẍ=x′, Z̈=z) (4.2)

Using this definition, one can easily invent examples with and without
interaction between the two explanatory variables:

with interaction without interaction

x z E(Ẏ |Ẍ=x, Z̈=z) x z E(Ẏ |Ẍ=x, Z̈=z)

0 0 0.5 0 0 0.5

0 1 0.7 0 1 0.7

1 0 0.8 1 0 0.7

1 1 0.9 1 1 0.9

(4.3)

2. Interaction in parametric models

The above definition of interaction between explanatory variables is inde-
pendent of the parametric form of the function which relates these variables
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to the distribution of an outcome variable. When using parametric models,
it depends on the parametric form whether, and how, interactions can be
made visible.

Linear models for mean values require an explicit formulation of inter-
action terms (most often defined by multiplying variables). In contrast,
almost all nonlinear models entail interaction effects already by virtue of
their mathematical form. However, even then it depends on the details of
the parametric form which interaction effects can be made visible.

The logit model can serve as an example. For Model 4.1.1, the standard
formulation would be:

Pr(Ẏ =1|Ẍ=x, Z̈=z) ≈
exp(α+ xβx + zβz)

1 + exp(α+ xβx + zβz)

This formulation implies an interaction effect when using the effect defini-
tion (4.2), but not when using odds ratios:

Pr(Ẏ =1|Ẍ=x′′, Z̈=z)/Pr(Ẏ =0|Ẍ=x′′, Z̈=z)

Pr(Ẏ =1|Ẍ=x′, Z̈=z)/Pr(Ẏ =0|Ẍ=x′, Z̈=z)
≈ exp

(

(x′′ − x′)βx

)

Of course, it will often be sensible to add explicitly an interaction term:

Pr(Ẏ =1|Ẍ=x, Z̈=z) ≈
exp(α+ xβx + zβz + xzβxz)

1 + exp(α+ xβx + zβz + xzβxz)

3. Implications for understanding effects

Interaction has an important consequence: If two explanatory variables in-
teract, no one can be attributed a unique effect. Instead, one must speak
of context-dependent effects . This notion is symmetrical: each of the in-
teracting variables can be considered as providing a context for the other
one.

To illustrate, consider Model 4.1.1 as exemplified on the left-hand side
of (4.3). The effect of parents’ educational level depends on the school type:

∆s(Ẏ ; Ẍ [0, 1], Z̈=0) = 0.8− 0.5 = 0.3

∆s(Ẏ ; Ẍ [0, 1], Z̈=1) = 0.9− 0.7 = 0.2

Conversely, the effect of the school type depends on the parents’ educational
level.

4. Assuming distributions for exogenous variables

In general, whether it is possible to define unique effects also depends on
whether the interacting variables are exogenous or endogenous (as specified
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in a functional model). In Model 4.1.1, both explanatory variables are
exogenous. In order to define a unique effect of one of the variables, say
Ẍ, it could be sensible to assume a distribution for the other variable. Z̈ is
then substituted by a variable Ż which is still an exogenous variable with
a distribution not depending on Ẍ . This leads to a modified model:

Model 4.1.2

Ẏ

Ż

Ẍ --

�����*

����*

This modified model would allow one to define a mean effect:

∆s(Ẏ ; Ẍ [x′, x′′], Ż) :=
∑

z

(

E(Ẏ |Ẍ=x′′, Ż=z)− E(Ẏ |Ẍ=x′, Ż=z)
)

Pr(Ż=z)

However, given that Ẍ and Ż interact, the effect still depends on the distri-
bution of Ż. This can easily be seen when using the data on the left-hand
side of (4.3):

∆s(Ẏ ; Ẍ [0, 1], Ż) = (0.8− 0.5)Pr(Ż=0) + (0.9− 0.7)Pr(Ż=1)

4.2 Functional relations between explanatory

variables

1. Functional relationships and interactions

The idea of interaction concerns the probabilistic function which relates
the explanatory variables to the outcome variable. A different question
concerns functional relationships between explanatory variables. As an
example, I consider a modification of Model 4.1.1:

Model 4.2.1

Ẏ

Ż

ẌPPPPPq

�����1

PPPPPq

�����1??

This model, in addition to the functional relationship

(x, z) −→ Pr[Ẏ |Ẍ=x, Ż=z] (4.4)
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which corresponds to (4.1), also assumes a relationship

x −→ Pr[Ż|Ẍ=x] (4.5)

that shows how the child’s school type depends on the parents’ educational
level. Whether there is interaction between Ẍ and Ż w.r.t. Ẏ is completely
independent of this function relating Ẍ and Ż. For later illustrations, I
assume

Pr(Ż=1 | Ẍ=0) = 0.4 and Pr(Ż=1 | Ẍ=1) = 0.8 (4.6)

2. Mediator and moderator variables

Authors often distinguish between mediator and moderator variables (e.g.
Baron and Kenny 1986, MacKinnon 2008). In the context of functional
models, one can use the following definitions:

Ż is a mediator variable for Ẍ [or Ẋ] w.r.t. another variable, Ẏ ,
if Ż lies on a directed path leading from Ẍ [or Ẋ] to Ẏ .

Ż is a moderator variable w.r.t. a relationship between Ẍ [or Ẋ]
and Ẏ if the effect of Ẍ [or Ẋ] on Ẏ depends on values of Ż.

Using these definitions, Ż is a mediator variable in Model 4.2.1. If Ż
interacts with Ẍ, it is also a moderator variable. On the other hand, in
Model 4.1.1, Z̈ is not a mediator variable, but it is a moderator variable if
it interacts with Ẍ .

One can think, of course, of many different constellations. In the fol-
lowing, I will consider mainly four types:

Model 4.2.2a Model 4.2.2c

Ẏ

Ẍ

Ż --

66

Ü -- Ẏ

Ẍ

Ż --

66

Model 4.2.2b Model 4.2.2d

Ẏ

Ẍ

Ż --

66
�����*

����*
Ü -- Ẏ

Ẍ

Ż --

66
�����*

����*

The leading question is, How to define effects of the explanatory variables
in these models?
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3. Effects of exogenous variables

For models 4.2.2a and 4.2.2b one can derive a total effect of Ẍ, that is, an
effect that integrates mediating variables. Starting from

E(Ẏ |Ẍ=x) =
∑

z
E(Ẏ |Ẍ=x, Ż=z) Pr(Ż=z|Ẍ=x)

the total effect in 4.2.2b is:

∆s(Ẏ ; Ẍ[x′, x′′]) =
∑

z

(

E(Ẏ |Ẍ=x′′, Ż=z) Pr(Ż=z|Ẍ=x′′)−

E(Ẏ |Ẍ=x′, Ż=z) Pr(Ż=z|Ẍ=x′)
)

(4.7)

The total effect in 4.2.2a is:

∆s(Ẏ ; Ẍ [x′, x′′]) =
∑

z
E(Ẏ |Ż=z)

(

Pr(Ż=z|Ẍ=x′′)− Pr(Ż=z|Ẍ=x′)
)

To illustrate the calculation of a total effect in Model 4.2.2b, I use the data
in (4.3) and (4.6).

Left-hand side of (4.3):

E(Ẏ |Ẍ=1) = 0.8 · 0.2 + 0.9 · 0.8 = 0.88

E(Ẏ |Ẍ=0) = 0.5 · 0.6 + 0.7 · 0.4 = 0.58

Total effect = 0.88− 0.58 = 0.3

Right-hand side of (4.3):

E(Ẏ |Ẍ=1) = 0.7 · 0.2 + 0.9 · 0.8 = 0.86

E(Ẏ |Ẍ=0) = 0.5 · 0.6 + 0.7 · 0.4 = 0.58

Total effect = 0.86− 0.58 = 0.28

4. Effects of endogenous variables

When thinking of effects of endogenous variables, a first difficulty concerns
that such variables have distributions which depend on values of other vari-
ables. To circumvent this difficulty, I assume that one can nevertheless hy-
pothetically fix values of endogenous variables. Given this presupposition,
one can immediately define effects of Ż in models 4.2.2a and 4.2.2c:

∆s(Ẏ ; Ż[z′, z′′]) = E(Ẏ |Ż=z′′)− E(Ẏ |Ż=z′)

In models 4.2.2b and 4.2.2d, effects of Ż are context-dependent on values
of Ẍ. For example, in 4.2.2b:

∆s(Ẏ ; Ż[z′, z′′], Ẍ=x) = E(Ẏ |Ż=z′′, Ẍ=x)− E(Ẏ |Ż=z′, Ẍ=x)
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5. Direct and indirect effects

Model 4.2.2b (= 4.2.1) leads to the further question of whether one can
define, not only a total, but also a direct effect of Ẍ on the expectation of
Ẏ . A positive answer requires that it makes sense to hypothetically held
constant a value of Ż, although its distribution changes with Ẍ.

Even given this presupposition, one can only define a direct effect if Ẍ
and Ż do not interact. If there is no interaction, the effect

∆s(Ẏ ; Ẍ [x′, x′′], Z̈=z)

is independent of z and can sensibly be interpreted as a direct effect of Ẍ.
This is illustrated by the data on the right-hand side of (4.3):

∆s(Ẏ ; Ẍ [0, 1], Ż=0) = ∆s(Ẏ ; Ẍ[0, 1], Ż=1) = 0.2

An indirect effect can then be defined as the difference between the total
and the direct effect. Starting from the total effect (4.7), the indirect effect
can be written as

∑

z
E(Ẏ |Ẍ=x′, Ż=z)

(

Pr(Ż=z|Ẍ=x′′)− Pr(Ż=z|Ẍ=x′)
)

(4.8)

Using again the right-hand side of (4.3), the indirect effect is 0.08, and the
total effect is 0.2 + 0.08 = 0.28.

If, however, Ẍ and Ż do interact, it is not possible to define a unique
direct effect even if one assumes that values of Ż can be fixed. This is
illustrated by the data on the left-hand side of (4.3):

∆s(Ẏ ; Ẍ [0, 1], Ż=0) = 0.3 and ∆s(Ẏ ; Ẍ[0, 1], Ż=1) = 0.2

Consequently, there also is no unique indirect effect.

6. Counterfactual effect decompositions

If there is an interaction between Ẍ and the mediating variable Ż, direct
effects can only be defined for each value of Ż separately. It is, of course,
possible to define versions of mean direct effects. Following this idea, some
authors have proposed a ‘natural direct effect’ (e.g. Pearl 2001, Petersen
et al. 2006). In the framework of functional models, this form of a mean
direct effect can be defined as

∑

z

(

E(Ẏ |Ẍ=x′′, Ż=z)− E(Ẏ |Ẍ=x′, Ż=z)
)

Pr(Ż=z|Ẍ=x′) (4.9)

The idea is to use the distribution of Ż that corresponds to the initial
value of Ẍ and to assume (counterfactually) that this distribution would
not change when the value of Ẍ changes from x′ to x′′.
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Of course, one also may use other distributions of Ż. In any case, the
total effect of Ẍ can be divided into a mean direct and a mean indirect
effect. Using (4.9) for the mean direct effect, one gets

E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) = (4.10)
∑

z

[

E(Ẏ |Ẍ=x′′, Ż=z)− E(Ẏ |Ẍ=x′, Ż=z)
]

Pr(Ż=z|Ẍ=x′) +
∑

z
E(Ẏ |Ẍ=x′′, Ż=z)

[

Pr(Ż=z|Ẍ=x′′)− Pr(Ż=z|Ẍ=x′)
]

where the second term on the right-hand side is then interpreted as a mean
indirect effect.

To illustrate the decomposition for a situation with interaction, I use
the data on the left-hand side of (4.3) together with (4.6). The mean direct
effect is

(0.8− 0.5) 0.6 + (0.9− 0.7) 0.4 = 0.26

the mean indirect effect is

0.8 (0.2− 0.6) + 0.9 (0.8− 0.4) = 0.04

and the total effect is 0.26 + 0.04 = 0.3.
In sociological research of education, several authors have used similar

definitions to distinguish between primary and secondary family effects on
educational outcomes. This will be discussed in Section 6.1.

7. Confounders and independent context variables

There is no unique definition of ‘confounding variables’ (see, e.g., Weinberg
1993). In the context of functional models, I use the following definition:

A variable Ẋ [or Ẍ] is a confounder w.r.t. a functional depen-
dence of Ẏ on Ż if there is a directed path from Ẋ to Ẏ and
(a) there is a directed path from Ẋ [or Ẍ] to Ż (direct con-
founding), or (b) there is a further variable, say U̇ [or Ü ], and
a directed path leads from U̇ to Ż and from U̇ to Ẋ (indirect
confounding).

For example, in Model 4.2.2b, Ẍ is a directly confounding variable w.r.t.
the dependence of Ẏ on Ż. In contrast, Ż is a mediator variable, not
a confounder, w.r.t. the relationship between Ẍ and Ẏ . Notice that the
definition presupposes a functional model with directional relationships be-
tween variables and cannot be formulated in terms of ‘correlation’.

The proposed definition distinguishes confounding variables from inde-
pendent context variables. Without an arrow from Ẍ to Ż in Model 4.2.2b,
Ẍ would be an independent context variable, not a confounder.
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The distinction between these two kinds of covariates concerns possi-
bilities to define effects. Different difficulties show up, in particular, when
the variables are not observed. Consider the independent context variable,
Ẍ, in Model 4.1.1. This is a context variable for effects of Z̈ on Ẏ :

∆s(Ẏ ; Z̈[z′, z′′], Ẍ=x) = E(Ẏ |Z̈=z′′, Ẍ=x)− E(Ẏ |Z̈=z′, Ẍ=x)

If Ẍ is not observed, one can think instead of a variable, Ẋ, having an
unknown distribution. Since this distribution does not depend on Z̈, the
observed effect can be considered as a mean effect w.r.t. the unknown dis-
tribution of Ẋ:

∆s(Ẏ ; Z̈[z′, z′′]) =
∑

x
∆s(Ẏ ; Z̈[z′, z′′], Ẋ=x) Pr(Ẋ = x)

Moreover, if there is no interaction between Z̈ and Ẋ, one can attribute
the effect uniquely to Z̈.

A similar consideration is not possible for unobserved confounding vari-
ables. Consider the confounding variable Ẍ in Model 4.2.2b (= 4.2.1). If
this variable is not observed, one can instead assume a random variable Ẋ
having an unknown distribution. An effect of Ż can then be expressed as

E(Ẏ |Ż=z′′)− E(Ẏ |Ż=z′) =
∑

x

(

E(Ẏ |Ż=z′′, Ẋ=x) Pr(Ẋ=x|Ż=z′′)−

E(Ẏ |Ż=z′, Ẋ=x) Pr(Ẋ=x|Ż=z′)
)

This effect is not only due to different values of Ż, but also to different
distributions of Ẋ (associated with different values of Ż). The effect cannot,
therefore, be interpreted as a mean effect w.r.t. an unknown, but common,
distribution of the confounding variable.

8. Effects of mediator variables

Interestingly, the mentioned difficulties do not arise w.r.t. mediator vari-
ables. Consider the following

Model 4.2.3

Ż -- Ẏ

Ẍ

V̇ --

HHHHHY

�����*

����*

which is similar to Model 4.2.2b but in addition contains the mediator
variable V̇ . As before, if the confounder, Ẍ, is not observed, the observable
relationship between Ẏ and Ż is difficult to interpret. The situation is
different, however, w.r.t. the mediator variable V̇ .
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In order to see that, substitute Ẍ by a random variable Ẋ having an
unknown distribution. The model entails the relationships

Pr[Ẏ |Ẋ=x, V̇ =v, Ż=z] = Pr[Ẏ |Ẋ=x, V̇ =v] (4.11)

Pr[V̇ |Ż=z, Ẋ=x] = Pr[V̇ |Ż=z] (4.12)

and therefore1

Pr[Ẋ |V̇ =v, Ż=z] = Pr[Ẋ |Ż=z] (4.13)

Using these relationships, one finds

E(Ẏ |V̇ =v, Ż=z) =
∑

x
E(Ẏ |V̇ =v, Ż=z, Ẋ=x) Pr(Ẋ=x|V̇ =v, Ż=z) =

∑

x
E(Ẏ |V̇ =v, Ẋ=x) Pr(Ẋ=x|Ż=z)

from which one derives

E(Ẏ |V̇ =v′′, Ż=z)− E(Ẏ |V̇ =v′, Ż=z) =
∑

x

[

E(Ẏ |V̇ =v′′, Ẋ=x)− E(Ẏ |V̇ =v′, Ẋ=x)
]

Pr(Ẋ=x|Ż=z)

This shows that, conditional on values of Ż, effects of V̇ can be interpreted
as mean effects w.r.t. an unknown distribution of the confounding variable
Ẋ. Moreover, if there is no interaction between V̇ and Ẋ , one can attribute
these effects uniquely to V̇ .

9. Indirectly connected explanatory variables

So far the discussion dealt with directly confounding variables. I now con-
sider indirectly confounding variables. The following model illustrates this
case:

Model 4.2.4

Ü -- Ẏ

Ẋ

Ż --
HHHHHj

HHHHHj �����*

����*

In this model, Ẋ is a confounder w.r.t. to the dependence of Ẏ on Ż
according to the second part of the above definition. If Ẋ is observed, effects

1Starting from

Pr[Ẋ, V̇ |Ż] = Pr[Ẋ|V̇ , Ż] Pr[V̇ |Ż] = Pr[V̇ |Ẋ, Ż] Pr[Ẋ|Ż]

and using (4.12), (4.13) immediately follows.
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of Ż can be calculated conditional on values of Ẋ. (Further considerations
depend on whether Ẋ and Ż interact, see above.)

If Ẋ is not observed, one can begin with explicitly conditioning on
values of Ü and use the assumption entailed by the model that Ż and Ẋ
are independent conditional on values of Ü :

E(Ẏ |Ż=z, Ü=u) =
∑

x
E(Ẏ |Ż=z, Ẋ=x, Ü=u) Pr(Ẋ=x|Ż=z, Ü=u) =

∑

x
E(Ẏ |Ż=z, Ẋ=x) Pr(Ẋ=x|Ü=u) (4.14)

This shows that, conditional on values of Ü , the observed effect of Ż can
be interpreted as a mean effect w.r.t. an unknown distribution of the con-
founding variable Ẋ.

Of course, also Ü is a confounding variable, and no reliable conclusions
about effects of Ż on Ẏ can be drawn if also Ü is not observed.

4.3 Linear regression models

The discussion so far was general and did not rely on any parametric as-
sumptions. I now consider some of the previously discussed relationships
in the context of linear models for expectations. (Some considerations for
logit models have already been discussed in the previous chapter.)

1. Linear models for expectations

Corresponding to Model 4.1.1, a simple linear version of a parametric model
for the expectation of Ẏ can be written as

E(Ẏ |Ẍ=x, Z̈=z) = β0 + xβx + zβz (4.15)

The model entails that Ẍ and Z̈ do not interact. Effects of Ẍ are then
given by

E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) = (x′′ − x′)βx (4.16)

and do not depend on values of Z̈.
What happens if Z̈ is omitted? In order to derive a reduced model, Z̈

must be substituted by a random variable, Ż, having an unknown distribu-
tion. If one further assumes that Ż is independent of Ẍ , there is a simple
result:

E(Ẏ |Ẍ=x) =
∑

z
(β0 + xβx + zβz) Pr(Ż=z) = β0 + xβx + E(Ż)βz

showing that effects of Ẍ are still given by (4.16).
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2. Linear models with interactions

In its general formulation, Model 4.1.1 does not make assumptions about
interactions between Ẍ and Z̈. Such assumptions belong to the form of a
parametric model. When using linear models, interaction effects must be
explicitly included, in our example:

E(Ẏ |Ẍ=x, Z̈=z) = β0 + xβx + zβz + xzβxz (4.17)

Effects of Ẍ now depend on values of Z̈:

E(Ẏ |Ẍ=x′′, Z̈=z)− E(Ẏ |Ẍ=x′, Z̈=z) = (x′′− x′)(βx + zβxz)

This also changes the consequences of omitting Z̈. If one substitutes Z̈ by
Ż and still assumes that Ż is independent of Ẍ , one finds

E(Ẏ |Ẍ=x) = (β0 + E(Ż)βz) + x (βx + E(Ż)βxz)

Effects of Ẍ now also depend on an unknown mean value of Ż.

3. Mediator variables and total effects

So far I have assumed that Ż is independent of Ẍ. I now assume that it
is a mediator variable for Ẍ w.r.t. Ẏ , corresponding to Model 4.2.1. Then
starting from (4.15) without interaction, one gets

E(Ẏ |Ẍ=x) = β0 + xβx + E(Ż|Ẍ=x)βz (4.18)

If one assumes a linear model for the expectation of Ż,

E(Ż|Ẍ=x) = γ0 + xγx (4.19)

one also gets a linear formulation for the reduced model:

E(Ẏ |Ẍ=x) = (β0 + γ0βz) + x (βx + γxβz)

Since Ż is a mediator variable, βx+γxβz can be interpreted as representing
the total effect of Ẍ on Ẏ :

E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′) = (x′′− x′)(βx + γxβz)

One gets a more involved formulation when starting from (4.17) which
includes an interaction effect. Again assuming (4.19), one gets

E(Ẏ |Ẍ=x) = (β0 + γ0βz) + x (βx + γxβz + γ0βxz) + x2γxβxz

Ẏ now depends in a nonlinear way on Ẍ , but E(Ẏ |Ẍ=x′′)− E(Ẏ |Ẍ=x′)
can still be interpreted as a total effect of Ẍ on Ẏ .
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4. Direct and indirect effects

In both cases, the total effect can be decomposed into a direct and an
indirect effect. Starting from (4.15) without interaction, one can follow the
consideration in 4.2.5. The direct effect is given by (x′′ − x′)βx, and the
indirect effect can be calculated according to (4.8):

(E(Ż|Ẍ=x′′)− E(Ż|Ẍ=x′))βz = (x′′ − x′) γxβz

When starting from model (4.17), which includes an interaction effect, one
can follow the approach that was described in 4.2.6. Based on the decom-
position (4.10), one finds the counterfactual direct effect

(x′′ − x′)(βx + γ0βxz + x′γxβxz)

and the counterfactual indirect effect

(x′′ − x′)(γxβz + x′′γxβxz)

5. Omitting a confounding variable

Consider again Model 4.2.1, but now assume that one has omitted the
variable Ẍ. This is a confounding variable w.r.t. the effect of Ż on Ẏ .
As was argued in 4.2.7, the effect of Ż in the reduced model is not eas-
ily interpretable. Linear regression models offer no advantage. Starting
from (4.15), the reduced model omitting Ẋ (which is the substitute for Ẍ)
becomes:

E(Ẏ |Ż=z) = β0 + zβz + E(Ẋ|Ż=z)βx

While formally similar to (4.18), there is no similar interpretation. In
(4.18), one can interpret E(Ż|Ẍ = x)βz as part of the total effect of Ẍ
on Ẏ . In contrast, E(Ẋ |Ż = z) cannot be interpreted as a substantive
dependency relation. Starting from the dependency relation assumed in
Model 4.2.1, which goes from Ẍ to Ż, one can derive

E(Ẋ|Ż=z) =

∑

xxPr(Ż=z|Ẋ=x)Pr(Ẋ=x)
∑

xPr(Ż=z|Ẋ=x)Pr(Ẋ=x)

So it depends essentially on the distribution of Ẋ which is determined
outside of the model.

Chapter 5

Models of educational stages

5.1 Consecutive educational outcomes

1. Framework of a two-stage model
2. Conditional and unconditional effects
3. Effects of endogenous educational outcomes
4. Endogenously generated inequality
5. Consequences of omitted variables
6. Example with linear regression functions
7. Are effect definitions ‘biased’?

5.2 Sequential transitions

1. Sequential binary choices
2. Consideration of possible effects
3. Models in terms of latent variables
4. Describing selection processes
5. Consequences of omitted variables

This chapter discusses models of educational processes which consist of two
consecutive learning frames, σ1 and σ2. The first section considers mod-
els of consecutive educational outcomes which presuppose that individuals
have values on both variables. The second section considers models of se-
quential transitions which entail a selection process. (Transition models
in which transition probabilities depend on educational outcomes will be
discussed in the next chapter.)

5.1 Consecutive educational outcomes

1. Framework of a two-stage model

I consider a sequence of two learning frames, σ1 and σ2. Let Ẏt denote the
outcome of learning frame σt (t = 1, 2), based on some measure of what
has been learned. I assume that these are binary or quantitative variables
so that one can sensibly refer to expectations. I consider a model which
posits that these outcome variables depend on two explanatory variables,
say Ẍ (e.g. a measure of socio-economic status) and Z̈ (e.g. an indicator of
educational aspiration). The model can be depicted as follows:
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Model 5.1

Ẏ1 Ẏ2

Z̈

Ẍ

66

??
--

���������1

���������1

PPPPPPPPPq

PPPPPPPPPq

Referring to expectations, the model consists of two stochastic functions:

σ1 : (x, z) −→ E(Ẏ1|Ẍ=x, Z̈=z)

σ2 : (x, z, y) −→ E(Ẏ2|Ẍ=x, Z̈=z, Ẏ1=y)

The first function is intended to show how the expectation of Ẏ1 depends on
the two exogenous explanatory variables, the second function is intended
to show how the expectation of Ẏ2 depends on the same variables and
additionally on the outcome of the first learning frame which is used as an
endogenous explanatory variable.

2. Conditional and unconditional effects

Without presupposing any particular parametric model, effects of Ẍ (SES)
on the first outcome can be defined by

∆s(Ẏ1; Ẍ[x′, x′′], Z̈=z) := (5.1)

E(Ẏ1| Ẍ=x′′, Z̈=z)− E(Ẏ1| Ẍ=x′, Z̈=z)

Effects of Ẍ on the second outcome can be defined in two different ways.
One can define conditional effects which take into account outcomes of the
first learning frame:

∆s
c(Ẏ2; Ẍ [x′, x′′], Z̈=z, Ẏ1=y) := (5.2)

E(Ẏ2| Ẍ=x′′, Z̈=z, Ẏ1=y)− E(Ẏ2| Ẍ=x′, Z̈=z, Ẏ1=y)

And one can consider unconditional effects :

∆s
u(Ẏ2; Ẍ[x′, x′′], Z̈=z) := (5.3)

E(Ẏ2| Ẍ=x′′, Z̈=z)− E(Ẏ2| Ẍ=x′, Z̈=z)

In general, all these effects are context-dependent, that is, depend on values
of Z̈. To illustrate, I use the fictitious data in Table 5.1:
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Table 5.1 Fictitious data for the two-stage model.

x z y1 y2 cases x z y1 y2 cases

0 0 0 0 300 1 0 0 0 200
0 0 0 1 400 1 0 0 1 300
0 0 1 0 200 1 0 1 0 150
0 0 1 1 600 1 0 1 1 850
0 1 0 0 300 1 1 0 0 200
0 1 0 1 300 1 1 0 1 250
0 1 1 0 200 1 1 1 0 100
0 1 1 1 700 1 1 1 1 950

Effects on first outcome:

∆s(Ẏ1; Ẍ[0, 1], Z̈=0) = 0.667− 0.533 = 0.134

∆s(Ẏ1; Ẍ[0, 1], Z̈=1) = 0.700− 0.600 = 0.100

meaning that higher SES has a positive effect on the educational outcome,
but the effect is lower for individuals with a high educational aspiration.

Conditionals effect on second outcome:

∆s
c(Ẏ2; Ẍ[0, 1], Z̈=0, Ẏ1=0) = 0.600− 0.571 = 0.029

∆s
c(Ẏ2; Ẍ[0, 1], Z̈=1, Ẏ1=0) = 0.556− 0.500 = 0.056

∆s
c(Ẏ2; Ẍ[0, 1], Z̈=0, Ẏ1=1) = 0.850− 0.750 = 0.100

∆s
c(Ẏ2; Ẍ[0, 1], Z̈=1, Ẏ1=1) = 0.905− 0.778 = 0.127

Unconditional effect on second outcome:

∆s
u(Ẏ2; Ẍ[0, 1], Z̈=0) = 0.767− 0.667 = 0.100

∆s
u(Ẏ2; Ẍ[0, 1], Z̈=1) = 0.800− 0.667 = 0.133

In order to understand the difference between conditional and uncondi-
tional effects, it is important to recognize that both concern the outcome
in the second learning frame (σ2). Ẏ1 is to be understood as represent-
ing a condition for the outcome generation in the second learning frame.
This is made explicit in the conditional effect definition. In contrast, the
unconditional effect is derived from a reduced model that integrates over
the distribution of Ẏ1. This is possible, without additional assumptions,
because Ẏ1 is a mediating variable in the two-stage model:

E(Ẏ2| Ẍ=x, Z̈=z) =

E(Ẏ2| Ẍ=x, Z̈=z, Ẏ1=0)Pr(Ẏ1=0|Ẍ=x, Z̈=z) + (5.4)

E(Ẏ2| Ẍ=x, Z̈=z, Ẏ1=1)Pr(Ẏ1=1|Ẍ=x, Z̈=z)

In this sense, viewing Ẏ1 as a mediating variable, the unconditional effect
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corresponds to the total effect of Ẍ in the context given by Z̈.

3. Effects of endogenous educational outcomes

So far I have considered effects of an exogenous variable, Ẍ . In formally the
same way one could define effects of Z̈ and use Ẍ as a context variable. In
order to consider effects of the endogenous variable Ẏ1, one has to assume
that values of both exogenous variables can be fixed. An effect can then
be defined by

∆s(Ẏ2; Ẏ1[y
′, y′′], Ẍ=x, Z̈=z) := (5.5)

E(Ẏ2| Ẏ1=y′′, Ẍ=x, Z̈=z)− E(Ẏ2| Ẏ1=y′, Ẍ=x, Z̈=z)

Like the conditional effects of exogenous variables, this effect concerns the
generation of values of Ẏ2 in the second learning frame. The effect corre-
sponds to the hypothesis that Ẏ2 depends on what has been learned in the
preceding learning frame even if the context is fixed by particular values of
Ẍ and Z̈. With the data in Table 5.1 one finds:

∆s(Ẏ2; Ẏ1[0, 1], Ẍ=0, Z̈=0) = 0.750− 0.571 = 0.179

∆s(Ẏ2; Ẏ1[0, 1], Ẍ=0, Z̈=1) = 0.778− 0.500 = 0.278

∆s(Ẏ2; Ẏ1[0, 1], Ẍ=1, Z̈=0) = 0.850− 0.600 = 0.250

∆s(Ẏ2; Ẏ1[0, 1], Ẍ=1, Z̈=1) = 0.905− 0.556 = 0.349

showing how the effects of previous learning depend on both Ẍ (SES) and
Z̈ (aspiration).

4. Endogenously generated inequality

In Model 5.1, one can think that part of the variation of Ẏ2 is due to endoge-
nously generated variation of Ẏ1, that is, variation conditional on values of
the exogenous variables, Ẍ and Z̈. Formally, one can use a conditional
variance decomposition

V(Ẏ2|x, z) = V[E(Ẏ2|Ẏ1, x, z)] + E[V(Ẏ2|Ẏ1, x, z)]

This is formally analogue to the variance decomposition discussed in 2.3.7.
The first part,

V[E(Ẏ2|Ẏ1, x, z)] =
∑

y1

[E(Ẏ2|Ẏ1=y1, x, z)− E(Ẏ2|x, z)]
2 Pr(Ẏ1=y1|x, z)

is now interpreted as the part of the variation of Ẏ2 which is generated by
variation of Ẏ1. The second part,

E[V(Ẏ2|Ẏ1, x, z)] =
∑

y1

V(Ẏ2|Ẏ1=y1, x, z) Pr(Ẏ1=y1|x, z)
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is the ‘residual variation’ which cannot be attributed to Ẏ1. Using the data
in Table 5.1, one finds the following values.

x z V(Ẏ2|x, z) V[E(Ẏ2|Ẏ1, x, z)] E[V(Ẏ2|Ẏ1, x, z)]

0 0 0.2222 0.0079 0.2143
0 1 0.2222 0.0185 0.2037
1 0 0.1789 0.0139 0.1650
1 1 0.1600 0.0256 0.1344

In this example, the proportion of variation of Ẏ2 which is endogenously
generated by variation in the educational outcomes of the first learning
frame (Ẏ1|x, z), is between 3.5 and 16%, depending on the values of the
exogenous variables.

5. Consequences of omitted variables

I now consider consequences of omitting an explanatory variable. The
general strategy is to compare a hypothetically complete model (here I
use Model 5.1 for illustrations) with a reduced model that results from
integrating over the conditional distribution of the omitted variable. There
are then two cases.

The first case occurs if the omitted variable is a mediating variable in
the complete model. Its conditional distribution can then be derived from
the model without further assumptions. Referring to Model 5.1, this case
is illustrated by omitting Ẏ1 (see 5.1.2).

The second case occurs if the conditional distribution of the omitted
variable cannot be derived from the complete model without further as-
sumptions. To illustrate, I assume that Z̈ is omitted and one is interested
in effects of Ẍ . In order to derive a reduced model, Z̈ must be substi-
tuted by a variable, say Ż, that can be assumed to have a (conditional)
distribution. The derivation depends on the kind of effect.

I begin with the effect of Ẍ on Ẏ1. For the reduced model, one imme-
diately finds

E(Ẏ1|Ẍ=x) =
∑

z
E(Ẏ1|Ẍ=x, Ż=z) Pr(Ż=z|Ẍ=x) (5.6)

A special case occurs if the effect of Ẍ on Ẏ1 does not depend on values of
Ż. Then, omitting Ż does not change the relationship between Ẍ and Ẏ1.

1

In general, the effect of Ẍ in the reduced model is a kind of mean value of
its context-dependent effects in the complete model.

1Note that it is not essential whether Ż depends on Ẍ; the essential point concerns
whether there is an interaction between Ẍ and Z̈ w.r.t. Ẏ1.
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The same considerations apply to the unconditional effect of Ẍ on Ẏ2

for which one gets the reduced expression

E(Ẏ2|Ẍ=x) =
∑

z
E(Ẏ2|Ẍ=x, Ż=z) Pr(Ż=z|Ẍ=x) (5.7)

which is completely analogue to (5.6).
When considering the conditional effect of Ẍ on Ẏ2 one has to take into

account that Z̈ is a confounder w.r.t. the relationship between Ẏ1 and Ẏ2.
The reduced relationship is given by

E(Ẏ2|Ẍ=x, Ẏ1=y1) = (5.8)
∑

z
E(Ẏ2|Ẍ=x, Ż=z, Ẏ1=y1) Pr(Ż=z|Ẍ=x, Ẏ1=y1)

Here the conditional distribution of Ż that is used for mixing the condi-
tional effects no longer only depends on exogenous variables (Ẍ in this
example), but also on the endogenous variable Ẏ1. In general, this also
changes the relationship between Ż and Ẍ. For example, even if Ż is in-
dependent of Ẍ , this is no longer true conditional on values of Ẏ1. (This
is illustrated by the data in Table 5.1.) Whether this provides a reason for
thinking that the effect of Ẍ in the reduced model is in some sense ‘biased’
will be discussed in 5.1.7.

6. Example with linear regression functions

For further illustration of consequences of omitted variables, I still refer to
Model 5.1 but assume linear functional relationships:

E(Ẏ1|x, z) = α1 + xβ1 + zγ1 (5.9)

E(Ẏ2|x, z, y1) = α2 + xβ2 + zγ2 + y1δ (5.10)

As before, the interest concerns effects of x when z is omitted. In order to
derive reduced models, I assume that the distribution of the values of z is
given by a density function f(z|x) with mean µz which, for simplicity, does
not depend on x.

(a) I begin with the effect of x on the expectation of Ẏ1. The relationship
in the reduced model is

E(Ẏ1|x) =

∫

z

E(Ẏ1|x, z) f(z|x) dz

and one immediately finds

E(Ẏ1|x) = (α1 + µzγ1) + xβ1

showing that the parameter associated with x does not change. (This would
not be true if (5.9) contained an interaction between x and z.)
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(b) I now consider unconditional effects of x and z on Ẏ2. The relationship
in the reduced model is then given by

E(Ẏ2|x, z) =

∫

y1

E(Ẏ2|x, z, y1) f(y1|x, z) dy1

where f(y1|x, z) is the conditional density of Ẏ1. Entailed by (5.9), this is
a density with mean α1 + xβ1 + zγ1. It follows that

E(Ẏ2|x, z) = (α2 + α1δ) + x (β2 + β1δ) + z (γ2 + γ1δ) (5.11)

The parameters are obviously different from the original parameters in
(5.10). However, they are not ‘biased’, but correctly express the total
(unconditional) effects of x and z on the expectation of Ẏ2.

(c) I now consider the unconditional effect of x on Ẏ2 when z is omitted.
The relationship in the reduced model is then given by

E(Ẏ2|x) =

∫

y1,z

E(Ẏ2|x, z, y1) f(y1, z|x) dy1 dz

where f(y1, z|x) is the joint density of y1 and z. Since

f(y1, z|x) = f(y1|x, z) f(z|x)

one can continue with the derivation in (b):

E(Ẏ2|x) =

∫

z

E(Ẏ2|x, z) f(z|x) dz (5.12)

= α2 + α1δ + µz (γ2 + γ1δ) + x (β2 + β1δ)

The parameter associated with x is the same as in (5.11) where z was not
omitted and has the same interpretation.

(d) Finally, I consider the conditional effect of x on Ẏ2 when z is omitted.
The relationship in the reduced model is then given by

E(Ẏ2|x, y1) =

∫

z

E(Ẏ2|x, z, y1) f(z|x, y1) dz (5.13)

= α2 + xβ2 + y1δ + E(Ż|x, y1) γ2

where f(z|x, y1) is the density of z conditional on x and y1, and

E(Ż|x, y1) =

∫

z

zf(z|x, y1) dz

is the conditional mean of z. How parameters change is best seen when
using a linear relationship

E(Ż|x, y1) = αz + xβz + y1δz (5.14)
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Inserting this into (5.13) leads to

E(Ẏ2|x, y1) = (α2 + αzγ2) + x (β2 + βzγ2) + y1 (δ + δzγ2) (5.15)

Parameters now consist of two parts. A first part equals the parameters
as presupposed in (5.10), a second part consists of the contribution to
estimating the conditional mean of the omitted variable, E(Ż|x, y1).

To illustrate, assume α1 = 1, β1 = 1, γ1 = 1, α2 = 0.5, β2 = 1.5, γ2 = 2,
δ=0.2, and µz =1. One then finds: αz =0, βz =−0.5, δz =0.5, entailing
that the coefficient of x in (5.15) is less than β2: β2 + βzγ2 = 1.5− 0.5 · 2,
and the coefficient of y1 is greater than δ: δ + δzγ2 = 0.2 + 0.5 · 2.

Of course, there is nothing wrong with these parameters. Assume that
one knows an individual’s values of Ẍ and Ẏ1, but not of Z̈. In order
to apply the original model (5.10), one would need an estimate of the
individual’s value of Z̈. If one uses the conditional expectation as defined
in (5.14), then (5.10) and (5.15) lead to the same result. In this sense, the
difference in the parameters is required in order to get correct estimates
with the reduced model.

7. Are effect definitions ‘biased’?

When compared with (5.10), it is tempting to say that conditional effects
calculated with (5.15) are ‘biased’. However, one should be clear about
what this possibly could mean.

(a) Not only the estimation, already the definition of an effect must be based
on assuming a particular model. For example, one can use the following

Model 5.2

Ẏ1 Ẏ2

Ẍ

??
--

PPPPPPPPPq

PPPPPPPPPq

with the same variables as used for Model 5.1 to define an effect

∆s(Ẏ2; Ẍ[x′, x′′], Ẏ1=y) := (5.16)

E(Ẏ2| Ẍ=x′′, Ẏ1=y)− E(Ẏ2| Ẍ=x′, Ẏ1=y)

This effect compares the outcomes, in the second learning frame, Ẏ2, of two
generic individuals, one with Ẍ = x′ and the other one with Ẍ = x′′. As
made explicit in the definition, both have the same educational outcome,
Ẏ1 = y, in the first learning frame. However, no further assumptions are
made about the individuals; they can differ in all variables not explicitly
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represented in the model (e.g. Z̈).2

(b) The statement that the effect defined in (5.16) is ‘biased’ has no mean-
ing without explicitly referring to another model that can be used as a
standard of comparison. For example, it might be said that the effect is
biased because one should use Model 5.1 to define a ‘less biased’ effect.
Such a normative statement is also required in order to call Model 5.2 a
‘misspecified model’.3

(c) It is not possible to find, or generate, data for estimating Model 5.2
which entail that conditional distributions of the values of omitted variables
(e.g. Z̈) are independent of Ẍ and Ẏ1. In order to assess the theoretically
posited bias one would need to actually estimate the more comprehensive
model 5.1, and this would require to get data about Z̈.

(d) Equation (5.13) seems to suggest that including estimates of the con-
ditional mean values, E(Ż|x, y1), into the reduced model would allow one
to find an ‘unbiased’ estimate of β2. This idea was proposed by Heckman
(1979) who showed that in a class of specifically parameterized linear mod-
els one can find estimates of the conditional mean values of Ż without ob-
serving its values. However, the required assumptions are very restrictive,
and it has been shown that the approach can easily lead to very misleading
parameter estimates (LaLonde 1986, Briggs 2004).

(e) It is a quite specific property of the simple linear model (5.10) that
effects of Ẍ , Z̈ and Ẏ1 are context-independent. In general, there are no
context-independent effects to which effects derived from reduced models
can be compared. In other words, then, already the presupposition that an
effect can be associated uniquely with a single variable is misleading.

2This understanding of ‘functional effects’ is therefore quite different from effect defi-
nitions in the potential outcomes framework which are conceptually linked to particular
individuals.

3This formulation is used, e.g., by Cameron and Heckman (1998).
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5.2 Sequential transitions

1. Sequential binary choices

I now turn to models of sequential transitions. I begin with considering
three consecutive learning frames, σj (j = 1, 2, 3), and two binary variables,

Ṫ1 and Ṫ2: Ṫj = 1 if there is a transition from σj to σj+1, and Ṫj = 0 if
there is no transition into another learning frame. I consider the following

Model 5.3

Ṫ1 Ṫ2

Z̈

Ẍ

66

??
--

���������1

���������1

PPPPPPPPPq

PPPPPPPPPq

The model has the same structure as Model 5.1, with Ṫj instead of Ẏj , but
there is now the constraint

Pr(Ṫ2=1 | Ẍ=x, Z̈=z, Ṫ1=0) = 0 (5.17)

and from this follows

E(Ṫ2| Ẍ=x, Z̈=z) = (5.18)

E(Ṫ2| Ẍ=x, Z̈=z, Ṫ1=1)E(Ṫ1| Ẍ=x, Z̈=z)

2. Consideration of possible effects

In the same way as was discussed in the previous section, one can distin-
guish conditional and unconditional effects of the exogenous variables on
Ṫ2. For example, the conditional effect of Ẍ is

∆s
c(Ṫ2; Ẍ[x′, x′′], Z̈=z, Ṫ1=1) := (5.19)

E(Ṫ2| Ẍ=x′′, Z̈=z, Ṫ1=1)− E(Ṫ2| Ẍ=x′, Z̈=z, Ṫ1=1)

and the unconditional effect is

∆s
u(Ṫ2; Ẍ[x′, x′′], Z̈=z) := (5.20)

E(Ṫ2| Ẍ=x′′, Z̈=z)− E(Ṫ2| Ẍ=x′, Z̈=z)

In general, both conditional and unconditional effects are context-depen-
dent, that is, depend on values of Z̈. To illustrate, I use the fictitious data
in Table 5.2:
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Table 5.2 Fictitious data for the sequential transition model.

x z t1 t2 cases x z t1 t2 cases

0 0 0 0 500 1 0 0 0 300
0 0 0 1 0 1 0 0 1 0
0 0 1 0 200 1 0 1 0 140
0 0 1 1 300 1 0 1 1 560
0 1 0 0 400 1 1 0 0 100
0 1 0 1 0 1 1 0 1 0
0 1 1 0 200 1 1 1 0 90
0 1 1 1 400 1 1 1 1 810

Effects on first transition:

∆s(Ṫ1; Ẍ [0, 1], Z̈=0) = 0.70− 0.50 = 0.20

∆s(Ṫ1; Ẍ [0, 1], Z̈=1) = 0.90− 0.60 = 0.30

Conditionals effect on second transition:

∆s
c(Ṫ2; Ẍ[0, 1], Z̈=0, Ṫ1=1) = 0.80− 0.60 = 0.20

∆s
c(Ṫ2; Ẍ[0, 1], Z̈=1, Ṫ1=1) = 0.90− 0.67 = 0.23

Unconditional effect on second transition:

∆s
u(Ṫ2; Ẍ[0, 1], Z̈=0) = 0.56− 0.30 = 0.26

∆s
u(Ṫ2; Ẍ[0, 1], Z̈=1) = 0.81− 0.40 = 0.41

How to think of possible effects of Ṫ1? These effects are already defined by
the set-up of the model and need not to be estimated. Ṫ1 = 0 determinis-
tically entails Ṫ2 = 0. Ṫ1 = 1, on the other hand, is a necessary condition
for Ṫ2 = 1, but has no further causal effect on the probability distribution
of Ṫ2. The role played by Ṫ1 in Model 5.3 is therefore quite different from
the role played by Ẏ1 in Model 5.1.

3. Models in terms of latent variables

Parametric models for the transition variables, Ṫj, are often set up in terms
of latent variables. This allows formulations which, in a sense, parallel (5.9)
and (5.10), most easily in pseudo-indeterministic forms. For example:

Ṫ ∗
1 = α1 + xβ1 + zγ1 + U̇1 (5.21)

Ṫ ∗
2 = α2 + xβ2 + zγ2 + U̇2 (5.22)

Ṫ ∗
1 and Ṫ ∗

2 are the latent variables which are linked to the binary transition
variables by Ṫ1 = I[Ṫ ∗

1 ≥ 0] and Ṫ2 = I[Ṫ ∗
2 ≥ 0]. U̇1 and U̇2 are random

variables with distribution functions F1 and F2, respectively. The distribu-
tions are most often assumed to be symmetrical around a zero mean. This
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then entails:

E(Ṫ1|x, z) = F1(α1 + xβ1 + zγ1) (5.23)

E(Ṫ2|x, z, Ṫ1=1) = F2(α2 + xβ2 + zγ2) (5.24)

showing that F1 and F2 simply serve as functions linking the explanatory
variables to the binomial distributions of the outcome variables (see also
Section 3.1).

However, even when using latent variables there remains an essential
difference between models 5.1 and 5.3. Model 5.1 relates to a generic in-
dividual that participates in both learning frames, and this allows one to
think of a joint distribution of the two educational outcomes, Ẏ1 and Ẏ2.
Now consider the sequential transition model 5.3. In this model, Ṫ1 = 0
deterministically entails Ṫ2=0. While one can nevertheless think of a joint
distribution of Ṫ1 and Ṫ2, there is no corresponding joint distribution of
the latent variables, Ṫ ∗

1 and Ṫ ∗
2 . If Ṫ ∗

1 < 0, there is no transition and
consequently no second latent variable, Ṫ ∗

2 .
The argument shows that model specifications for the sequential tran-

sition model cannot sensibly begin with assuming a joint distribution for
latent transition variables.4

4. Describing selection processes

In the sequential transition model, the transition variables can be inter-
preted as representing selections: if Ṫj = 1, an individual is selected into
a subsequent learning frame. However, in order to actually consider a se-
lection process one needs a collection of individuals, say Ω, and statistical
variables corresponding to the model’s exogenous variables. As an example,
one can use the data in Table 5.2 which provide values for

(X,Z, T1, T2) : Ω −→ {0, 1}4 (5.25)

Based on information about these variables one can describe how the dis-
tributions of the exogenous variables change in the consecutive learning
frames. In this example:

t1 t2 P(X=1|T1= t1, T2= t2) P(Z=1|T1= t1, T2= t2)

σ1 0 0 0.308 0.385
σ2 1 0 0.365 0.460
σ3 1 1 0.662 0.585

Assuming that X = 1 represents ‘high SES’, and Z = 1 ‘high aspiration’,

4As an example, I refer to Holm and Jaeger (2011) who proposed to begin with assuming
a joint normal distribution for the latent transition variables.
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this would mean that the selection process leads to larger proportions of
individuals with ‘high SES’ and ‘high aspiration’.

In order to formulate a general relationship between effects on transi-
tions and subsequent selections, I consider the unconditional effects

∆s
u(Ṫj ; Ẍ[x′, x′′], Z̈=z) := (5.26)

E(Ṫj | Ẍ=x′′, Z̈=z)− E(Ṫ2| Ẍ=x′, Z̈=z)

Given corresponding statistical variables, as defined in (5.25), there is the
following simple relationship:

∆s
u(Ṫj ; Ẍ[x′, x′′], Z̈=z) > 0 ⇐⇒

P(X=x′′|Tj=1, Z=z)

P(X=x′|Tj=1, Z=z)
>

P(X=x′′|Z=z)

P(X=x′|Z=z)

This is easily understandable: If individuals with Ẍ = x′′ have a higher
probability for making the transition Tj = 1 than individuals with Ẍ = 0,
they will become relatively more frequent conditional on Tj=1.

Note, however, that this relationship has no implications for a compari-
son of effects across transitions. In general, the conditional effect defined in
(5.19) can be greater or smaller than the effect of Ẍ on the first transition.

5. Consequences of omitted variables

Also in the sequential transition model one can think about omitted vari-
ables. This is often a concern in the literature.5 Considerations parallel
the discussion of omitted variables in the models of sequential educational
outcomes, and the results of 5.1.5 and the conclusions of 5.1.7 can be
applied without any essential modification.

It might nevertheless be interesting to consider a further example. For
this example, I start from (5.23) and (5.24) and assume logit specifications.
Corresponding to Ẍ I assume a binary variable, X , with P(X =1) = 0.5;
and corresponding to Z̈ I assume a continuous variable, Z, with a standard
normal density, f(z), independent of X . For the parameters I choose α1 =
β1 = γ1 = 1 and α2 = β2 = γ2 = 1.

Conditional on T1=1 both distributions change. Instead of P(X=1) =
0.5, there is a higher value P(X =1|T1 =1) = 0.55. How the distribution
of Z changes is shown in Figure 5.1. The figure also shows that X and Z
are no longer independent. Both conditional mean values have increased:
M(Z|T1 = 1, X = 0) = 0.255, and M(Z|T1 = 1, X = 1) = 0.137. The
difference is due to a negative correlation between X and Z which, in this
example, results from conditioning on T1.

5E.g., Mare (1993), Cameron and Heckman (1998), Holm and Jaeger (2011).
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f(z|Ṫ1=1, x=1)

f(z|Ṫ1=1, x=0)

Figure 5.1 Unconditional and conditional density functions of Z and their
mean values as described in the text.

Now assume that Z is not observed. The conditional effect of Ẍ on the
second transition that can be estimated is then given by

E(Ṫ2|Ẍ=1, Ṫ1=1)− E(Ṫ2|Ẍ=0, Ṫ1=1) = (5.27)
∫

z

E(Ṫ2|Ẍ=1, Ż=z, Ṫ1=1) f(z|Ẍ=1, Ṫ1=1) dz −

∫

z

E(Ṫ2|Ẍ=0, Ż=z, Ṫ1=1) f(z|Ẍ=0, Ṫ1=1) dz

In our example, this effect has the value

0.1185 = 0.8630− 0.7445

Of course, one can argue that this effect is not only due to Ẍ but also to the
selection effect that shows up in the different conditional distributions of
Ż. In our example, these effects can be separated by using f(z|x) instead
of f(z|x, Ṫ1 = 1). Instead of (5.27), one then calculates a counterfactual
effect with

∫

z

E(Ṫ2|Ẍ=1, Ż=z, Ṫ1=1) f(z|Ẍ=1) dz− (5.28)

∫

z

E(Ṫ2|Ẍ=0, Ż=z, Ṫ1=1) f(z|Ẍ=0) dz

In our example, one finds the value

0.1478 = 0.8445− 0.6967
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which is obviously larger. The difference can be attributed to the selection
effect.

However, it would not be sensible to think of the effect calculated with
(5.27) as a ‘biased estimate’ of the effect defined by (5.28). The latter
effect is purely counterfactual, and could only be calculated if Z̈ had been
observed.



Chapter 6

Educational outcomes and transitions

6.1 Primary and secondary effects

1. An often used modeling approach
2. Representing transition opportunities
3. Numerical illustration with simulated data
4. Hypothetical effect combinations
5. Comparing the two models
6. Model specification and observed correlations

6.2 An enlarged transition model

1. Including educational outcomes
2. Specification of dependency relations
3. Primary and secondary effects
4. Educational outcomes and primary effects

The models discussed in Section 5.2 make transition probabilities directly
dependent on variables representing the family background (e.g. parents’
SES and educational levels). It is highly plausible, however, that transition
probabilities also depend on the educational outcomes in earlier learning
frames. This idea has lead to a longstanding debate about how effects of
the familiy background are mediated.

Following Boudon (1974), researchers often focus on a distinction be-
tween primary and secondary effects (see, e.g., Baumert et al. 2003, Erik-
son et al. 2005, Jackson et al. 2007, Erikson and Rudolphi 2010, Schindler
and Reimer 2010, Neugebauer 2010). I take up this discussion in the first
section and consider two different modeling approaches.

In the second section, I discuss an enlarged version of the sequential
transition model of Section 5.2 in which a distinction between primary and
secondary effects is explicitly represented.
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6.1 Primary and secondary effects

1. An often used modeling approach

Researchers often use a model that basically has the following structure:

Model 6.1.1

Ṫ

Ż

Ẍ --

??�����*

����*

Ṫ is a binary dependent variable representing the transition of interest,
for example, Ṫ = 1 if there is a transition from lower to higher secondary
education, and Ṫ = 0 otherwise. There are two main explanatory variables:

– Ẍ is an exogenous explanatory variable that represents some aspect of
the family background, e.g., fathers occupational class (Erikson et al.
2005), or parents’ educational level (Kloosterman et al. 2009, Neuge-
bauer 2010).

– Ż is an endogenous explanatory variables which represents the ‘level of
academic performance’ an individual has reached in the situation where
the transition is to be made. Values are often based on a scholastic
aptitude test.

This model is then used to distinguish two kinds of effects of Ẍ. A primary
effect concerns the dependence of Ż on Ẍ. For example, comparing x′ and
x′′, the primary effect could be defined as

E(Ż|Ẍ=x′′)− E(Ż|Ẍ=x′)

The secondary effect concerns the effect of Ẍ on Ṫ , while Ż is in some way
fixed. For example,

Pr(Ṫ =1|Ẍ=x′′, Ż=z)− Pr(Ṫ =1|Ẍ=x′, Ż=z)

2. Representing transition opportunities

Model 6.1.1 presupposes a direct link between ‘academic performance’ and
the transition variable. A different modeling approach attempts to repre-
sent the individual’s choice situation. I assume that this can be done with
a binary variable, say Ċ, such that Ċ=1 if an individual has the choice to
opt for the transition of interest. So one can distinguish between

– the dependence of Ċ on Ẍ (‘primary effect’), and

– the dependence of Ṫ on Ẍ given that Ċ=1 (‘secondary effect’).
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Assuming that Ċ depends in some way on ‘academic performance’, Ż, leads
one to the following model:

Model 6.1.2

Ṫ

Ż

Ẍ

Ċ

--

??
-

66

Instead of a direct link between Ż and Ṫ , there is now a mediating binary
variable, Ċ. For subsequent illustrations, I assume a simple deterministic
relationship between Ż and Ċ:

Ċ = I[Ż ≥ z0]

where z0 is a threshold value. I[. . .] denotes the indicator function; in this
example: I[Ż ≥ z0] takes the value 1 if Ż ≥ z0 and is otherwise zero.

Instead of the definitions given in 6.1.1, one now gets quite different ex-
pressions for primary and secondary effects. Assuming that Ż is a discrete
variable, the primary effect is given by

Pr(Ċ=1|Ẍ=x′′)− Pr(Ċ=1|Ẍ=x′) =
∑

z≥z0

(

Pr(Ż=z|Ẍ=x′′)− Pr(Ż=z|Ẍ=x′)
)

And, since the model entails that Pr(Ṫ=1|Ċ=0) = 0, the secondary effect
is given by

Pr(Ṫ =1|Ẍ=x′′, Ċ=1)− Pr(Ṫ =1|Ẍ=x′, Ċ=1)

Notice that, given Ċ, this effect is now independent of Ż. (A model that
assumes an additional dependence of Ṫ on Ż will be considered below.)

3. Numerical illustration with simulated data

The two models can lead to quite different conclusions. For illustration,
I use Model 6.1.2 to create artificial data. Ẍ ∈ {0, 1, 2, 3, 4}. For Ẍ = x,
Ż is normally distributed with mean µx and variance 1. Threshold value:
z0 = −1. Table 6.1.1 shows the values assumed for µx in column 2, and
the assumed conditional probabilities Pr(Ṫ=1 | Ċ =1, Ẍ= x) in column 4
(these are the values resulting from the simulation). This allows deriving
values for the remaining conditional probabilities. The relationship is given
by

Pr(Ṫ =1|Ẍ=x) = Pr(Ṫ =1|Ċ=1, Ẍ=x) Pr(Ċ=1|Ẍ=x)

(see the formally corresponding relationship in 1.3.2). Obviously, in this
example almost all effects are secondary.
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Table 6.1.1 Values of conditional probabilities assumed in Model 6.1.2.

x µx Pr(Ċ=1 | Ẍ=x) Pr(Ṫ=1 | Ċ=1, Ẍ=x) Pr(Ṫ=1 | Ẍ=x)

0 0.00 0.84 0.5 0.42
1 0.05 0.85 0.6 0.52
2 0.10 0.87 0.7 0.60
3 0.15 0.88 0.8 0.70
4 0.20 0.89 0.9 0.80

Now I assume Model 6.1.1 instead of 6.1.2 and use a logit model to
specify a continuous dependence of the probability of Ṫ =1 on values of Ż
and dummy variables Xj := I[Ẍ=j]:

Pr(Ṫ=1|Ẍ=x, Ż=z)) ≈

exp(X0β0 +X1β1 +X2β2 +X3β3 +X4β4 + Zγ)

1 + exp(X0β0 +X1β1 +X2β2 +X3β3 +X4β4 + Zγ)

In order to calculate parameters, I use, for each value of Ẍ, 10000 cases,
randomly generated according to the assumptions in Table 6.1.1.1 The
estimated parameters are:

β̂0 = −0.3696, β̂1 = 0.0503, β̂2 = 0.3719, β̂3 = 0.8352, β̂4 = 1.3610

γ̂ = 0.7586

Figure 6.1.1 shows, for Ẍ =1 and Ẍ =4, how the estimated probabilities
depend on values of Ż.

Compared with Model 6.1.2, the results are quite different. In Model
6.1.2, if Ż ≥ z0, there is no further effect of Ż on Ṫ . The logit model, in
contrast, suggests that Ż has always an important effect, even conditional
on values of Ẍ. For example:

Pr(Ṫ=1|Ż=1, Ẍ=1)− Pr(Ṫ=1|Ż=0, Ẍ=1) = 0.2

Pr(Ṫ=1|Ż=1, Ẍ=4)− Pr(Ṫ=1|Ż=0, Ẍ=4) = 0.1

Correspondingly, the logit model underestimates secondary effects. Con-
sider, for example, the effect

Pr(Ṫ=1|Ż=1, Ẍ=4)− Pr(Ṫ=1|Ż=1, Ẍ=1)

While its value is 0.9 − 0.6 = 0.3 in Model 6.1.2, the logit model suggests
the value 0.2.

1Individual values of Ṫ , say ti for an individual i with covariate values xi and zi, are
generated as follows: ti = 1 if zi ≥ −1 and ri ≤ Pr(Ṫ=1 | Ċ =1, Ẍ=xi), where ri is a
random number equally distributed in [0, 1]; otherweise ti = 0.
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Figure 6.1.1 Distribution of Ż for Ẍ=1 (solid line) and Ẍ= 4 (dashed
line). Also shown: exp(β̂1 + zγ̂)/(1 + exp(β̂1 + zγ̂)) (solid line) and
exp(β̂4 + zγ̂)/(1 + exp(β̂4 + zγ̂)) (dashed line).

4. Hypothetical effect combinations

In order to illustrate the relative importance of primary and secondary
effects, some authors have suggested to consider hypothetical effect combi-
nations (Erikson et al. 2005, Jackson et al. 2007, Kloosterman et al. 2009,
Schindler and Reimer 2010). This can easily be done with Model 6.1.2.
One can calculate

H ′(x, x′) := Pr(Ṫ =1 | Ċ=1, Ẍ=x′) Pr(Ċ=1 | Ẍ=x)

and interpret this as the probability of Ṫ = 1 under the assumption that
the primary effect is given by Ẍ = x and the secondary effect is given by
Ẍ=x′.

A similar calculation can be done with Model 6.1.1 by exploiting the
knowledge of the conditional distributions of Ż. In our example, it was
assumed that, depending on Ẍ=x, Ż is normally distributed with density
φ(z;µx, 1). So one can calculate

H(x, x′) :=

∫

z

Pr(Ṫ =1 | Ẍ=x′, Ż=z)φ(z;µx, 1) dz (6.1)

and interpret this as the probability of Ṫ = 1 under the assumption that
the primary effect is given by x and the secondary effect is given by x′.

The quantities H(x, x′) and H ′(x, x′) can be used for a decomposition
of the total effect which is analogous to the decomposition into a direct and
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Table 6.1.2 Hypothetical probabilities of Ṫ =1 when assuming that pri-
mary effects depend on Ẍ = x and secondary effects depend on Ẍ = x′.
Calculations based on data in Table 6.1.1.

Model 6.1.1 Model 6.1.2

x H(x, 1) H(x, 4) H ′(x, 1) H ′(x, 4)

0 0.513 0.773 0.425 0.756
1 0.521 0.779 0.510 0.765
2 0.529 0.785 0.595 0.783
3 0.536 0.789 0.680 0.792
4 0.545 0.795 0.765 0.801

an indirect effect that was discussed in 4.2.6:

H(x′′, x′′)−H(x′, x′) = (6.2)

[H(x′′, x′′)−H(x′, x′′)] + [H(x′, x′′)−H(x′, x′)]

(analoguous for H ′). The first term on the right-hand side is the primary
effect that corresponds to the indirect effect of Ẍ, the second term is the
secondary effect that corresponds to the direct effect of Ẍ.

Values of H(x, x′) and H ′(x, x′) for our example are shown in Table
6.1.2. To illustrate, I consider decompositions of H(4, 4)−H(1, 1):

primary secondary total

Model 6.1.1 0.016 0.258 0.274
Model 6.1.2 0.036 0.255 0.291

This confirms that in our example the secondary effect is much greater than
the primary effect.

5. Comparing the two models

Models 6.1.1 and 6.1.2 are different in several respects. First, there are
different data requirements. Model 6.1.1 only requires some measure of
‘academic performance’. This can be based on institutionalized scholastic
aptitude tests, or tests developed and performed by a researcher. In con-
trast, the primarily important data requirement for Model 6.1.2 concerns
the variable Ċ which represents the choice situation.

A second point concerns the interpretation. Model 6.1.2 is based on
a conceptually clear distinction between primary and secondary effects:
primary effects concern the generation of opportunities, secondary effects
concern the actually performed choices. There is no correspondingly clear
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distinction in Model 6.1.1. The idea that the chosen transition in some way
depends on ‘academic performance’ is not easily interpretable.

This reflects a deeper distinction between the two models. Model 6.1.2
can be understood as an analytical model that aims to understand effects
of the family background both on the generation and use of educational
transition opportunities. In contrast, Model 6.1.1 aims to attribute the
actually performed transitions to two sources: a ‘meritocratic’ source rep-
resented by ‘academic performance’, and any further factors which cannot
be justified from a meritocratic view.2

6. Model specification and observed correlations

Model 6.1.2 assumes that Ċ, representing the choice situation, solely de-
pends on ‘academic performance’ (Ż). It is well possible, of course, that
observations suggest that Ċ depends on Ẍ in ways not mediated through
Ż (see Ditton et al. (2005) for some empirical evidence). One might then
consider the following modified model:

Model 6.1.3

Ṫ

Ż

Ẍ

Ċ

--

??
--

66
HHHHHj

HHHHHj

There is then no longer a deterministic relationship between Ċ and Ż; and
the ‘primary effect’ of Ẍ (as defined at the beginning of this section) cannot
be interpreted solely in terms of ‘academic performance’. Nevertheless, it
is still possible to separate a primary and a secondary effect.

But now assume that observations suggest a correlation between Ż and
Ṫ even conditional on Ċ=1. There are then different possibilities to modify
Model 6.1.2, corresponding to different theoretical ideas. One possibility is
to add an arrow from Ż to Ṫ . This would reflect the hypothesis that the
degree of ‘academic performance’ not only determines the possibility of a
choice, but in addition influences the final decision. A quite different possi-
bility is to suppose an unobserved variable, say Ü , which, like Ẍ influences
both Ż and Ṫ . This would suggest the following model:

2Sometimes this interest in meritocratic evaluations is explicitly mentioned, see e.g.
Schindler and Reimer (2010: 624).
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Model 6.1.4

Ṫ

Ż

Ẍ

Ü

Ċ

--

??
-
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The example demonstrates that it is insufficient to think in terms of cor-
relation (observed or theoretically postulated). There are always several
different dependency relations between variables that can generate the ob-
served correlations.

6.2 An enlarged transition model

I now consider an enlarged version of the transition model that was dis-
cussed in Section 5.2 which includes effects of the educational outcome of
a foregoing learning frame.

1. Including educational outcomes

I consider the following model which is a combination of the models con-
sidered in sections 5.1 and 5.2:

Model 6.2.1

Ẏ1

Ṫ1

Ẏ2

Ṫ2

Z̈

Ẍ

�
���

�
��

�
���

�
��
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As before, Ẏj is the educational outcome, and Ṫj represents the transition.

The model entails the following constraint: Ẏ2 and Ṫ2 are only defined if
Ṫ1 = 1. This must be taken into account when defining conditional effects
on Ẏ2 and Ṫ2.

2. Specification of dependency relations

Remembering the discussion of primary and secondary effects in Section
6.1, a critical question concerns how to specify the relationship between the
educational outcome of a learning frame, Ẏj , and the subsequent transition,
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Ṫj. Here I assume that a minimal level, say λj , is a necessary condition for
making a transition:

Ṫj = 0 if Ẏj < λj (6.3)

and that the probability of Ṫj =1 depends in some way on the difference,

Ẏj − λj . To illustrate a possible specification, I use

Pr(Ṫj=1|Ẍ=x, Z̈=z, Ẏj=yj) = (6.4)

Fj(αj + xβj + zγj + ηj(yj − λj)) I[yj ≥ λj ]

where Fj is a link function (e.g., a normal or logistic distribution function).
A further question concerns the specification of how educational out-

comes depend on previous conditions. In contrast to the models considered
in Section 5.1, it is no longer sufficient to focus only on the expectation of
Ẏj ; one needs at least a specification of how the probability of Ẏj ≥ λj

depends on explanatory variables.

3. Primary and secondary effects

Model 6.2.1 can be used to consider the distinction between primary and
secondary effects of SES that was introduced in Section 6.1. Primary effects
concern the effect of Ẍ on the opportunity to make a transition. For the
first transition, this effect can be defined by

∆s(I[Ẏ1 ≥ λ1]; Ẍ[x′, x′′], Z̈=z) := (6.5)

Pr(Ẏ1 ≥ λ1| Ẍ=x′′, Z̈=z)− Pr(Ẏ1 ≥ λ1| Ẍ=x′, Z̈=z)

Secondary effects, on the other hand, concern the effect of Ẍ on actually
making the transition, given that there is an opportunity. For the first
transition, this effect can be defined by

∆s
c(Ṫ1; Ẍ [x′, x′′], Z̈=z, Ẏ1 ≥ λ1) := (6.6)

Pr(Ṫ1=1| Ẍ=x′′, Z̈=z, Ẏ1 ≥ λ1)− Pr(Ṫ1=1| Ẍ=x′, Z̈=z, Ẏ1 ≥ λ1)

The secondary effect is conditional on Ẏ1 ≥ λ1 and must be distinguished
from the unconditional effect

∆s
u(Ṫ1; Ẍ[x′, x′′], Z̈=z) := (6.7)

Pr(Ṫ1=1| Ẍ=x′′, Z̈=z)− Pr(Ṫ1=1| Ẍ=x′, Z̈=z)

This is the effect that would be estimated when using the sequential tran-
sition model that was considered in Section 5.2 and which does not allow
distinguishing between primary and secondary effects.

To illustrate, I assume that the relationship between Ẏ1 and Ṫ1 is given
by (6.4), and Ẏ1 is normally distributed with mean

E(Ẏ1|Ẍ=x, Z̈=z) = αy
1 + xβy

1 + zγy
1 (6.8)
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and a unit variance. The primary effect can then be calculated from

Pr(Ẏ1 ≥ λ1| Ẍ=x, Z̈=z) = Φ(αy
1 + xβy

1 + zγy
1 − λ1) (6.9)

(where Φ denotes the standard normal distribution function), the uncon-
ditional effect can be calculated from

Pr(Ṫ1=1| Ẍ=x, Z̈=z) =
∫

y≥λ1

Pr(Ṫ1=1| Ẍ=x, Z̈=z, Ẏ1=y) f(y|x, z) dy =

∫

y≥λ1

F1(αj + xβj + zγj + ηj(y − λj))φ(y − (αy
1 + xβy

1 + zγy
1 )) dy

(where φ denotes the standard normal density function), and the secondary
effect can be calculated from

Pr(Ṫ1=1| Ẍ=x′′, Z̈=z, Ẏ1 ≥ λ1) =
Pr(Ṫ1=1| Ẍ=x, Z̈=z)

Pr(Ẏ1 ≥ λ1| Ẍ=x, Z̈=z)

For a numerical illustration, I use a logit specification for F1 and assume
α1 = β1 = γ1 = η1 = 1, and αy

1 = 0.5, βy
1 = γY

1 = 0.7, λ1 = 1. For z=0,
one finds:

x Pr(Ẏ1 ≥ λ1|x, z) Pr(Ṫ1=1|x, z, Ẏ1 ≥ λ1) Pr(Ṫ1=1|x, z)

−1 0.115 0.617 0.071
0 0.309 0.825 0.255
1 0.579 0.940 0.544
2 0.816 0.982 0.801

Effects depend on x, for example:

∆s(I[Ẏ1 ≥ λ1]; Ẍ[0, 1], Z̈=0) = 0.579− 0.309 = 0.270

∆s
c(Ṫ1; Ẍ[0, 1], Z̈=0, Ẏ1 ≥ 1) = 0.940− 0.825 = 0.115

∆s
u(Ṫ1; Ẍ [0, 1], Z̈=0) = 0.544− 0.255 = 0.289

4. Educational outcomes and primary effects

Given the understanding that primary effects concern opportunities for
transitions, they must be distinguished from effects on educational out-
comes. This can be illustrated with the specifications assumed in the previ-
ous subsection. Using (6.8) for the educational outcome, Ẏ1, the marginal
effect of Ẍ is βy

1 . In contrast, using (6.9), the marginal effect of Ẍ on
I[Ẏ1 ≥ λ1] is

∂Pr(Ẏ1 ≥ λ1| Ẍ=x, Z̈=z)

∂x
= φ(αy

1 + xβy
1 + zγy

1 − λ1)β
y
1 (6.10)
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Figure 6.2.1 Dependence of the marginal effect (6.10), with Z̈ = 0, on
values of σ. Parameters: αy

1
= 0.5, βy

1
= γy

1
= 0.7, λ1 = 1.

This shows that the primary effect is not only determined by βy
1 , but also

by values of explanatory variables and, most important, by λ1.
This also entails that the primary effect depends on the degree of in-

equality in the educational outcomes. This can be illustrated by introducing
a parameter for the variance of Ẏ1:

Ẏ1 = αy
1 + xβy

1 + zγy
1 + σU̇1 (6.11)

where U̇1 is a normally distributed random variable with unit variance.
The derivation of (6.9) was based on σ = 1. Starting from (6.11), one gets

Pr(Ẏ1 ≥ λ1| Ẍ=x, Z̈=z) = Φ
( 1

σ
[αy

1 + xβy
1 + zγy

1 − λ1]
)

(6.12)

Consequences of an increasing variance of the educational outcomes depend
on the expectation of Ẏ1:

– if E(Ẏ1|x, z) > λ1, the probability of Ẏ1 ≥ λ1 decreases, and

– if E(Ẏ1|x, z) < λ1, the probability of Ẏ1 ≥ λ1 increases.

Also the marginal effects of the explanatory variables depend on the vari-
ance of the educational outcomes. Figure 6.2.1 illustrates how the marginal
effect of Ẍ, as defined in (6.10), depends on values of σ. Notice that these
effects also depend on values of Z̈.

Chapter 7

Selection between several alternatives

7.1 Models with several alternatives
1. The functional framework
2. Illustration with artificial data
3. The multinomial logit model
4. Constraints on available alternatives
5. Relevance of observing constraints

7.2 School type selection in grade 5
1. Data from the AIDA survey
2. A model of school type selection
3. Effects of explanatory variables
4. Differences between boys and girls?

The models discussed in the two preceding chapters used binary outcome
variables. I now consider situations where a selection between more than
two alternatives can take place. The first section discusses how such situ-
ations can be modeled with multinomial logit models, and illustrates this
with artificial data. This section also shows how one can take into ac-
count constraints on available alternatives. In the second section, I use
data from the the AIDA survey (Aufwachsen in Deutschland: Alltagswel-
ten), conducted by the Deutsches Jugendinstitut (Munich), to illustrate a
multinomial logit model of the selection of school types in grade 5.

7.1 Models with several alternatives

1. The functional framework

The functional framework is simple:

(Ẍ, Z̈)−→→ Ẏ (7.1)

The dependent variable, Ẏ , can take values in a set Y = {1, . . . ,m}, repre-
senting m alternatives. Many different interpretations are possible. Here I
consider a situation where the alternatives represent learning frames, and
the model concerns the selection of students into one of these learning
frames. As an example, I consider selection into school types in grade 5:

Ẏ =







1 Hauptschule
2 Realschule
3 Gymnasium

(7.2)
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Table 7.1.1 Artificial data for illustration.

number of cases with

x z Ẏ = 1 Ẏ = 2 Ẏ = 3

0 0 2400 1200 400
0 1 1500 900 600
1 0 800 400 800
1 1 200 100 700

The model assumes that the probabilities Pr(Ẏ = j) depend on values of
one or more explanatory variables. In (7.1), there are two variables, Ẍ and
Z̈, but, of course, more can be added.

For an example, I assume that Ẍ is an exogenous explanatory variable
that represents some aspect of the student’s family background, and Z̈ is
a possibly endogenous explanatory variable that represents the student’s
‘level of academic performance’ in the situation where the selection takes
place (end of grade 4).

2. Illustration with artificial data

For a simple illustration, I assume that both explanatory variables are bi-
nary and that data are given as shown in Table 7.1.1. One can immediately
calculate values of the functional relationship

(x, z) −→ Pr(Ẏ =j|Ẍ=x, Z̈=z) (7.3)

as shown in the following table:

x z Pr(Ẏ =1|x, z) Pr(Ẏ =2|x, z) Pr(Ẏ =3|x, z)

0 0 0.6 0.3 0.1
0 1 0.5 0.3 0.2
1 0 0.4 0.2 0.4
1 1 0.2 0.1 0.7

(7.4)

If the number of possible values of the explanatory variables is large, it is
often preferable to use a parametric version of the functional relationship
(7.3). Often used is a multinomial logit model.

3. The multinomial logit model

This is an extension of the binary logit model that was discussed in Chapter
3. I begin with a version that starts from assuming

Pr(Ẏ =j|Ẍ=x, Z̈=z) ≈
1

A
exp(αj + xβxj + zβzj + xzβxzj)
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Since
∑

j Pr(Ẏ =j|x, z) = 1, it follows that A should be taken as

A =
∑

j
exp(αj + xβxj + zβzj + xzβxzj)

and the basic form of the model becomes

Pr(Ẏ =j|Ẍ=x, Z̈=z) ≈
exp(αj + xβxj + zβzj + xzβxzj)

∑

k exp(αk + xβxk + zβzk + xzβxzk)

However, since probabilities add to unity, it suffices to estimate parameters
form−1 alternatives. One therefore adds the constraint that all parameters
which relate to the first alternative (j = 1) are zero: α1 = βx1 = βz1 =
βxz1 = 0. The model’s basic form then finally is

Pr(Ẏ =j|Ẍ=x, Z̈=z) ≈ (7.5)

exp(αj + xβxj + zβzj + xzβxzj)

1 +
∑

k=2,m exp(αk + xβxk + zβzk + xzβxzk)

for j = 2, . . . ,m. Parameters of the model can be estimated with the
maximum likelihood method. To illustrate, I use the data in Table 7.1.1.
One gets the following parameter values:

j = 2 j = 3

α̂j −0.6931 −1.7918

β̂xj −0.0000 1.7918

β̂zj 0.1823 0.8755

β̂xzj −0.1823 0.3773

Obviously, one cannot immediately interpret these parameters. They should
be used to calculate estimates of the conditional probabilities. This can
easily be done by inserting the parameter estimates into (7.5). In our ex-
ample, since we used a saturated model, one gets the probabilities shown
in (7.4). If we had used a model without an interaction term, results would
be slightly different.

4. Constraints on available alternatives

An important consideration concerns the available alternatives. While the
model presupposes a set of alternatives, Y = {1, . . . ,m}, it might well be
that the actually available alternatives depend on the circumstances, that
is, on values of explanatory variables.

To illustrate, I continue with the example introduced in 7.1.1. As
defined in (7.2), there are three alternatives (school types). I now assume
that the actually available alternatives depend on the student’s value of Ż,
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Box 7.1.1 Data generation for the example.

for (x = 0, . . . , 4)

for (i = 1, . . . , 10000)

set xi = x, zi = random draw from a normal distribution with
mean µxi

= 0.05 xi and variance 1.
ri = random number equally distributed in [0, 1].

(a) if zi < −1, then yi = 1.

(b) if −1 ≤ zi < 0, then:
if ri ≤ µxi

+ 0.5(zi + 1) then yi = 2, else yi = 1.

(c) if zi ≥ 0, then:

if ri ≤ µxi
+ 0.5 exp(zi)

1+exp(zi)
then yi = 3, else yi = 2.

the level of academic performance at the end of grade 4.1 More specifically,
I assume that Ẏ = 1 is always available, but Ẏ = 2 requires that Ż ≥ z2,
and Ẏ =3 requires that Ż ≥ z3 (z3 > z2). These constraints must be taken
into account in the set-up of the model. This can be done with the help of
indicator variables

V2 := I[Ż < z2] and V3 := I[Ż < z3]

These variables, together with suitably constrained parameters, can be in-
cluded into the specification of the multinomial model. For example, omit-
ting the interaction term, the numerator of (7.5) can be specified by

exp(αj + xβxj + v2δ2j + v3δ3j) (7.6)

and the model is estimated with the following constraints:

δ23 = δ32 = 0 and δ22 = δ33 = −LN (7.7)

where LN is a large number (so that the resulting probability is essentially
zero).

To illustrate the procedure, I use an extension of the example discussed
in Section 6.1. As in that example, there are five levels of parents’ SES:
Ẍ ∈ {0, 1, 2, 3, 4}, and Ż is a normally distributed variable with mean µx

and variance 1. The mean values depend on x as shown in Table 6.1.1. As
threshold values I assume z2 = −1 and z3 = 0.

1As indicated by the notation Ż, this is now taken as an endogenous variable having a
distribution depending on Ẍ .
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Figure 7.1.1 Dependence of Pr(Ẏ = j|Ẍ =1, Ż = z) on z (shown on
the abscissa). Calculated with (7.9).

For the example, the data are generated as shown in Box 7.1.1. The
model is specified as

Pr(Ẏ =j|Ẍ0=x0, . . . , Ẍ4=x4, Ż=z) ≈ (7.8)

exp(x0β0j + · · ·+ x4β4j + zβzj + v2δ2j + v3δ3j)

1 +
∑

k=2,m exp(x0β0k + · · ·+ x4β4k + zβzk + v2δ2k + v3δ3k)

with five dummy variables Ẍj := I[Ẍ = j] (j = 0, . . . , 4). One finds the
following parameter estimates:2

j = 2 j = 3

β̂0j 1.0041 0.1966

β̂1j 1.2606 0.6287

β̂2j 1.3743 0.9182

β̂3j 1.6734 1.4128

β̂4j 1.8079 1.7520

β̂zj 4.3503 4.6527

δ̂2j −20.0000 0.0000

δ̂3j 0.0000 −20.0000

(7.9)

These parameters can be used to calculate estimates of the conditional
probabilities defined by the model. How they depend on values of Ż is
shown in Figures 7.1.1 and 7.1.2 for Ẍ=1 and Ẍ=4, respectively.

2Estimation was done with the qreg procedure of the program TDA that allows one to
specify parameter constraints. LN was set to 20.
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Figure 7.1.2 Dependence of Pr(Ẏ = j|Ẍ =4, Ż = z) on z (shown on
the abscissa). Calculated with (7.9).
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Figure 7.1.3 Dependence of Pr(Ẏ = j|Ẍ =4, Ż = z) on z (shown on
the abscissa). Calculated with (7.10).
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5. Relevance of observing constraints

Constraints on available alternatives must explicitly be taken into account
when specifying a model. In order to illustrate the relevance, I reestimate
the model without constraints by simply omitting the variables v2 and
v3 from the specification (7.8). One then gets the following parameter
estimates:

j = 2 j = 3

β̂0j 1.0004 −0.5081

β̂1j 1.2467 −0.1169

β̂2j 1.3442 0.1411

β̂3j 1.6238 0.5901

β̂4j 1.7296 0.8770

β̂zj 4.7664 5.7005

(7.10)

They are obviously quite different from the values in (7.9). In particular,
they suggest a misleading impression of the dependence on Ż, the level of
academic performance. This is also shown in Figure 7.1.3 which is based
on the parameter estimates (7.10).

7.2 School type selection in grade 5

In this section, I use data from the the AIDA survey (Aufwachsen in
Deutschland: Alltagswelten), conducted by the Deutsches Jugendinstitut
(Munich), to illustrate a multinomial logit model of the selection of school
types in grade 5. I thank Ulrich Pötter who kindly provided the data.

1. Data from the AIDA survey

I consider children being in grade 5 at the interview date (second half
of 2009), altogether 592 children (AIDA variable: V1 B24). 46 of these
children are still in a primary school (Grundschule). The distribution on
school types of the 546 children who already changed to a secondary level
(AIDA variable V1 B25A) is as follows:

cases school type

47 Hauptschule
102 Realschule
288 Gymnasium
69 Gesamtschule
40 Sonstige

I consider the 506 children attending one of the first four school types.
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Table 7.2.1 Distribution of marks attained in grade 4 (-1 means ‘not available’).

mark in Mathematik mark in Deutsch

Ẏ 1 2 3 4 5 -1 1 2 3 4 5 -1

1 0 7 22 13 0 5 0 9 21 11 1 5
2 2 39 48 8 2 3 1 33 57 8 1 2
3 63 143 68 11 0 3 57 160 59 10 0 2
4 6 19 26 5 0 13 4 26 22 9 0 8

71 208 164 37 2 24 62 228 159 38 2 17
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Figure 7.2.1 Distribution of the index defined in (7.13) conditional
on parents’ educational level. The mean values are 4.24, 5.05, and 5.60,
respectively.

Correspondingly, I use the following dependent variable:

Ẏ =















1 Hauptschule
2 Realschule
3 Gymnasium
4 Gesamtschule

(7.11)

As explanatory variables, I use the parents’ educational level, and an index
of the marks attained in grade 4. Table 7.2.1 shows the distribution of these
marks in the subjects Mathematik and Deutsch (AIDA variables V1 B21A

and V1 B21B).

To record parents’ educational level (based on the AIDA variable HBIEL)
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I distinguish three levels:

Ẍ =







1 Hauptschule or without graduation
2 Realschule
3 Abitur, Fachabitur

(7.12)

In the following, I use 477 cases with known values of Ẍ and the marks
shown in Table 7.2.1. In order to include these marks into the model, I use
an index

Ż = 10−mark in Mathematik−mark in Deutsch (7.13)

Figure 7.2.1 shows distributions of this index conditional on parents’ edu-
cational level.

2. A model of school type selection

I now consider a functional model with Ẏ as an endogenous variable, and
Ẍ and Ż as explanatory variables. I assume that childrens’ marks depend
(to some degree) on their parents’ educational level and thus consider Ż
as an endogenous explanatory variable. This allows one to think of total
effects of the variable Ẍ (see below).

As a parametric form of the model I use a multinomial logit model and
represent Ẍ by three dummy variables, Ẍl := I[Ẍ = l]:

Pr(Ẏ =j|Ẍ1=x1, Ẍ2=x2, Ẍ3=x3, Ż=z) ≈ (7.14)

exp(x1β1j + x2β2j + x3β3j + zβzj)

1 +
∑

k=2,m exp(x1β1k + x2β2k + x3β3k + zβzk)

Estimating the model with the maximum likelihood method, one finds the
following parameter values (standard errors in brackets):

j = 2 j = 3 j = 4

β̂1j −1.8148 (0.71) −5.8740 (0.86) −3.4528 (0.87)

β̂2j −0.8952 (0.73) −4.2216 (0.80) −2.5260 (0.86)

β̂3j −0.6554 (0.75) −3.1038 (0.80) −2.3337 (0.88)

β̂zj 0.4585 (0.16) 1.2167 (0.17) 0.6868 (0.18)

(7.15)

These parameter values can be used to calculate estimates of the proba-
bilities of changing into one of the four possible school types, and one can
investigate how these probabilities depend on values of the explanatory
variables. This will be done below.

A further question concerns how well the model fits the data. One
possible approach is based on using the model for individual predictions.
For each individual case, i, one can calculate values p̂ij , that is, the es-
timated probability that i was selected into the school type j. Then one
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Figure 7.2.2 Dependence of Pr(Ẏ = j|Ẍ = x, Ż = z) on values of Ż (index of
marks), for different values of Ẍ (parents’ educational level).

can predict that i will be selected into the school type having the highest
probability. Finally, one can compare these predicted with the actually ob-
served school types. Based on the parameter estimates in (7.15), one finds
that 302/477 = 63% can be correctly predicted.

3. Effects of explanatory variables

I now consider how the estimated probabilities depend on values of the
explanatory variables. A first answer is given by the plots in Figure 7.2.2.
It is seen that both variables, parents’ educational level and childrens’
marks, substantially influence the selection of school types.

Assuming that childrens’ marks depend (to some degree) on the par-
ents’ educational level, one can distinguish between primary and secondary
effects. As was discussed in 6.1.4, one can interpret

Hj(x, x
′) :=

∑

z
Pr(Ẏ =j|Ẍ=x′, Ż=z) Pr(Ż=z|Ẍ=x) (7.16)

as the probability of Ẏ =j under the assumption that the primary effect is
given by x and the secondary effect is given by x′. Analogous to (6.1), one
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Table 7.2.2 Decomposition into primary and secondary effects according
to (7.16) and (7.17).

Total effect Primary effect Secondary effect

j x′ x′′ Hj(x
′′, x′′)−Hj(x

′, x′) Hj(x
′′, x′′)−Hj(x

′, x′′) Hj(x
′, x′′)−Hj(x

′, x′)

1 1 2 -0.030 -0.010 -0.020
1 1 3 0.052 0.174 -0.122
1 2 3 0.082 0.084 -0.002
2 1 2 0.115 -0.047 0.162
2 1 3 0.394 0.199 0.195
2 2 3 0.279 0.086 0.193
3 1 2 0.079 -0.057 0.136
3 1 3 0.619 0.191 0.428
3 2 3 0.540 0.071 0.469

can then use the decomposition

Hj(x
′′, x′′)−Hj(x

′, x′) = (7.17)

[Hj(x
′′, x′′)−Hj(x

′, x′′)] + [Hj(x
′, x′′)−Hj(x

′, x′)]

where the first term on the right-hand side represents the primary effect,
and the second term represents the secondary effect.

Calculation of the quantities Hj(x, x
′) uses the estimated model param-

eters (for the first term on the right-hand side), and the observed distribu-
tions of the index of marks as shown in Figure 7.2.1 and, numerically, in
the following table:

z Pr(Ż=z|Ẍ=1) Pr(Ż=z|Ẍ=2) Pr(Ż=z|Ẍ=3)

1 0.0408 0.0069 0.0000
2 0.1020 0.0276 0.0141
3 0.1224 0.0483 0.0530
4 0.3061 0.2759 0.1343
5 0.2041 0.2828 0.2650
6 0.1837 0.2276 0.2650
7 0.0408 0.0897 0.1873
8 0.0000 0.0414 0.0813

Results are shown in Table 7.2.2. It is seen that the secondary effects are
quite large and often much more important than the primary effects.

4. Differences between boys and girls?

In order to investigate differences between boys and girls, I add a binary
variable, S̈, to the model which takes the value 1 for girls and 0 for boys.
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Figure 7.2.3 Plot of the functions (7.19), calculated for Ẍ=2.

The corresponding model parameters are βsj . Parameter estimates and
standard errors for this enlarged model are shown in the following table:

j = 2 j = 3 j = 4

β̂1j −2.1904 (0.77) −6.4268 (0.91) −3.8978 (0.92)

β̂2j −1.1312 (0.75) −4.5962 (0.82) −2.8049 (0.88)

β̂3j −0.8595 (0.76) −3.4341 (0.81) −2.5791 (0.90)

β̂zj 0.4660 (0.16) 1.2134 (0.17) 0.6900 (0.18)

β̂sj 0.5648 (0.42) 0.9489 (0.42) 0.7060 (0.46)

(7.18)

One finds remarkable effects of S̈ for school type 3 (Gymnasium) and, cor-
respondingly, for type 1 (Hauptschule). In order to visualize these effects,
I consider the functions

z −→ Pr(Ẏ =j|Ẍ=x, Ż=z, S̈=1)−Pr(Ẏ =j|Ẍ=x, Ż=z, S̈=0) (7.19)

Figure 7.2.3 shows these functions for j = 1 and j = 3, with Ẍ=2.

Chapter 8

Causal interpretations

8.1 Causal relations between variables

1. Causally relevant variables
2. Thinking of causes as events
3. Causally relevant conditions
4. Comparative and dynamic effects
5. Functional and causal mechanisms

8.2 References to human actors

1. Primary and secondary actors
2. Explanatory and treatment models
3. Functional models of experiments
4. Randomly assigned causal conditions
5. Two contexts for randomization

8.3 Rule-based and descriptive approaches

1. Rule-based understanding of potential outcomes
2. Descriptive notion of potential outcomes
3. Including further causally relevant variables
4. Balanced effects and kinds of models
5. Contrasting the two approaches
6. Omitted causally relevant conditions

The functional relationships which are posited when specifying a functional
model do not automatically have a causal meaning. In general, their pre-
supposition only entails the claim that variables used as arguments in a
function can contribute to predicting conditional distributions of the de-
pendent variable. For example, one can use a person’s educational level
to predict the educational level of her parents; but there obviously is no
corresponding causal relationship. So the question arises in which sense
one sometimes can claim that relationships in a functional model also have
a causal meaning.

This question concerns the understanding of causal relationships and
must be distinguished from the further question of how one can use statis-
tical data for estimating quantitative (numerically specified) forms of such
relationships. In the present chapter, I am mainly concerned with the con-
ceptual question. The first section proposes a rudimentary understanding
of the idea that variables can be causally related. In the second section,
I introduce a distinction between explanatory and treatment models, and
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suggest that there correspondingly are some differences in the understand-
ing of causal effects. The third section takes up the often used notion of
‘potential outcomes’ and shows that there are two quite different under-
standings.

8.1 Causal relations between variables

1. Causally relevant variables

Consider a functional relationship

x −→ Pr[Ẏ |Ẍ=x]

What is entailed by the idea that this can be viewed as a causal relation-
ship? I propose that there are basically two claims:

(1) that one can refer to a fact-generating process generating
values of Ẏ ,1 and

(2) that this process depends on values of Ẍ .

I then call Ẍ a variable which is causally relevant for Ẏ .
These two claims are at the core of viewing causation as a generative

process (Goldthorpe 2001, Blossfeld 2009). Of course, they also provide a
starting point for further questions: How do processes generating values of
Ẏ depend on Ẍ, and which role is played by further variables on which Ẏ
possibly depends?

2. Thinking of causes as events

In order to think about how processes generating values of Ẏ depend on Ẍ
one must be more specific about the meaning of the values of Ẍ . I begin
with assuming that values of Ẍ represent possible events. In the most
simple case, Ẍ is a binary variable, and Ẍ = 1 means that an event of a
specified kind has occurred, and Ẍ =0 means that such an event has not
(yet) occurred.

One can then distinguish two kinds of relationships between Ẍ and a
process generating values of Ẏ :

a) The event initiates a process that generates a value of Ẏ . This presup-
poses that the occurrence of the event is a necessary condition for the
generation of a value of Ẏ . As an example, think of Ẏ as the outcome of
a student’s participating in a learning frame. The student’s beginning
to participate in the learning frame can be considered as an event that
initiates a process that eventually generates a value of Ẏ .

1See the distinction between data-generating and fact-generating processes introduced
in § 2.1.2.
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b) The event occurs while a process that eventually generates a value of Ẏ
already takes place. So one can think of two such processes: one during
which the event did occur, and another one in which the event did not
occur. The impact of the event, if it occurs, must then be understood as
modifying an ongoing process. As an example, one can think that the
student becomes severely ill while participating in the learning frame.

Most often, already the definition of a process requires to refer to an event
that initiates the process. The causal relevance of that event is then easily
stated: Its occurrence is a necessary condition for the process to take place.

Variables representing the occurrence of events will be called event vari-
ables (Rohwer 2010, ch. 7). These need not be binary variables which refer
to just one event type. In general, if Ẋ is an event variable, its domain will
be denoted by

X = {0, 1, . . . ,m}

with values having the following meaning: If x > 0, Ẋ=x means that an
event of the type x has occurred; Ẋ=0 means that no event of the specified
kinds has yet occurred. The definition shows that using event variables at
least implicitly requires a temporal view.

3. Causally relevant conditions

Causally relevant variables need not be event variables. As another kind one
can think of variables representing conditions on which a process depends.
I then speak of context variables.

To illustrate, I use our standard example in which a student’s edu-
cational success, Ẏ , depends on the school type, Ẋ, and on the parents’
educational level, Z̈. The functional model looks as follows:

Model 8.1.1

Ẏ

Z̈

Ẋ --

66
�����*

����*

In this model, one can think of Ẋ as a variable representing the occurrence
of an event:

Ẋ =

{

1 if the student starts participating in learning frame σ1

2 if the student starts participating in learning frame σ2

In contrast, Z̈, recording the parents’ educational level, is a context vari-
able. Its values can sensibly be understood as characterizing the context in
which the process that generates a value of Ẋ takes place. Similarly, one



96 8 CAUSAL INTERPRETATIONS

can understand the causal relevance of Z̈ for processes generating values of
Ẏ . The leading idea is that parents’ activities through which they support
a child’s education depend on their own educational level.

How to think of the causal relevance of Ẋ? There are two considerations.
First, thinking of the event Ẋ = j, it can be understood as initiating a
process that eventually generates a value of Ẏ . In this view, Ẋ is causally
relevant because without Ẋ’s taking a positive value a process generating
a value of Ẏ cannot take place. Second, as soon as one of the possible
events did occur, it can be viewed as having generated a specific context.
If Ẋ = j, it is the context σj , a particular learning frame, in which the

process generating a value of Ẏ takes place.
This can be generally stated: As soon as an event variable has a positive

value, the variable can be considered as a context variable for a process that
begins at the point in time when the event occurred.

4. Comparative and dynamic effects

To speak of a causally relevant variable, say Ẋ, presupposes a functional
model in which the variable has a particular place and can be functionally
related to other variables representing possible effects. However, it is not
the model, understood as a system of mathematical functions, that pro-
vides the causal meaning. To give a variable a causal meaning requires
considerations which cannot be expressed in terms of mathematical func-
tions.

The functional model is silent about the meaning of its functional re-
lationships. But given a causal interpretation, it can be used to formally
define causal effects. One specifies a variable, say Ẏ , representing the out-
comes of interest, and considers all variables on which Ẏ functionally de-
pends. Assume that these are the variables Ẋ and Ż. Both can then be
used to define effects. For example, an effect of Ẋ can be defined by

∆s(Ẏ ; Ẋ [x′, x′′], Ż=z) = (8.1)

E(Ẏ |Ẋ=x′′, Ż=z)− E(Ẏ |Ẋ=x′, Ż=z)

This definition compares the expectation of Ẏ in two situations: one in
which Ẋ = x′ and another one in which Ẋ = x′′, and further presupposes
that Ż = z in both situations. In this sense, the definition formulates
a comparative effect , and can be used for all kinds of causally relevant
variables. If Ẋ is an event variable, also another effect definition becomes
possible:

∆d(Ẏ ; Ẋ[j], Ż=z) = E(Ẏ |Ẋ=j, Ż=z)− E(Ẏ |Ẋ=0, Ż=z) (8.2)

This definition formulates a dynamic effect ; it compares a situation where
the event Ẋ = j occurred with a situation where no event (of the kinds
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specified by Ẋ) occurred.2

To illustrate, consider the example introduced in § 8.1.3. A comparative
effect compares the educational outcomes in the two learning frames, σ1

and σ2. In contrast, a dynamic effect compares the outcome of Ẋ=j with
Ẋ=0, and since a positive value of Ẋ is a necessary condition for a value
of Ẏ , the dynamic effect is given by E(Ẏ |Ẋ=j, Ż=z).

5. Functional and causal mechanisms

Without presupposing possible effects one cannot think of ‘causes’. In
a statistical approach to causality, possible effects are conceptualized by
an outcome variable, Ẏ . In social research, being interested in processes
generating values of Ẏ , it is seldom reasonable to consider only a single
causal condition, say Ẍ. In most applications one has to take into account
further causally relevant conditions. The question ‘What is the causal effect
of Ẍ on Ẏ ?’, without further qualification, is then not appropriate.

An alternative is to think of ‘mechanisms’.3 Here I use the term in
this sense: A mechanism is an explicitly defined framework for thinking of
processes generating values of an outcome variable. More specifically, I use
the term functional mechanism to denote a functional model that shows
how an outcome variable depends on other variables; and it will be called
a causal mechanism if at least some of the functional relationships can be
given a causal interpretation.

Given these definitions, a mechanism is a (formal) framework and must
be distinguished from the processes which, possibly, take place according
to the rules of the mechanism. This entails that a mechanism is not by
itself a dynamic entity. While one can sensibly think that a process can
generate an outcome, this cannot be said of a mechanism. But note that
only the mechanism has an explicit representation (in terms of variables).
To think of processes that actually generate outcomes requires a causal
interpretation of the mechanism.

8.2 References to human actors

1. Primary and secondary actors

Models in social research most often concern processes which depend on
the behavior of human actors. In the following, I call these the primary
actors . In contrast, I speak of secondary actors when referring to those

2If the occurrence of an event specified by Ẋ is a necessary condition for Ẏ ’s getting a
value, I use the convention that E(Ẏ |Ẋ=0, Ż=z) = 0; see Rohwer (2010, ch. 7).

3For a discussion of many of the meanings which are given to this term in the sociological
literature, see Mahoney (2001).
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who construct and use models.
For example, think of the models dealing with students’ educational

outcomes in different learning frames. Primary actors are the students,
their parents, the teachers; in general, all actors to which one refers when
interpreting the models and reflecting about causal relationships. In con-
trast, the secondary actors are those who construct, discuss, and possibly
use these models for one reason or another.

Note that the distinction presupposes the reference to a model. Only
w.r.t. a model can one distinguish primary and secondary actors in the
proposed sense.

2. Explanatory and treatment models

There are many reasons why one could be interested in models. Here I
want to mention just one distinction that also suggests to distinguish two
kinds of models.

One interest concerns the primary actors, the conditions and outcomes
of their behavior. Models are then constructed as tools for understanding
and explaining conditions and outcomes of the behavior of the primary
actors. I then speak of explanatory models .

In contrast, secondary actors could be interested in the possibility of
interventions supporting their economic and/or political goals. Models are
then constructed as tools for assessing the possible effects of treatments. I
then speak of treatment models .

3. Functional models of experiments

Discussions of causally interpretable models often presuppose an interest
in effects of treatments. Grounded in a long tradition, treatment models
are preferably related to an experimental context. I briefly mention some
ways in which functional models can be used as a formal framework. A
first possibility is illustrated by the following model.

Model 8.2.1

Ẏ

Z̈

Ẍ --

�����*

����*

Values of Ẍ represent the treatments whose causal effects are of primary
interest. Z̈ records further conditions which, presumably, are causally rel-
evant for Ẏ . Both are exogenous variables because their values are delib-
erately fixed by the experimenter.

In another kind of experiment, the experimenter randomly selects some
of the conditions for the experiment but still deliberately generates values
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of the treatment variable. This can be represented by the following model.

Model 8.2.2

Ë --

Ẏ

Ż

Ẍ --

�����*

����*

Ẍ is still an exogenous variable, but Ż is now an endogenous variable
which depends in a specified way on Ë, an event variable initiating the
experiment.

In both situations, assuming that the experiment concerns processes
depending on the behavior of primary actors, the experimenter is a sec-
ondary actor. There also is then a potential conflict. Being interested in
predictable effects of treatments, the experimenter has reason to control
and regulate the behavior of the primary actors as far as possible.

4. Randomly assigned causal conditions

There is a further kind of experiment in which also values of the treatment
variable, Ẍ, are randomly generated. The functional model then looks as
follows:

Model 8.2.3

Ë --�����*

�����*
Ẏ

Ż

Ẋ --

�����*

����*

The set-up entails that, conditional on Ë=1 (initiation of the experiment),
Ẋ and Ż are independent. In a standard notation, this can be written as

Ẋ⊥⊥Ż | Ë = 1

This allows one to express effects of Ẋ as follows:

∆s(Ẏ ; Ẋ [x′, x′′], Ë=1) = (8.3)
∑

z
∆s(Ẏ ; Ẋ[x′, x′′], Ż=z, Ë=1)Pr(Ż=z|Ë=1)

This shows that a randomized experiment allows one to compare effects of
different treatments, values of Ẋ, in a balanced way: the distribution of
further possibly relevant variables, Ż, does not depend on the values of Ẋ,
the treatments, that one intends to compare. But note that this does not
entail that effects of Ẋ are independent of Ż. If Ẋ and Ż interact in the
generation of values of Ẏ , the effect defined in (8.3) still depends on the
distribution of Ż.
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Notice that a reference to the variable Ë is required in order to think
of an experimental context which includes an experimenter who at least
initiates the experiment. Without the variable Ë, Model 8.2.3 only contains
random variables getting their values from processes not represented in the
model. Also note that this is an intervention model in a very specific
sense: randomization is used as a fact-generating process, that is, a process
generating events (values of Ẋ).

5. Two contexts for randomization

Is randomization useful in social research? In thinking about this question
one should distinguish between two different contexts for randomization.

First, one can think of data-generating processes. The most relevant
application concerns the selection of units (for further observation). There
are good arguments that samples should be generated randomly, that is,
according to in some way fixed and known selection probabilities.

An essentially different context is experimentation. Performing an ex-
periment requires, first of all, a fact-generating process. In this context,
randomization not only, if at all, concerns the selection of a sample of units
for the experiment; but also is a method of creating facts (‘treatments’)
whose possible effects one intends to study.

While randomization in data generation is certainly useful in social
research, the value of randomized experiments seems questionable. The
argument is not that such experiments are seldom possible. The relevant
point is that randomization would change, in an essential way, the processes
to be studied.

The example depicted in Model 8.1.1 can show this. In this example,
one can be interested in effects of the learning frames (Ẋ). The model
realistically assumes that the selection of learning frames depends on the
student’s family background (represented by Z̈). This is a fact-generating
process. Randomization would substitute this by another fact-generating
process that randomly assigns students to learning frames.

8.3 Rule-based and descriptive approaches

In the statistical literature, discussions of causal effects often use notions of
‘potential outcomes’ (e.g. Rubin 2005; Morgan and Winship 2007; Angrist
and Pischke 2009; Gangl 2010). Different understandings are possible. In
this section I distinguish, and contrast, rule-based and descriptive under-
standings of potential outcomes.

1. Rule-based understanding of potential outcomes

The approach to understanding causal relationships that was sketched in
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Section 8.1 uses functional models as a formal framework. This is appro-
priate when one is interested in causally interpretable rules. Such rules –
I briefly speak of causal rules – concern potential outcomes which can be
linked to different values of causally relevant variables. Continuing with
the notation introduced in Section 8.1, such a rule has the form

(x, z) −→ E(Ẏ |Ẋ=x, Ż=z) (8.4)

It is a causal rule if Ẋ and Ż can be interpreted as variables which are
causally relevant for the generation of values of Ẏ . The dependent vari-
able, Ẏ , represents potential outcomes which can be expected in a generic
situation where Ẋ and Ż have specified values. Given the rule, one can
compare potential outcomes for different values of Ẋ and Ż, and, as defined
in (8.1) and (8.2), interpret their differences as causal effects.

2. Descriptive notion of potential outcomes

In the statistical literature, one also finds a descriptive notion of potential
outcomes which is not based on rules. This notion relates to a specified
set of particular units, say Ω, and presupposes three (or more) statistical
variables.4 A variable

X : Ω −→ X

represents causally relevant factors (conditions or events). As is often done
in the literature, in order to simplify notations, I assume that X is a binary
variable:

X =

{

1 if a specified causal factor is present
0 otherwise

The interest concerns outcomes in situations where X = 1 or X = 0. It is
assumed that these outcomes can be represented by statistical variables

Yj : Ω −→ Y (8.5)

(j = 0 or 1) having the following meaning: If X(ω) = j, the outcome of
interest has the value Yj(ω).

One can then formally define, for each unit ω ∈ Ω, a causal effect
Y1(ω)−Y0(ω). Of course, these individual causal effects cannot be observed.
One therefore aims to estimate an average causal effect which can be defined
for Ω by

M(Y1)−M(Y0) (8.6)

4See, for example, Holland (1986). Similarly, Rubin (2005: 323) refers to an array of
given, partly observed values.
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However, observations only allow estimation of conditional mean values,
M(Yj |X= j). So the question arises under which conditions one can think
of these conditional mean values as unbiased estimates of M(Yj). A suffi-
cient condition would be that X and Yj are approximately independent;5

formally: Yj ⊥⊥X (for j = 0, 1).

This independence condition suggests that a critical question concerns
the generation of values of X . If possible, such values should be randomly
assigned to the members of Ω. This would justify to consider Ωj := {ω∈
Ω|X(ω)= j} as a simple random sample from Ω, and therefore to assume
that Yj has approximately the same distribution in Ωj and Ω.

3. Including further causally relevant variables

As described in the previous paragraph, the descriptive approach aims to
define a causal effect that can be attributed to a single variable, X . A
somewhat extended formulation is required if effects also depend on further
variables. Assume that outcomes depend not only on X , but also on values
of a variable Z (possibly consisting of several components). Instead of (8.6),
one has to consider the effect definition

M(Y1|Z=z)−M(Y0|Z=z) (8.7)

As before, values of Yj can only be observed if X = j; the observable
conditional mean values are M(Yj |X = j, Z = z). They provide unbiased
estimates of M(Yj |Z=z) if

Yj ⊥⊥X |Z = z (for j = 0, 1) (8.8)

This shows that it would suffice to perform the randomization (the random
assignment of values of X to the members of Ω) separately for each value
of Z.

4. Balanced effects and kinds of models

Neither the rule-based nor the descriptive approach require that the ex-
plicitly represented variables, X and Z, are independent. Relationships
between these variables become important, however, if one aims to define
causal effects of just one variable, say X . Whether this is possible depends
first of all on whether X and Z interact in the generation of outcomes.6 If
they interact, effects cannot be attributed solely to X . It is nevertheless

5Note that X and Yj are statistical variables, defined for a finite reference set Ω. One
can therefore think of statistical independence only in an approximate sense.

6As was discussed in Chapter 4, this must be distinguished from dependency relations
which concern the joint distribution of X and Z (or Ẋ and Ż).
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possible to define average effects. Following the rule-based approach, one
can use the definition

∑

z

(

E(Ẏ |Ẋ=x′′, Ż=z)− E(Ẏ |Ẋ=x′, Ż=z)
)

Pr(Ż=z) (8.9)

where Pr(Ż=z) refers to an (arbitrarily) specified distribution of Ż. This
is a balanced effect , meaning that the distribution of Ż is identical for x′

and x′′. Of course, if Ẋ and Ż interact, the effect still depends on the
assumed distribution of Ż.

How to proceed when following the descriptive approach depends on the
given data to which the causal statements relate. If the data result from a
process which entailed a randomization of X w.r.t. Z, the distribution of
Z already is approximately independent of X , and one can interpret (8.6)
as a balanced average effect of X . Again, if X and Z interact, this effect
also depends on the distribution of Z in the reference set of units.

If X and Z are not independent, one can construct a balanced effect.
This is analogous to the procedure in the rule-based approach. In the
descriptive approach, one starts from (8.7) and (arbitrarily) specifies a dis-
tribution of Z. Formally analogous to (8.9), an average effect can then be
defined by

∑

z

(

M(Y1|Z=z)−M(Y0|Z=z)
)

P(Z=z) (8.10)

One might ask whether balanced effects are particularly useful. This de-
pends on the kind of model. With treatment models, one is normally in-
terested in finding an effect that can be attributed solely to the treatment,
given that all other possibly relevant conditions are in some sense fixed.
This interest suggests to construct balanced effects.

The situation is different with explanatory models. In social research,
explanatory models most often relate to situations where at least some of
the causally relevant conditions are generated by actions of primary agents.
Effects of single variables are then never balanced w.r.t. all causally relevant
conditions. It would be possible, of course, to construct balanced effects
w.r.t. observed variables; but I think that a primary interest concerns how
the real effects, which are unbalanced, come into being.

5. Contrasting the two approaches

The rule-based and the descriptive approach to the definition of causal
effects are in several respects different.

(1) A first difference concerns the notion of potential outcomes. As men-
tioned in § 8.3.1, the rule-based approach conforms to the understanding
that potential outcomes are outcomes which, under specified conditions,
possibly will come into existence. Correspondingly, potential outcomes are
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defined by a rule (a linguistic if-then construction).

The descriptive approach, in contrast, presupposes that potential out-
comes (= values of Y0 and Y1) already exist before values of X , and other
causally relevant variables, are fixed. To speak of ‘potential outcomes’ is
therefore somewhat misleading. Actually, what is potentially realized is an
observation of an already existing fact (value of Yj).

7 So it would be less
confusing to speak of ‘potential observations’.

(2) It might be helpful to remember the distinction between fact-generating
and data-generating processes. The rule-based approach aims to formulate
causal rules for fact-generating processes. The descriptive approach, as
it is theoretically formulated, is concerned with data-generating processes
which provide partial information about hypothetically presupposed facts
(values of Y0 and Y1). This approach therefore seems to allow one to think
of ‘causal inference’ in parallel to a missing observation problem.8

(3) It is important to understand that the variables Y0 and Y1 can only be
defined by referring to a set of existing units. For each particular unit, say
ω ∈ Ω, one can posit values, Y0(ω) and Y1(ω), representing the outcomes
corresponding to X(ω) = 0 and X(ω) = 1, respectively. This is possible
because, and insofar, one can assume that all further conditions on which
outcomes depend are implicitly fixed by the reference to ω, a particular
unit existing in particular circumstances.9 The descriptive approach is
therefore essentially static and not well suited for causal interpretations of
temporally extended processes.

The rule-based approach, in contrast, is not based on a reference to
a set of already existing units, but relates to generic units which are only
defined by values of variables. It is therefore not possible to define variables
corresponding to Y0 and Y1. Instead, there is a single outcome variable,
Ẏ , having possible values which only become realized when, and after, Ẋ,
and any further variables which define the generic unit, have taken specific
values. There are no restrictions for thinking of a temporally extended
process connecting Ẋ and the final outcome, Ẏ .

(4) As a consequence, the independence requirement (8.8) cannot be formu-
lated in the conceptual framework of the rule-based approach. Of course,
based on the mentioned understanding of Ẏ , one can define variables Ẏj

having distributions defined by Pr[Ẏj |Ż = z] = Pr[Ẏ |Ẋ = j, Ż = z]. An

7This is seldom explicitly mentioned; but see Greenland (2004: 4).

8See, e.g., Rubin et al. (2004: 105), Winship and Morgan (1999: 664).

9Positing values of Y0 and Y1 can be done in a deterministic or in a probabilistic
way. This entails different understandings of individual causal effects, but the essential
features of the descriptive approach are independent of this distinction.
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independence condition paralleling (8.8) is then trivially true:

Ẏj ⊥⊥ Ẋ | Ẋ=j, Ż=z (for j = 0, 1) (8.11)

But this condition has not the same interpretation. (8.8) can be interpreted
as the requirement that X , conditional on values of Z, is approximately
independent of all further circumstances which are fixed by the implicit
reference to particular units. (8.11), in contrast, only says that the outcome
variable, given X = j and Ż = z, is independent of any other outcome
variable for which Ẋ 6= j and Ż=z.

(5) As mentioned, in order to satisfy the independence condition (8.8), there
ideally should be a randomized assignment of values ofX to the members of
Ω (conditional on values of Z). (8.11) does not require any randomization
procedure. The important point is, however, that formulating a causal rule
like (8.4) does not entail the claim that there are no further variables on
which the outcome variable depends. Such variables are simply not taken
into account. Consequently, also definitions of causal effects which are
derived from (8.4) do not entail anything about further variables on which
the outcome variable depends. Consider the causal effect defined in (8.1).
This definition compares two generic units, one with Ẋ=x′′ and the other
one with Ẋ=x′. Both units have identical values of Ż; but they can differ
in all other respects.

6. Omitted causally relevant conditions

If a causal rule does not relate to an artificial random generator, one can
almost always think that the rule misses one or more causally relevant
conditions. Note that this is true even if the data used to estimate the
rule result from a randomized experiment. The point simply is that there
probably are causally relevant conditions not explicitly referred to in the
rule’s formulation. It is therefore not reasonable to require that a causal
rule entails the claim that one has taken into account all causally relevant
conditions.

Moreover, except when dealing with artificial random generators, al-
ready the assumption that one can ‘theoretically’ refer to a complete set of
variables which are causally relevant for an outcome variable seems obscure.
The descriptive approach to potential outcomes avoids this assumption and
instead requires the conditional independence (8.8). This independence is
viewed as a precondition for thinking of a causal effect of X . However, as
already mentioned, (8.8) cannot be formulated in a rule-based approach.
In a rule-based approach one would need to refer to explicitly defined vari-
ables which, in addition to Z, are causally relevant for Y . If one could refer
to a list of such variables, say (U1, U2, . . .), one could use the formulation

X ⊥⊥ (U1, U2, . . .) |Z = z (8.12)
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However, the formulation is not useful because one cannot define, not even
clearly think of, such a list of variables.

Of course, it is often quite possible to think of a particular variable,
say U , which is left out in the formulation of a causal rule, but should
be taken into account in order to get a better understanding of the causal
mechanism. The original model, that was used to derive the causal rule,
must then be enlarged by incorporating U ; and this also demands to specify
U ’s relationship with the other variables in the model. How to do this
depends on the intended use of the model. If the model is intended to
represent a randomized experiment, one can assume in the formulation of
the enlarged model that Ẋ ⊥⊥ U̇ | Ż = z.

However, as I have argued in § 8.2.5, in social research an explanatory
model can almost never be formulated as a model representing a random-
ized experiment. It then depends on the details of the model how to think
of U̇ ’s role in the mechanism generating values of the outcome variable. In
any case, one would need observations of U̇ in order to quantify its causal
role.

Chapter 9

Selection and choice

9.1 Different kinds of selection

1. Distinguishing selection problems
2. Selection in data-generating processes
3. Selection as a necessary precondition
4. Counterfactual and modal questions
5. Is there a sample selection problem?
6. Consideration of omitted confounders
7. Illustration with a numerical example
8. Selection and omitted confounders

9.2 Choice-based selection

1. A notion of choice variables
2. Two contexts for using choice variables
3. Primary and secondary actors of choice models
4. Consideration of modal questions
5. Modal questions w.r.t. necessary preconditions

9.3 Causal effects of choice variables

1. Three different choice situations
2. The problem: omitted confounders
3. The perspective of evaluative choice models
4. Constructions of balanced effects
5. Parametric assumptions about confounders
6. Confounding and mediating variables

This chapter continues with the discussion of ‘causal interpretations’ that
was begun in the previous chapter. The focus is on ‘selection problems’. In
the first section, I distinguish between ‘sample selection problems’ which
concern data-generating processes, and selection events in fact-generating
processes which have causal effects. This leads to a distinction between
problems resulting from selection, and problems resulting from omitted
confounders.

In the second section, I consider choice as a specific kind of selection. I
distinguish between two uses of choice variables and introduce, correspond-
ingly, explanatory and evaluative choice models.

In the third section, I first note that there are different kinds of choice
situations which require different understandings of causal effects. The
problem of omitted confounders occurs in only one of these situations where
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the choice concerns different ways to reach comparable outcomes. This
choice situation also motivates an interest in balanced effect constructions.
I finally briefly consider such constructions.

9.1 Different kinds of selection

1. Distinguishing selection problems

I distinguish three situations where Y is a variable of interest, and there is
a further variable S which in some sense involves a selection.

a) S is a binary variable, and values of Y can be observed if S = 1, and
cannot be observed if S = 0. This can properly be called a ‘sample
selection problem’ because S only concerns the observability of Y but
is not a causally relevant condition for Y . Here it is presupposed that
Y has a distribution that exists independently of S.

b) S is a binary variable, and S = 1 is a necessary precondition for Y to
have a distribution. For example, being employed (S = 1) is a necessary
precondition for receiving a wage (Y ).

c) S can take two or more different values, and it is assumed that the
distribution of Y causally depends on the value of S. For example,
values of S represent school types, and Y is a measure of educational
attainment.

It is obvious that there is a selection problem in the first case (a). It is not
clear, however, in which sense there might be a selection problem in cases
(b) and (c). In the following, I begin with a very brief consideration of
(a) and then focus on (b). The discussion is continued in the next section
where also (c) will be considered.

2. Selection in data-generating processes

Sample selection problems can be conceptualized in two ways. First, Y and
S are statistical variables, say

(Y, S) : Ω −→ Y × {0, 1}

One knows the conditional distribution P[Y |S=1], but is interested in the
unconditional distribution P[Y ]. As an example, one can think that S is a
response indicator in a survey: S=1 if a sampled unit provides a value of
Y , and S=0 otherwise.

Another framework uses random variables, say Ẏ and Ṡ. Ṡ is again a
binary variables and records whether a value of Ẏ can be observed. So it
is assumed that one knows the conditional distribution Pr[Ẏ |Ṡ=1], but is
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interested in the unconditional distribution Pr[Ẏ ].1

If Ṡ is independent of Ẏ , one can use Pr[Ẏ |Ṡ = 1] to estimate Pr[Ẏ ].
Problems occur if, and because, Ṡ and Ẏ are correlated. This suggests to
find another variable, say V̈ (often consisting of several components), such
that

Ṡ⊥⊥Ẏ | V̈ =v

is approximately true. This would allow one to use Pr[Ẏ |V̈ = v, Ṡ =1] to
estimate Pr[Ẏ |V̈ =v].2

3. Selection as a necessary precondition

I now consider the case where the selection variable represents a necessary
precondition for values of the variable of interest. As an example, I take Ẏ
to represent the outcome of a university education, and Ṡ=1 if a person is
admitted to begin with university studies, and Ṡ=0 otherwise. It is further
assumed that Ẏ depends on a variable Ẍ representing the level of academic
performance the person has reached just before the selection variable gets
a particular value. A functional model could then be graphically depicted
as follows:

Model 9.1.1

Ẏ

Ṡ

Ẍ --

??�������*

�������*

The picture is possibly misleading, however, because it suggests that Ẏ has
a distribution even if Ṡ=0. But, obviously, a process generating a value of
Ẏ can only take place if Ṡ=1. This entails that there are two rules:

x −→ Pr(Ẏ =y|Ẍ=x, Ṡ=0) = 0 (9.1)

and

x −→ Pr(Ẏ =y|Ẍ=x, Ṡ=1) (9.2)

Nevertheless, both Ẍ and Ṡ are causally relevant for Ẏ . Referring to ex-
pectations of Ẏ , Ṡ can be viewed as an event variable having the effect

1Of course, the interest could also concern distributions of Ẏ (or Y in the first frame-
work) which depend on further covariates.

2This approach is often followed when the selection results from unit nonresponse in
sample surveys; see Rohwer (2011).
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E(Ẏ |Ẍ=x, Ṡ=1) (see § 8.1.4). Effects of Ẍ can be defined, of course, only
conditional on Ṡ=1:

E(Ẏ |Ẍ=x′′, Ṡ=1)− E(Ẏ |Ẍ=x′, Ṡ=1) (9.3)

Note that in this model there can be no interaction of Ẍ and Ṡ w.r.t. Ẏ .

4. Counterfactual and modal questions

Although Ṡ = 1 is a necessary precondition for values of Ẏ , one can ask
hypothetical questions. Two forms of such questions must be distinguished:

a) Counterfactual questions presuppose that Ṡ already has taken a par-
ticular value. For example: Given Ẍ = x and Ṡ = 0, what value of
Ẏ might be expected if Ṡ had taken the value 1 instead of 0 ? (The
complementary question obviously has a trivial answer.)

b) Modal questions presuppose a situation where Ṡ has not already taken
a particular value, and a process that might generate a value of Ẏ has
not yet started.

I will not discuss the counterfactual questions. To answer the modal ques-
tions, one can use the rules (9.1) and (9.2), respectively. The selection
variable Ṡ then only serves to distinguish the two modal questions and
does not provide any further information. (This will be further discussed
in the next section.)

5. Is there a sample selection problem?

The rule (9.1) can be established by referring to the institutional framework
without reference to sampled data. Numerically specified versions of the
rule (9.2) must be estimated from sampled data. However, as suggested by
the rule’s formulation, one can simply use the data for those students who
actually began a university education (Ṡ=1).

Note that selection on Ṡ=1 has nothing to do with a sample selection
problem. The condition Ṡ=1 simply determines the scope of the rule to be
estimated. It is possible, of course, that the available data are selective; for
example, response rates can depend on Ẏ . There is then a sample selection
problem that leads to biased estimates of Pr(Ẏ = y|Ẍ = x, Ṡ = 1). But
this bias is not due to conditioning on Ṡ=1, instead, its definition would
presuppose this condition.

6. Consideration of omitted confounders

There is, however, another problem that must be considered: the omission
of possibly relevant confounding variables. This requires to refer to an
enlarged model that explicitly contains a further confounding variable. I
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use the following

Model 9.1.2

Z̈

Ẏ

Ṡ

Ẍ --
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where Z̈ is a further variable on which Ṡ depends, e.g., an indicator of
a person’s educational aspiration. Moreover, it is assumed that also Ẏ
depends on Z̈ entailing that Z̈ is a confounding variable.

There is no problem if data are available for both Ẍ and Z̈. But now
assume that data on Z̈ are not available so that one can only estimate a
reduced version of the model; in terms of expectations:

E(Ẏ |Ẍ=x, Ṡ=1) = (9.4)
∑

z
E(Ẏ |Ẍ=x, Ż=z, Ṡ=1)Pr(Ż=z|Ẍ=x, Ṡ=1)

where Ż is used instead of Z̈ in order to allow thinking of conditional
distributions. This shows that effects of Ẍ, as defined in (9.3), do not have
a balanced formulation in the reduced model. Of course, this is the general
problem resulting from the omission of confounding variables.

Here it is important, however, that the problem does not result from
conditioning on Ṡ. It is true that Ṡ is a collider, entailing that conditioning
on Ṡ changes the correlation between values of Ẍ and Z̈ in a reference set
(sample). But this is not relevant here because effect definitions are con-
ditional on Ṡ=1; in the example, they only concern students who actually
begin with university studies. Problems resulting from the omission of con-
founding variables should therefore be clearly distinguished from ‘selection
problems’.

7. Illustration with a numerical example

To illustrate the argument, I use the fictitious data in Table 9.1.1. Based
on these data, one can estimate the rule

(x, z) −→ E(Ẏ |Ẍ=x, Ż=z, Ṡ=1) (9.5)

and finds the values

x z E(Ẏ |Ẍ=x, Ż=z, Ṡ=1)

0 0 0.5
0 1 0.7
1 0 0.8
1 1 0.9

(9.6)
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Table 9.1.1 Fictitious data for the example.

x z s y = 0 y = 1 cases

0 0 0 − − 800
0 0 1 100 100 200
0 1 0 − − 600
0 1 1 120 280 400
1 0 0 − − 400
1 0 1 120 480 600
1 1 0 − − 200
1 1 1 80 720 800

Conditioning on Ṡ=1 changes the relationship between Ẍ and Ż:

x Pr(Ż=1|Ẍ=x, Ṡ=0) Pr(Ż=1|Ẍ=x, Ṡ=1)

0 0.429 0.667
1 0.333 0.571

(9.7)

This is not relevant, however, because the rule (9.5) only applies to situa-
tions where Ṡ=1.

Now assume that values of Ż are not available. The data then lead to
the following estimate of an effect of Ẍ:

E(Ẏ |Ẍ=1, Ṡ=1)− E(Ẏ |Ẍ=0, Ṡ=1) = 0.857− 0.633 = 0.224 (9.8)

This effect is not balanced. As can be seen from (9.7), the distribution of
the omitted variable Ż is different for Ẍ=0 and Ẍ=1. This means that the
effect cannot be attributed solely to a difference in Ẍ . Of course, without
observations on Ż one cannot assess the contribution of this variable.

8. Selection and omitted confounders

In order to stress that ‘selection problems’ and problems resulting from
unobserved confounders should be clearly distinguished, I briefly consider
a further example: How does the risk of divorce depends on the women’s
level of education? Researchers often found that education has a positive
impact on the risk of divorce, but there also are other findings. In a recent
study, Bernardi and Martinez-Pastor (2011) discuss the hypothesis that
the observed relationships between education and risk of divorce might
result, at least in part, from ‘selection effects’. However, so formulated, the
hypothesis can easily create confusion.

To see this, one can use Model 9.1.2 with the following interpretation.
Ṡ = 1 if a woman is married, and Ṡ = 0 otherwise. Ẏ is an indicator
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variable for becoming divorced;3 Ẍ records the level of education, and Z̈
is an unobserved confounder. Obviously, without being married there can
be no risk of divorce. Consequently, Ṡ=1 is also a necessary precondition
for the variables’, Ẍ and Z̈, having an impact on the risk of divorce.

Of course, one can assume that distributions of values of Ẍ and Z̈ exist
for married and unmarried women in some specified population.4 So one
can think that marriage changes these distributions and their correlation,
and consider this as a ‘selection effect’. But this selection effect cannot
change relationships between these variables and the risk of divorce; simply
because these relationships are only defined conditional on Ṡ=1.

However, an important part of the research question concerns the ob-
servation of historically changing relationships between women’s education
and the risk of divorce. One has then to consider at least two periods, say

(Ẍ1, Ż1, Ṡ1, Ẏ1) −→ (Ẍ2, Ż2, Ṡ2, Ẏ2) (9.9)

Żt represents the distribution of the unobserved confounder in period t.
This allows one to think of the observed relationships in the following way:

E(Ẏt|Ẍt=x, Ṡt=1) = (9.10)
∑

z
E(Ẏt|Ẍt=x, Żt=z, Ṡt=1)Pr(Żt=z|Ẍt=x, Ṡt=1)

So it is quite possible that differences between the observed relationships
can be due to both

a) changes in the conditional expectation E(Ẏt|Ẍt = x, Żt = z, Ṡt = 1)
which, presumably, has a causal interpretation, and

b) changes in the conditional distributions of the unobserved confounder,
Pr[Żt|Ẍt=x, Ṡt=1].

Most probably, they are due to both kinds of changes so that one would
like to learn about the quantitative relevance of unobserved confounders.
But, of course, this would require to observe the confounder.

The question remains whether one can think of (b) as a ‘selection effect’.
Obviously not in the static sense referred to above. One would need to
consider the function

(x, z) −→ Pr(Ṡt=1|Ẍt=x, Żt=z) (9.11)

Differences in these functions would describe a historically changing selec-
tion into marriage. However, the changes referred to in (b) do not only

3Bernardi and Martinez-Pastor use a duration model, but this is not important for the
present conceptual discussion.

4To make this precise, one would need statistical variables instead of the modal vari-
ables, Ẍ and Z̈.
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result from a change in the function (9.11). As seen from

Pr(Żt=z|Ẍt=x, Ṡt=1) = (9.12)

Pr(Ṡt=1|Ẍt=x, Żt=z) Pr(Żt=z|Ẍt=x)

Pr(Ṡt=1|Ẍt=x)

they can also result from a change in the conditional distributions of the
unobserved confounder.

Consequently, without observing the confounder (whose supposed exis-
tence motivates the discussion) one cannot draw any clear conclusions. On
the other hand, if one could observe Żt, one could immediately consider
the relationship

(x, z) −→ E(Ẏt|Ẍt=x, Żt=z, Ṡt=1) (9.13)

and recognize that the risk of divorce not only depends on the women’s
level of education, but also on another identifiable variable, Ż.

9.2 Choice-based selection

I now consider selection variables which get their values from decisions of
individual or collective actors. Such variables will be called ‘choice vari-
ables’.

1. A notion of choice variables

As I will use the term, a choice variable, say C, has the following features:

a) The domain of C is a set of m ≥ 2 alternatives, numerically repre-
sented by C = {1, . . . ,m}.

b) Referring to a choice variable entails that there is an individual or
collective agent who can choose, or already has chosen, a particular
value of the variable. The agent associated with a choice variable C
will be denoted by A[C].

c) It is presupposed that the agent has the power to select one of the
alternatives. In other words, C must only contain states which can
be realized by the agent.

d) The agent is assumed to have considered the alternatives before one
of them is actually chosen. I do not assume that the agent is ‘rational’
in any particular sense.

Following this definition, choice is a specific kind of selection, namely a
selection which is reflexively generated by an actor. This is meant by the
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expression ‘choice-based selection’.5

2. Two contexts for using choice variables

Choice variables can be used in two different contexts. In one context, one
conceives of a choice variable as a kind of event variable. C=c then means
that the agent, A[C], has chosen the alternative c ∈ C. In addition, C=0
means that such an event has not yet occurred.

In this understanding, choice variables can be used in explanatory mod-
els, both as explanatory variables and as dependent variables. A model
that attempts to explain choices, considered as events, will be called an
explanatory choice model . Such a model can be depicted as

Ẍ −→→ Ċ

where Ċ is the choice variable, and Ẍ denotes the explanatory variable
(possibly consisting of several components). For example, one can think
that the model is intended to represent the choice of a child’s school type;
A[Ċ] refers to the child’s parents, and Ẍ denotes the parents’ educational
level. Note that this understanding entails that the parents have the power
to choose a school type for their child.

In a quite different context, choice variables serve to consider possible
consequences of hypothetically chosen alternatives. To hypothetically give
a choice variable a value is obviously different from an actual choice, it
simply means to consider that alternative. Thus, in this understanding, a
choice variable is not an event variable; and in a functional model it can
only be used as an exogenous variable. As an example, think again of
the parents’ choice of a school type for their child. One can consider the
following model:

Model 9.2.1

Ẏ ∗

C̈

Ẍ --

�������*

�������*

The model relates to a generic A[C̈], the parents who are assumed to con-
sider possible values of C̈ (school types). As before, Ẍ denotes the parents’
educational level. Ẏ ∗ is used to assess possible outcomes: the child’s edu-
cational success that can be expected if, given Ẍ, the parents would choose
C̈=c. The corresponding function is

(x, c) −→ E(Ẏ ∗|Ẍ=x, C̈=c) (9.14)

5So it has nothing to do with ‘choice-based sampling’, that is, sampling designs which
use a stratification w.r.t. realized choices; see Scott and Wild (1989).
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A model of this kind will be called an evaluative choice model . Its aim
is not to predict realized choices. Instead, it is intended to serve thinking
about modal questions (in the sense introduced in § 9.1.4).6 Consequently,
also Ẏ ∗ cannot be understood as representing realized outcomes, and must
be distinguished from an outcome variable in an explanatory model.

There obviously are similarities between an evaluative choice model and
a treatment model (as this term was introduced in § 8.2.2). But also note
the different tasks. A treatment model serves to formulate a generic rule
about causal effects of treatments (= events which can be deliberately gen-
erated). An evaluative choice model serves an agent to consider the conse-
quences of available alternatives. While randomization might be used for a
treatment model, randomization w.r.t. the choice variable would contradict
the idea of a choice.

3. Primary and secondary actors of choice models

Remember the distinction between primary and secondary actors intro-
duced in Section 8.2. The distinction can easily be applied to explanatory
choice models. These models are concerned with choices made by primary
actors. The secondary actors, in contrast, are those who construct and use
these models for one reason or another.

Now consider an evaluative choice model. Since the model serves an
agent to think about available alternatives and possible consequences of
choosing one of them, the agent is a secondary actor w.r.t. to the model.
On the other hand, the model is concerned with the agent’s choice, and so
the agent can also be considered as a primary actor. However, an evaluative
model has not the task to predict the agent’s choice. ‘To choose’ and ‘to
predict the outcome of a choice’ are obviously different activities.

4. Consideration of modal questions

Let me stress the connection between modal questions (as introduced in
§ 9.1.4) and evaluative choice models. An explanatory choice model cannot
be used to consider modal questions (or must be reinterpreted in some
way). As an illustration, I refer to Model 9.2.1. This model is intended to
show how expectations of an outcome variable, Ẏ ∗, depend on exogenously
given values of Ẍ and hypothetically chosen values of C̈.

Of course, in order to become useful, one needs a quantification of
the function (9.14). Data might come from a sample that relates to the
following model where it is assumed that Ẏ has the same meaning as Ẏ ∗.

6Of course, an evaluative choice model only allows an agent to consider conditional
expectations and cannot be used to formally derive a particular decision.
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Model 9.2.2

Ẏ

Ċ

Ẍ --

??
�������*

�������*

In this model, Ċ is an event variable, representing alternatives chosen by
the primary agents to which the model relates. Since Ċ depends on Ẍ,
part of the model consists in an explanatory choice model.

Only the evaluative model 9.2.1, not the explanatory model 9.2.2, can be
used for modal questions. In the explanatory model, values of Ċ come into
being according to a function, Ẍ −→→ Ċ, that predicts the choices actually
made. This model can therefore not be used for a situation where a choice
variable can hypothetically be given different values because a choice event
has not yet occurred.

Nevertheless, data corresponding to the explanatory model 9.2.2 can
also be used to estimate the function (9.14). Such data would allow one to
estimate E(Ẏ |Ẍ=x, Ċ=c), and then use the rule

Estimate E(Ẏ ∗|Ẍ=x, C̈=c) by E(Ẏ |Ẍ=x, Ċ=c) (9.15)

As assumed by Model 9.2.2, the data result from ‘self selection’ in the
sense of choices, made by primary actors, which depend on a variable Ẍ; Ṡ
stochastically depends on Ẍ .7 But this does not entail a sample selection
problem that might create a bias when using the rule (9.15). As mentioned
in § 9.1.6, it is quite possible that Model 9.2.2 misses a relevant confounder
and could be replaced by a better model (if the necessary data would be
available). But this has nothing to do with the fact that the model contains
an event variable that gets its values by choices of primary actors.

5. Modal questions w.r.t. necessary preconditions

I now consider a situation where the choice concerns a necessary precon-
dition for a possible outcome. To illustrate, I continue with the example
that was introduced in § 9.1.3: beginning with university studies and con-
sideration of possible outcomes. Details depend on the set-up of the choice
situation. I consider two situations.

(1) I begin with a situation where an agent has the power to decide whether
a person (the agent herself or someone else) will begin with university stud-
ies. There is then a choice variable, C̈, having the domain C = {1, 2}; and

7Note that this is not the case in the evaluative model 9.2.1. In fact, in that model it
is not even possible to imagine a dependence of C̈ on Ẍ.
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C̈ =1 means ‘beginning’ and C̈ =2 means ‘not beginning’ with university
studies. The outcome assumed to be relevant for the choice is the success
of the university education; it will be denoted by Ẏ ∗. I further assume that
expectations about Ẏ ∗ depend on an exogenous variable, Ẍ, representing
properties of the person who possibly begins university studies that are
known in the choice situation.

With this notation, one can again use Model 9.2.1 as an evaluative
model and Model 9.2.2 as a corresponding explanatory model. The evalu-
ative model is to be used for the two modal questions. First, what would
be the outcome if C̈=2 ? Obviously, without beginning university studies
there could be no successful outcome (Ẏ ∗ is then either undefined or has
the value zero)

Now consider the other question, What is the expected value of Ẏ ∗ if
C̈ = 1, given Ẍ = x ? To answer this question, one needs an estimate of
E(Ẏ ∗|Ẍ=x, C̈=1). This can be derived from the explanatory model 9.2.2
by using the rule (9.15). One only needs E(Ẏ |Ẍ = x, Ċ = 1). Whether
also E(Ẏ |Ẍ = x, Ċ =2) can be given a sensible interpretation is obviously
irrelevant.

(2) The argument in (1) presupposes that the choice variables in the two
models, C̈ and Ċ, have the same meaning. I now consider a situation where
an agent cannot immediately decide whether to begin, or not begin, with
university studies, but only whether to apply for admission. The choice
variable, C̈, has again the domain C = {1, 2}, but now C̈ = 1 means ‘to
apply’ and C̈ = 2 means ‘not to apply’. An evaluative choice model can
now be depicted as follows.

Model 9.2.3

Ẏ ∗

C̈ Ṡ∗

Ẍ

--

--

??�������*

�������*

Ẍ and Ẏ ∗ (and correspondingly Ẏ ) have the same meaning as before. In
addition, there is now the variable Ṡ∗ representing the decision of the admis-
sion committee: Ṡ∗=1 if the applicant is admitted, and Ṡ∗=0 otherwise.
Both Ẏ ∗ and Ṡ∗ are starred in order to distinguish these variables from
corresponding variables in an explanatory model.

The model can be used for thinking about modal questions in two steps.
In a first step, the agent, A[C̈], can consider E(Ṡ∗|Ẍ = x, C̈ = 1). Given
information from a corresponding explanatory model (see Model 9.1.1), one
can use E(Ṡ|Ẍ = x, Ċ = 1) and a suitably modified version of rule (9.15).
In a second step, one can think about the final outcome, Ẏ ∗, conditional
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on Ṡ∗ = 1. In this step, E(Ẏ |Ẍ = x, Ṡ = 1) can be used as an estimate of
E(Ẏ ∗|Ẍ=x, Ṡ∗=1). Finally, both steps can be combined:

Estimate E(Ẏ ∗|Ẍ=x, C̈=1) by E(Ẏ |Ẍ=x, Ṡ=1)E(Ṡ|Ẍ=x) (9.16)

Notice that the evaluative model 9.2.3 relates to a choice situation where the
committee has not yet decided about A[C̈]’s application (simply because
A[C̈] has not yet decided whether to apply). Possibly useful information
can therefore only result from estimates of E(Ṡ|Ẍ=x).

9.3 Causal effects of choice variables

1. Three different choice situations

How to think of causal effects of choice variables depends on the kind of
choice situation. I propose to distinguish three situations where C̈ always
is a binary choice variable with domain C = {0, 1}.8

a) The choice concerns a necessary precondition for a process generating
values of an outcome variable, say Ẏ , to take place. So the causal effect
of C̈ can simply be stated: C̈=1 is a necessary precondition for Ẏ . In
order to quantify the effect, one can consider C̈ as an event variable
and use

E(Ẏ |Ẍ=x, C̈=1) (9.17)

where Ẍ represents conditions on which the process generating values
of Ẏ depends.

b) Associated with the two alternatives are two qualitatively different out-
come variables, say Ẏ0 and Ẏ1. This implies that one has to consider
two qualitatively different effects, one effect of C̈ =0 and another one
of C̈=1. Both should be considered separately as indicated in (a).

c) The choice concerns two different ways to generate values of a single
outcome variable, Ẏ . So one can compare the alternatives w.r.t. expec-
tations of Ẏ , and use the effect definition

∆s(Ẏ ; C̈[0, 1], Ẍ=x) := E(Ẏ |Ẍ=x, C̈=1)− E(Ẏ |Ẍ=x, C̈=0) (9.18)

In the following, I only discuss the situation (c), in particular, how to think
about unobserved confounders. Note that this problem is of no particular
relevance in the situations (a) and (b). Of course, the conditional expecta-
tion referred to in (9.17) might well depend on further variables. But the

8This differs from the convention introduced in § 9.2.1, but eases the notation.
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effect of C̈ can always be interpreted as an average effect w.r.t. to distribu-
tions of these variables. So this is different from the situation discussed in
Section 9.1 where one is interested in effects of Ẍ (e.g. education of married
women).

2. The problem: omitted confounders

To focus the discussion, I consider

Model 9.3.1

Z̈

Ẏ

Ċ

Ẍ --

��
??

66

�������*

�������*

The structure is the same as in Model 9.1.2, but it is now assumed that
Ẏ has a distribution for both values of Ċ. As an example, one can think
that the choice is between two learning frames, σ0 and σ1, where a person
can acquire competencies represented by Ẏ , and it is assumed that the
processes generating values of Ẏ also depend on two further variables, Ẍ
and Z̈, having values already fixed in the choice situation.

If data for both variables are available, one can use Z̈ = z as an addi-
tional condition in the effect definition (9.18). But if data on Z̈ are not
available, this variable is an omitted confounder, and the effect definition
(9.18) relates to a reduced model. Substituting Z̈ by a variable Ż having
a distribution, the observable effect is then given by

E(Ẏ |Ċ[0, 1], Ẍ=x) = (9.19)
∑

z

[

E(Ẏ |Ċ=1, Ẍ=x, Ż=z) Pr(Ż=z|Ċ=1, Ẍ=x)−

E(Ẏ |Ċ=0, Ẍ=x, Ż=z) Pr(Ż=z|Ċ=0, Ẍ=x)
]

This effect is no longer balanced because

Pr[Ż|Ċ=1, Ẍ=x] 6= Pr[Ż|Ċ=0, Ẍ=x]

and it is therefore unclear how to think of a causal effect of Ċ; see the
illustration in Figure 9.3.1. This difficulty motivates an interest in balanced
effect formulations.

3. The perspective of evaluative choice models

A further motive for an interest in balanced effect formulations comes from
evaluative choice models where an agent is interested in potential effects
of the available alternatives. Consider the evaluative choice model that
corresponds to Model 9.3.1:
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E(Ẏ |z, c = 0)

E(Ẏ |z, c = 1)

f(z|c = 0) f(z|c = 1)

Figure 9.3.1 Illustration of an unbalanced effect (values of Ż on the
abscissa).

Model 9.3.2

Z̈

Ẏ ∗

C̈

Ẍ --

66

�������*

�������*

The agent, A[C̈], knows the value of Ẍ, say x∗. Assuming that only the
rule (9.19) is available, expectations are evaluated by comparing

Pr(Ẏ ∗|C̈=0, Ẍ=x∗) and Pr(Ẏ ∗|C̈=1, Ẍ=x∗)

As shown by (9.19), both are averages w.r.t. different distributions of Ż.
However, the agent can assume that there is a particular value of this
variable, say z∗, that is identical for both alternatives in the given choice
situation. Even if this value is not known, it would probably preferable to
use a balanced effect formulation.9

4. Constructions of balanced effects

So one should ask, Can balanced effect formulations be constructed? There
are three approaches.

a) Randomization w.r.t. all possible confounders. As I have argued in
the previous chapter, this approach is problematic in social research

9In this respect, evaluative choice models are similar to treatment models which also
motivate an interest in balanced effect formulations.
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because it would change the processes that one aims to investigate.

b) One uses a fixed distribution of the confounding variables. For example,
instead of (9.19) one can consider

∑

z

[

E(Ẏ |Ċ=1, Ẍ=x, Ż=z) Pr(Ż=z)− (9.20)

E(Ẏ |Ċ=0, Ẍ=x, Ż=z) Pr(Ż=z
]

where Pr[Ż] is an arbitrarily defined distribution (e.g., the distribution
of a corresponding statistical variable in a sample). Of course, this
method can only be used with observed confounders; one does not get
effects that are balanced w.r.t. unobserved confounders.

c) One uses specific kinds of parametric models which allow one to con-
struct balanced effects. This will be further discussed in the next para-
graph.

5. Parametric assumptions about confounders

I use Heckman’s probit selection model (Heckman 1979) to illustrate the
parametric approach to the construction of balanced effects.10 The basic
idea is to assume that omitted confounders can be implicitly taken into
account by a joint parametric distribution for the variables Ẏ and Ċ.

To explain the argument, I start form Model 9.3.1. If Z̈ is observed,
one can begin with a linear model

Ẏ = gx(x) + gz(z) + Ċγ + ǫ′ (9.21)

where gx and gz are deterministic functions of values of Ẍ and Z̈, respec-
tively, and ǫ′ is a residual random variable. Assuming that the distribution
of ǫ′ is independent of Ċ, one can interpret γ as a balanced effect. – If
Z̈ is not observed, one can consider the reduced model that is based on
assuming, instead of Z̈, a variable Ż with some unknown but exogenously
given distribution. Instead of (9.21), one gets the reduced model

Ẏ = gx(x) + Ċγ + ǫ (9.22)

where ǫ := gz(Ż)+ ǫ′. Since Ċ depends on Ż, the distribution of ǫ depends
on Ċ, and the effect of Ċ is not balanced w.r.t. ǫ. But from (9.22) one can
derive

E(Ẏ |x, c) = gx(x) + cγ + E(ǫ|x, c)

10Here I discuss this model as a proposal for coping with unobserved confounders (‘en-
dogeneity bias’). As proposed by Heckman, the model is also used for ‘sample selection
problems’ in the sense defined in § 9.1.1, that is, in situations where observations are
only available if Ċ=1.
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This shows that, in order to estimate γ, one would like to know values of
E(ǫ|x, c). If observed, they could be used as values of a further variable
in a regression model for Ẏ . Of course, these values cannot be observed;
but given enough parametric assumptions, they can be constructed. This
is the leading idea of Heckman’s approach.

There are two steps. In the first step one assumes a model for Ċ. This
is done by employing a latent variable, η′, as follows:

Ċ = I[η′ > hx(x) + hz(z)] (9.23)

where hx and hz are deterministic functions of values of Ẍ and Z̈, re-
spectively. Again, one can define η := −hz(z) + η′, and rewrite (9.23) as
Ċ = I[η > hx(x)].

In the second step, the distributional assumptions come into play. These
concern ǫ′, η′, and Ż:

a) ǫ′ ∼ N (0, σ2
ǫ′)

b) η′ ∼ N (0, 1)

c) gz(Ż) ∼ N (µgz , σ
2
gz
)

d) hz(Ż) ∼ N (µhz
, σ2

hz
)

e) ǫ′ and gz(Ż) are independent.

f) η′ and hz(Ż) are independent.

These assumptions entail: ǫ ∼ N (µgz , σ
2
ǫ ) with σ2

ǫ = σ2
gz

+ σ2
ǫ′ , and η ∼

N (µhz
, σ2

η) with σ2
η = σ2

hz
+1. Moreover, if gz and hz are linear functions,

the joint distribution of ǫ and η is bivariate normal with a correlation ρ.
From these assumptions and their implications, one can finally derive a

method to construct values of E(ǫ|x, c):

E(ǫ|x, c=1) = E(ǫ|x, η > hx(x)) = ρ σǫ

φ(hx(x))

1− Φ(hx(x))

and correspondingly

E(ǫ|x, c=0) = E(ǫ|x, η ≤ hx(x)) = ρ σǫ

φ(hx(x))

1− Φ(−hx(x))

where φ and Φ denote, respectively, the density and distribution function
of the standard normal distribution. Both can be combined as

λ(x, c) := c
φ(hx(x))

1− Φ(hx(x))
+ (1 − c)

φ(hx(x))

1− Φ(−hx(x))
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It can now be seen how this is an approach to the construction of bal-
anced effects. By defining a new residual variable,

ǫ∗ := ǫ− ρ σǫ λ(x, c)

one can rewrite (9.22) as

Ẏ = g(x) + Ċγ + ρ σǫ λ(x, c) + ǫ∗ (9.24)

containing a further regressor, λ(x, c), and the new residual, ǫ∗. Now one
can derive

E(ǫ∗|x, c) = 0 and Cov(ǫ∗, Ċ|x) = 0

showing that the effect of Ċ is balanced w.r.t. ǫ∗.

6. Confounding and mediating variables

It is obvious that Heckman’s approach relies on very particular assumptions
about the distributions of unobserved variables which are difficult to justify
in applications.11 The most important assumption concerns the distribu-
tion of the unobserved confounder, Ż. If it is not normally distributed, e.g.
if it is a binary variable, the argument depicted in the previous paragraph
will not work.

A further point is noteworthy. Heckman’s probit selection model deals
with ‘endogeneity bias’ resulting from omitted variables which show up in
correlations between explanatory variables and the residual variable posited
in a regression model. The model cannot, therefore, distinguish between
omitted confounders and omitted mediating variables. However, also omit-
ted mediating variables can result in correlations between explanatory and
residual variables.

Consider Model 9.3.1. If the arrow from Z̈ to Ċ is reversed, Z̈ changes
into an endogenous mediating variable, Ż. Now, if Ż is omitted from a
regression model for Ẏ , Ċ is again correlated with its residual. In fact, the
argument of the previous paragraph will go through without any formal
changes. But it would be difficult to think that the model removes an
‘endogeneity bias’.

11For critical discussion see Little (1985), Briggs (2004), Bushway, Johnson and Slocum
(2007).
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Ditton, H., Krüsken, J., Schauenberg, M. (2005). Bildungsungleichheit – der
Beitrag von Familie und Schule. Zeitschrift für Erziehungswissenschaft 8,
285–304.

Erikson, R., Goldthorpe, J. H., Jackson, M., Yaish, M., Cox, D.R. (2005). On
Class Differentials in Educational Attainment, Proceedings of the National

Academy of Sciences 102, 9730–33.

Erikson, R., Jonsson, J.O. (1996). Explaining Class Inequality in Education:
The Swedish Test Case. In: R. Erikson, J. O. Jonsson (eds.), Can Education

be Equalized? 1–63. Boulder: Westview Press.

Erikson, R., Rudolphi, F. (2010). Change in Social Selection to Upper Secondary
School – Primary and Secondary Effects in Sweden. European Sociological

Review 26, 291–305.

Faye, J. (1999). Explanation Explained. Synthese 120, 61–75.

Fisher, R.A. (1922). On the Mathematical Foundations of Theoretical Statistics.
Philosophical Transactions of the Royal Society of London. Series A, Vol. 222,
309–368.

Gangl, M. (2010). Causal Inference in Sociological Research. Annual Review of

Sociology 36, 21–47.

Gerring, J. (2004). What is a Case Study and What is it Good for? American

Political Science Review 98, 341–354.

Goldrick-Rab, S. (2006). Following Their Every Move: An Investigation of
Social-Class Differences in College Pathways. Sociology of Education 79, 61–
79.

Goldthorpe, J. H. (2001). Causation, Statistics, and Sociology. European Socio-

logical Review 17, 1–20.

Greenland, S. (2004). An Overview of Methods for Causal Inference from Obser-
vational Studies. In: A. Gelman, X.-L. Meng (eds.), Applied Bayesian Mod-

eling and Causal Inference from Incomplete-Data Perspectives, 3–13. New
York: Wiley.

Hansen, M.N. (1997). Social and Economic Inequality in the Educational Ca-
reer: Do the Effects of Social Background Characteristics Decline? European

Sociological Review 13, 305–321.

Heckman, J. J. (1979). Sample Selection Bias as a Specification Error. Econo-

metrica 47, 153–161.

Holland, P.W. (1986). Statistics and Causal Inference. Journal of the American

Statistical Association 81, 945–968.

Holm, A., Jaeger, M.M.. (2011). Dealing with Selection Bias in Educational
Transition Models: The Bivariate Probit Selection Model. Research in Social

Stratification and Mobility , doi: 10.1016/j.rssm.2011.02.002.

Jackson, M., Erikson, R., Goldthorpe, J.H., Yaish, M. (2007). Primary and
Secondary Effects in Class Differentials in Educational Attainment. Acta

Sociologica 50, 211–229.

Kloosterman, R., Ruiter, S., Graaf, P.M. de, Kraaykamp, G. (2009). Parental
Education, Children’s Performance and the Transition to Higher Secondary

REFERENCES 127

Education: Trends in Primary and Secondary Effects Over Five Dutch School
Cohorts (1965-99). British Journal of Sociology 60, 377–398.

LaLonde, R. J.(1986). Evaluating the econometric evaluations of training pro-
grams with experimental data. The American Economic Review 76, 604–620.

Little, R. J.A. (1985). A Note About Models for Selectivity Bias. Econometrica

53, 1469–1474.

MacKinnon, D.P. (2008). Introduction to Statistical Mediation Analysis. New
York: Lawrence Erlbaum.

Mahoney, J. (2001). Beyond Correlational Analysis: Recent Innovations in The-
ory and Method. Sociological Forum 16, 575–593.

Mare, R.D. (1980). Social Background and School Continuation Decisions. Jour-
nal of the American Statistical Association 75, 295–305.

Mare, R.D. (1981). Change and Stability in Educational Stratification. Ameri-

can Sociological Review 46, 72-87.

Mare, R.D. (1993). Educational Stratification on Observed and Unobserved
Components of Family Background. In: Y. Shavit and H.-P. Blossfeld (eds.),
Persistent Inequalities. Changing Educational Attainment in Thirteen Coun-

tries, 351–376. Boulder: Westview Press.

Mood, C. (2010). Logistic Regression: Why We Cannot Do What We Think We
Can Do, and What We Can Do About It. European Sociological Review 26,
67–82.

Morgan, S. L., Winship, C. (2007). Counterfactuals and Causal Inference: Meth-

ods and Principles. Cambridge: Cambridge University Press.

Nash, R. (2006). Controlling for ‘Ability’: a Conceptual and Empirical Study
of Primary and Secondary Effects. British Journal of Sociology of Education

27, 157–172.

Neugebauer, M. (2010). Bildungsungleichheit und Grundschulempfehlung beim
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