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1 Notation

In this introduction we will approach the analysis of events in time
through a description of the durations between events. This approach
does not directly attack the problems of dynamic descriptions in the
social sciences. However, while the dynamics in any subject area will
in general require a specialized study, the study of durations is less de-
manding. Moreover, it can often be used to build up more complicated
models involving several simultaneous durations, many types of events,
or different time scales.

The building blocks will therefore be variables T' designating durations.
We will assume that these variables take values in the positive real num-
bers R, . We make unrestricted use of the properties of the real numbers,
their additive and multiplicative structure, their order and completeness.
While this allows for a convenient mathematical description, one should
bear in mind that durations in the social realm, let alone observations
pertaining to them, rarely have all the required properties. As long as
the difference is born in mind and as long as the use of real numbers
leads to convenient approximations, this will do no harm.

Since we are mainly interested in the statistical description of durations,
the variables T" are treated as random variables. For the following, this
basically means that all possible information on the random variables
are given by their distribution function

F(t) =Pr(T <t). (1)
The complement of this function,
Git)=Pr(T>t)=1-Pr(T <t)=1-F(¢) (2)

is often called survivor function.! If need arises to use several distribu-
tion functions, these are denoted by capital letters F, H, M etc. We will
write F™* for the distribution function of functions of T' to emphasize the
relation to the original variable. The functions themselves, however, may
have arbitrary names.

The density function of T is defined as

L Pr(<T <t+ At)
ft) = Jim Al

)

IThe name is most unfortunate in many applications. But we follow established
custom.
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provided the limit exists everywhere. If it does, the distribution will
be called continuous. The density can be used more flexibly than the
distribution function to express arbitrary probabilities. For any set A
for which a probability is defined, we can write

Pr(T € A) = /Af(u) du.

For the distribution and survivor function, this means that

Fit)=Pr(T <t)= /0 f(u)du
and
G@Et)=Pr(T >t)= /too f(u) du,

as well as the reverse relation, giving the density in terms of the distri-
bution or survivor function as

£ = D F(W)umt = ~ G

ou
Densities are denoted by f, h, and m, corresponding to the capital letters
used for distributions.

To denote the distribution of a random variable T', we use the symbol

TZdF.

In some cases it is necessary to deal with discrete random variables.
Suppose that 79 =0 < 71 < 72 ... is a sequence of durations with Pr(T €
{70, 71, T2,...}) = 1. The sequence 79, 71, . . . therefore contains all values
the random variable T' can take. This is called a discrete distribution.
To emphasize the similarity with the continuous case, we denote the
distribution function by

Ft)=Pr(T <t) =Y Pr(T =)
7 <t

This is a right continuous step function. For the probabilities of single
durations we write

f(ri) = Pr(T = mi),
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so that
f(ri) = F(r;) = F(r;-),

where F'(7;_) is the limit from the left of F, limgsy,, F(s). F(7;)—F(7—) is
the height of the 7 th jump of the step function F', stressing the similarity

with the definition of a density. We can re-express F' in terms of the f
by

Fit) =3 f(r).

T <t

A sample of durations is denoted by t1,... ,t,, in contrast to a sequence
of numbers known beforehand, like the 7; above. The empirical distribu-
tion function of a sample is

Falt) = =S 1l < 1],
i=1

where I[A] is the indicator function taking the value 1 if A is the case,
and 0 otherwise. This is a step function with jumps at the observations
t;, of height 1/n. It is a discrete distribution function, giving probability
1/n to each of the observed durations t1, ... ,t, (which in this case need
not be ordered).

We try to use a unified notation for integrals with respect to continu-
ous distributions, discrete distributions, the mixed case, and empirical
distributions. Specifically, the expectation with respect to the empirical
distribution function is written as

By, (WD) = [ (0 dFa(t) = - 5 bt

Generally, if M, (t) is a step function with jumps of height my,...m, at
the points t1,... ,t,, we write

/h(t) M, () = Xn: mih(t:),

so that the integral simply denotes a weighted sum of the values h(t;).
If a distribution has both an absolutely continuous part and discrete
atoms, an integral with respect to that distribution is the sum of the

EVENT HISTORY ANALYSIS 6

integral with respect to its continuous part and the integral with respect
to a step function. Thus,

/h(t) M, () = /h(t)m"’(t) dt+imih(ti),

where m¢ is the density of the continuous part and m; is the weight of
the discrete atoms at the points ¢;.

2 Basic descriptions of durations

We assume that durations are represented by random variables taking
values in the nonnegative real numbers. This implies that two descrip-
tions of social situations are treated as equal if the descriptions result
in the same distribution function. Within such an approach, aspects of
a situation requiring a more detailed description than what a summary
function can provide are excluded. This allows for a unified presentation
of some recurrent themes in event history analysis.

We start with the discussion of a central concept within the theory of pos-
itive random variables, the hazard rate. Another central feature pertain-
ing to the observation of event histories is that these need not have come
to an end by the time data are gathered. Such uncompleted sequences of
events will be referred to as censored. How censored informations can be
used in descriptions of summary functions like the distribution function
is the main topic of the latter part of this section.

2.1 Distribution function, density, and hazard rate

Durations are most often conceived of as the time between specific events.
Taking a certain primary event as the starting point, the problem is to
give a description of the time to the next event of interest. If the clock is
set to zero at the time of the primary event, this is equivalent to asking
for the (positive) amount of waiting time for the next event’s occurrence.
The standard descriptions of this situation in terms of distribution func-
tions etc. do not take into account the time position of an observer. The
hazard rate function turns out to be useful in this context. In discrete
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time, it is defined as

f(mi)

r(ri) =Pr(T =7|T > 7;) = Glri1)’ (3)

so that the hazard rate is the conditional probability of an event at
time 7;, given that there was no event before 7;. The conditioning event
{T > 7;} may be interpreted as the information of an observer just before
time 7;. If the event did not take place before time 7;, the probabilistic
description should be updated to the conditional probability, given this
information. The hazard rate does this for the event {T' = 7;}.

In continuous models one takes the appropriate limit and defines

’“(’f)ZAlygoAitPr(Te[t,t+At) th)zlf(i;)(t):%’

which is the limit of the probability of the occurrence of an event in
[t,t + At), given that there was no event before time ¢. Note that we
should have written G(t_) to represent the conditioning event {T" >
t}. But for continuous distributions, G(¢—) = G(¢). The hazard rate is
therefore a measure of the current intensity of an event to occur. It is
not a probability, however, since it can take values larger than 1. As can
be seen from the definition, the hazard rate exists if and only if a density
exists.

The distribution function, the survivor function, the density, and the
rate function are equivalent descriptions for the probability distribution
of a positive random variable. That is, given one of the functions, the
others can be derived analytically. It is therefore possible to choose that
summary function that best suits ones purpose.

First, in the discrete case, we can use the properties of conditional prob-
abilities directly to express the survivor function in terms of the hazard
rate. From

G(TZ‘T > Ti) = PI‘(T > TZ‘T > Ti) =1- T(Ti)
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one gets, going backward in time,
G(r;) = Pr(T>mn)=Pc(T>n|T>7)Pr(T>1n)
PI‘(T > TZ|T > Ti) PI‘(T > Tifl)
Pr(T > 7|T > 7)) Pr(T > 1;-1|T > 1iz1) Pr(T > 7521)

i
= I =r@). (5)
j=1
The relation for the density therefore is

i—1

f(r) = G(ria) = G(r) = r(m) [ (1 = r(ry)), (6)

j=1
In the continuous case, the definition of the hazard rate leads to

_f@ _ 9

On the other hand, solving the implied differential equation in G(t) above
gives an expression for the survivor function in terms of the hazard rate

G(t) =1— F(t) = exp (— /Otr(u) du) . (8)

Differentiating this relation gives the density function in terms of the
hazard rate:

1(6) = r()G @) = r(t) exp (— / () du) . 9)

The differences between the formulae in the discrete and continuous case
are in fact more apparent than real. It is possible to express the survivor
function in the continuous case in an analogous way as in the discrete case
(5), although doing so would require the introduction of some concepts
that aren’t needed in the following. However, a useful function with
a definition that covers both the continuous and the discrete case is
the integrated hazard rate. Using the integral representation introduced
above, this can also be expressed as

H(t) = /0 ﬁ(u_) dF (u), (10)
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where F'(u_) denotes again the limit from the left, limgq,, F'(s). Care with
the limits is needed here since we do not want to presuppose the existence
of a density in which case F' may contain jumps. The denominator in
the integrand above just involves a careful formulation of the probability
Pr(T > u) which need not be equal to G(u) =1 — F(u) = Pr(T > u).

From the definition we have
t
H(t) = f r(u) du and H(t) = — In G(t)
0

in the continuous case and
H(t) =Y r(r))
T;<t
in the discrete case.

In the general case, moreover, if there is a jump of the distribution func-
tion at time ¢, so that F'(¢) — F'(t_) > 0, the corresponding jump in the
integrated hazard is

H(t) - H(t_) = Pr(T = t|T > t).

The integrated hazard function represents a positive measure in its own
right. The only difference from a probability measure is that it is gener-
ally not finite since H(t) — oo for ¢ — oco. It figures below in the context
of estimation, since it equals the expected number of events in the time
interval [0, ¢) if durations between events are independent and follow the
distribution F'.

A last observation used variously below is that the expectation of the
random variable T can be expressed in terms of the survivor function as

E(T) = /000 uf(u)du = /000 G(u) du, (11)

which follows from integration by parts if either side is finite. Recall the
formulae for integration by parts. If fot f(u)du = F(t) and fot g(u) du =
G(t), then

fof(u)a(u)duz/o G (u) dF (u)
= [F()G(t) — F(0)G(0)] —/0 F(u) dG(u) (12)

= [F()G(t) - FO)G(0)] - / F(u)g(u) du
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This is a slightly rewritten version of the differentiation rule for products
of functions. If F' or G contain jumps but are right continuous, the result
can be rewritten as

/0G(u)dF(u)=[F(t)G(t)—F(O)G(0)]—/O Flu_)dG(u) (13)
d

an

/0 G(u_)dF(u) = [F(t)G(t) — F(0)G(0)] — /0 F(u_)dG(u)
— > (F(u) = F(u_))(G(u) — G(u_)). (14)

u<t

2.2 Censoring mechanisms

Suppose that the duration of interest 7 starts at time ¢ = 0. Suppose
further that the process is observed during the period [0, ¢]. This means
that the event in question is observed to occur only if T' < ¢, before the
observation on the process ceases. If T > ¢, information on the timing
of the event is not available. The observation is said to be censored.
The data in this form of observations can be represented in two parts.
T* = min(T, ¢) records either the time of the event if it occurred before c,
or the censoring time c if the event did not occur before c. Additionally,
an indicator D = I[T < c], being 0 if the observation is censored, 1
otherwise, is given.

Observations similar to the above situation arise regularly from event
histories, where observation time necessarily ceases at some point in
time. In order to achieve a description of T at least on the interval [0, c],
it is necessary to assume that the censoring time does not involve any
information on the future course of the process. This will generally be
true if the censoring time is fixed in advance.

A slightly more general censoring model allows the censoring time to be
a random variable C. In this case a valid description of T is achievable
if the random variables C' and T are stochastically independent. The
data are once again represented by the pair (T* = min(T,C), D). This
is called the independent random censoring model.

These two representations of the lack of information arising in event his-
tories are rarely very accurate descriptions. While the observation period
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might be considered fixed in advance, the starting times of the processes
of interest are most often not fixed in calendar time. Observations can
cease for other reasons than the planned end of a study, especially be-
cause subjects drop out of a study.

The requirement for valid descriptions of T' will in such cases still be that
censoring at a particular time will not give information on the future
time course of the process of interest. Over the past decades, probabilis-
tic models for censoring have been considerably extended and do cover
some of the situations indicated above. However, these models cannot
be empirically verified. They all rely on speculations of what might hap-
pen or might have happened in the past. However general they are, they
still need considerable knowledge of the subject matter to judge their
merits. In effect, all that the probabilistic censoring models provide is
a framework in which the statistical models and estimators described
below are known to work. They scarcely affect the estimators form. To
simplify the following discussion of statistical models and estimators, we
will therefore assume that either censoring takes places at a fixed prede-
termined time (or a fixed sequence of times) or that censoring times can
be represented by random variables independent of T'.

2.3 Observing events through time

One of the main objectives of statistical theory is to provide estimates
of the distribution function or of other summary functions describing
durations. To do so, one needs a representation of observations that
connects data with the probabilistic descriptions in terms of random
variables. We will assume that the observations consist of a sequence of
pairs (t;,d;),i = 1,... ,n that are realizations of n independent identi-
cally distributed random variables T with distribution function F', trans-
formed by an independent censoring mechanism. That is, each (¢;,d;) is
interpreted as a realization from the pair of random variables (T*, D),
and any two observations (¢;,d;) and (¢;,d;) arise from independent but
identical copies of (T*, D). The observations, or functions of the obser-
vations, can then be considered as random variables derived from the
random variables of interest. Therefore, the relations between functions
of the data and distributional descriptions of durations can be treated
by probabilistic methods. Moreover, since we deal with repetitions of the
same variables, it is possible to think of the observations as being part
of an indefinite sequence, allowing thus the application of limit theorems
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from probability theory.

The above conceptions have no special relation with processes developing
in time. However, we do need some notation expressing the evolution of
observations of the variables through time, mimicking the way informa-
tion is revealed to an observer. This will basically mean to count events
and censorings up to some time point ¢. We will set

Nit) = I[ti<t,di=1] (15)
Ri(t) = I[t; >t (16)
E(t) = I[T,=td=1]. (17)

The corresponding sums over the n observations are denoted by the same
symbol without the subscript . So, N(¢) = Y., N;(t) etc. Then, N(t)
is the number of uncensored events before time ¢, and E(t) is the number
of events exactly at time ¢, excluding censored observations. Also, R(t)
is the number of observations that had neither an event or a censoring
recorded before ¢. This is often referred to as the number at risk at
time ¢, since R;(¢f) = 1 implies that the event time is later than ¢. In the
sequel, the same symbols NV, R, E will occasionally be used to refer to the
respective quantities when data are replaced by corresponding random
variables. E.g., N(t) is also used to refer to >, I|T; < t,D; = 1]. The
meaning should be clear from the context.

2.4 Nelson—Aalen and Kaplan—Meier estimators

In a discrete time setting, the estimation of a hazard rate is straight
forward. By analogy with the definition of the hazard rate, one might
put

o\ _ B(n)
Pr) = R(1j)’

(18)

the number of events at 7; divided by the number still at risk, or under
observation just before 7;, together with the convention #(7;) = 0 if
R(r;) = 0. Note that this estimator does not depend on censoring or
event times before 7;.

From this estimator it is easy to derive respective estimators for the
survivor function, distribution function, density, and integrated hazard
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rate, simply by plugging the estimator  into the respective expressions
in terms of the hazard function. For example, one might use

G(rj) = [[ (@ = #(m)). (19)

k<j

A simple idea to generalize such estimators from discrete to continuous
time models is to group the observations of the continuous model in fixed
time intervals, and then to proceed as in the discrete case. In a second
step it might then be checked whether the procedure is still sensible when
the length of the intervals shrinks towards 0 and whether it approaches
the correct quantity. Suppose there is a partition of R, into intervals
[Tj—1,7;). If the length of the intervals is small, approximately

H(7j) — H(Tj—1) = r(7j-1)(1j — Tj-1).

Summing over the intervals to time ¢ and using 7 from above as an esti-
mator of the jumps in the previous formula, one arrives at an estimator
for the integrated hazard,

H(t) = Y #(r).

7; <t

If the length of the intervals approaches zero, most of the intervals will
contain no or at most one observations. Therefore, one is lead to consider

=3 % (20)

t; <t

where (t;,d;) now refers to the observations from the continuous model.
This is the Nelson-Aalen estimator of the integrated hazard function.
If the estimator is used in (8), the resulting estimator for the survivor
function is

G(t) = [J e~4/R®). (21)

t; <t

Another possibility to extend the estimator from the discrete case is to
use once again the discrete time hazard estimator, but this time in con-
junction with the discrete time formula (5). If the length of the grouping
intervals [t;_1,7;) shrinks to zero, and the number of events in each
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interval tends to at most one, the resultant estimator for the survivor
function is

G(t) = [T (1~ dj/R(t;)). (22)

t; <t

This is the Kaplan—Meier estimator of the survivor function. Its relation
to the Nelson—Aalen estimator is somewhat illuminated by observing
that

e ’x~l—2
for small z, so that
e~ /M) (1 - dj R(t;)),

and the two estimators should give similar results.

The Kaplan—Meier estimator has another derivation that connects it
with general methods of estimation in censored data models. The starting
point is not the hazard rate but the empirical distribution that would
generally be used to estimate the survivor function in the absence of
censoring. This is

Gn(t) = %Zl[ti > t].

In the presence of censoring, the approach does not seem to be appealing.
For censored observations and ¢ past the censoring time it is not known
whether in fact the duration was longer than ¢ or not, so that I[t; > t] is
not known. However, one can try to replace the unknown quantities by
an estimate, say by its conditional expectation given the censoring time.
This is reasonable, since

G(t) = E(I[T > f]) = EE(I[T > #]|T*, D)). (23)

Then

Galt) = + S BGUIT > )T" = 1, D; = dy) (24)

is an empirical analogue of (23), since the outer expectation can be re-
placed by the empirical distribution of the observations. Note that the
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inner expectation on the right hand side depends on the distribution
function. An estimator that solves the above equation is called self con-
sistent. Since it is defined as a fixed point, a self consistent estimator
can be computed iteratively by computing G**! from the right hand
side based on G*.

Computations need an explicit formula for the right hand side expecta-
tion. It is given by

E@ (I[T > t]|T* =t;,D; = dz)
= f;r(T > t|T* =t;,D; = dz)

0 t>t;,di =1
1 t; >t

= ! i . (25)
f:r(T > 1) = (}'(t) else

Br(T > t;) G(t:)

The algorithm based on the self consistency equation will converge to
the Kaplan—Meier estimator if it is initialized by a discrete distribution
with equal mass on all observations, whether censored or not. If, on the
other hand, some of the uncensored observations are initialized with zero
mass, the algorithm will never assign positive mass to them. Therefore,
the set of self consistent estimators contains more members than just
the Kaplan—Meier estimator.

To end this section, three more remarks are in order. First, we note a
pointwise variance formula for the Kaplan—Meier estimator. It is nor-
mally derived from likelihood considerations that are discussed later.
The result is Greenwood’s formula

76 =607 | 3 )

Second, the above formulae assumed that there is at most one observa-
tion in any small interval used in the approximation of the continuous
case. The assumption can be deduced from the assumption of a con-
tinuous model. As a consequence, the numbers E(7;) in (18) could be
replaced by the event indicator d;, and approximations based on n — oo
justified from this assumption. But in most data sets there are ties, that
is, more than one event at at least some time points. If the number of
such ties is small in comparison to the number at risk, replacing d; by
E(t;) will not alter the estimators of this section considerably.
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Third, the Kaplan—Meier estimator of the survivor function does not
approach 0 on ¢ > t, when the largest observation ¢, is censored. In
technical terms, this will lead to a bias in the estimator. From a practical
point of view, the values of the survivor function beyond the largest
observation can never be ascertained. However, in some cases, e.g. when
the evaluation of expectations is required, some further assumptions are
needed.

2.5 Functionals of distributions

In some applications estimators of summary functions are more than is
needed. Instead of the step functions produced by the Kaplan—Meier or
Nelson—Aalen estimators one would like to have a summary in terms
of quantiles, means, variances etc. All these quantities can be treated
as functionals of the underlying survivor or distribution function. For
example, the expectation is given by

E(T) :] udF(u)
0
and the median by
median(T) = F~1(1/2).

In these cases it seems natural to use the estimator of the survivor func-
tion and plug it into the formula for the respective functional. The case
of the median is instructive. Since the estimator of the survivor function
is a step function, there need not exist a value ¢t with G(t) = 1/2, or
it need not be unique. Moreover, in contrast to the case of uncensored
observations, the jump heights of the estimator are not constant. There-
fore, in practice neighboring values G(t;) > 1/2 > G(t;;1) are linearly
interpolated.

A much more difficult problem is the estimation of moments. Plugging
an estimator of the distribution function into

E(T) = fooo G(u) du

will lead to finite values only if the largest observation is uncensored. Es-
timation of moments does not seem to be feasible without rather strong
assumptions.
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3 Simple regression models

Many instances of social research involving durations require more than
a summary measure for their argument. Very often, the problem may
be cast in terms of regression models, a formulation familiar from cross—
sectional analyses. The basic idea is to summarize the differences be-
tween groups of subjects parsimoniously by indicating the impact of
group membership on a measure of central tendency only, e.g. the mean.
A common way to express this idea mathematically is to consider the
conditional distribution of duration given group membership. If all the
conditional distributions look alike except for a different central ten-
dency, the differences in central tendency might be expressed by a single
number, depending only on a linear combination of group membership
indicators.

More formally, let Y denote a random quantity of interest. Suppose
that conditional on some covariates z, indicating group membership, Y
follows the linear regression

Y =26+c¢, (27)

where z is a 1 X p vector of covariates including a constant, B isa p x 1
vector of unknown regression coefficients, and € is a random variable
having mean zero and finite variance. In the following, we will discuss
an extension of this familiar linear model and its estimation to the case
of possibly censored duration data.?

Durations are inherently positive quantities. Inserting durations directly
as dependent variables Y in the above equation may therefore create
conceptual difficulties. Changing the “central tendency” of a positive
quantity by adding or subtracting some quantity may lead to negative
values, which are impossible.

In analogy to similar arguments used in connexion with discrete depen-
dent variable, one might choose a transformation of the original duration

2The formulation (27), given in terms of random variables, is meant here and in
the following to refer to the equality of conditional distributions only. All that is
implied is that the conditional distribution of Y, given z, is of the form

F*(ylz) = F5(y — =B).

The random variable € is only used to indicate a certain distribution. The € in the
above equation need not be defined on the same probability space as Y. Nor is an
interpretation of € as “unobserved cause” warranted.
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to fit the positivity constraint in all cases. An easy transform of dura-
tions that will always lead to interpretable results is the logarithm of
the durations. That is, we set Y = In7T. When using this transform, the
effect of the covariates on the original time scale corresponds to a scale
change: values of 8 < 0 correspond to shortened durations, values of
zB > 0 to prolonged ones.

It can be shown that the logarithmic transformation is the only one that
can express all combinations of effects or reverses of effects additively.
Still, using the logarithms of durations is no panacea. After all, if the
effects of covariates z(3 as well as the durations can be ascertained only
to within a certain interval, many other transforms are consistent with
a realistic description and should be used if needed.

To distinguish between random variables referring to durations and those
referring to some transforms, in the following the former will be denoted
by T', the latter by Y. The same convention will be obeyed when dealing
with realizations of the random variables. Distribution, survivor, density
and rate functions of transformations Y of the durations of interest will,
however, uniformly be denoted by a superscript * on F,G, f,r etc. If
the transform Y = ¢(T) is monotone, as the logarithmic transform is,
we can also consider the censored versions of Y, which are given by
Z = min(Y, g(C)) with z denoting the realized value.

In the absence of censoring, one can estimate § by minimizing the least
squares criterion

n

Z(yl —z;08)? = n/e dF* (e Z/ (y — ;8% dF",(y), (28)

i=1
where F*(e) is the empirical distribution function of the residuals e; =
yi — =3, and F'.(y) = I[y; < y] is the empirical distribution of an
observation y;.

Both the second and third representation in the above formula can be
used to generalize the least squares criterion by replacing the empiri-
cal distributions involved by versions appropriate for censored data. It
turned out, however, to be advantageous to start with the least squares
estimating equations

Za: i —z;8) =0 or Za: Y = <iz;xz>ﬁ (29)
i—1

i=1
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instead of the least squares criterion (28). In 1979, Buckley and James
proposed to replace the censored observations Z by the conditional ex-
pectation of Y given the observed (censored) data and the covariates:

Y*=E3(Y |z,dyx)=dz+ (1 —-d)Eg(Y |Y > 2, z). (30)

This is an example of a general strategy dealing with incomplete data.
It consists of replacing the unknown values of observables by their ex-
pectations, using all information available from the data (here, Y > 2)
as well as the information provided by the model structure. In this case,
the dependence on model structure is reflected by the dependence of the
conditional expectation on the unknown parameter 3.

Replacing Y in expression (29) by its conditional expectation gives

— Z:c 3 (Y | ziydi, i) = (Zz a:z> . (31)

The Buckley-James estimator /3’ is defined as the solution of the nor-
mal score function for 8 when the expectation on the left hand side is
computed using 5.

Using the model formula (27) and a fixed 3, an empirical version of the
conditional expectation can be evaluated:

Es (Y | 2i,dizi) = 3i(B) (32)

= dizi+(1-d)Eg(Y | Vi > zivmi)

= dzzl 1-— T
+( )( i3+ G*(ei)

d;z; + <Z vie (B) (2 — =10) + miﬁ)

where FE is the empirical distribution function (e.g. the Kaplan—Meier

estimator) of the residuals, C;’g is the empirical survivor function 1 — FE,
and we have put

wi (B)
vik(B) = § Gjplei)

0 otherwise

if e; < ey,
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and

so that w;(B3) is the height of the jump of the empirical distribution at
the i th residual.® A solution 3 of the estimating equation (29) therefore
satisfies:

A:<Zm;m,) (Zd:czl+21— )25 04( )) (33)

This leads to a straightforward iterative procedure for the computation

of B:
1. Assign starting values /3°.

2. Compute §;(37) according to (32) using the Kaplan-Meier proce-
dure as estimator for the distribution of the residuals.

3. Compute 37! using the right hand side from (33). This is a simple
least squares regression of the pseudo data ;(37) on the regressors
x.

4. Go back to step 2 unless some convergence criterion is met.

To be numerically effective, this simple iterative strategy needs elabora-
tion. Following the steps of the algorithm, the basic choices are:

1. Starting values may be obtained using the least squares estimator
treating all observations as uncensored. Other choices (e.g. using
only uncensored observations) are of course possible but do not
seem to have a decisive influence on the procedure.

2. The Kaplan—Meier estimator is not uniquely defined on the whole
real line if the largest residual is censored. Buckley and James
suggest to always treat the largest residual as uncensored. This will
lead to an underestimation of the regression constant, but should
scarcely affect the other regression estimators. Further choices are
discussed by e.g. Efron (1988).

3For ease of notation it is assumed here that the observations are ordered according
to the magnitude of the corresponding residuals.
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4. The iteration may not converge to a unique value. This is due to
the fact that the right hand side of (33) is a piecewise linear func-
tion in B: Changing B8 does not change the weights v;;(3) unless
the ranks of the residuals change. Therefore, the estimator may os-
cillate between several values ,3 The discontinuity of (33) hampers
the analytic treatment of the estimator. Moreover, the number of
limiting values in finite samples is not predictable, but may poten-
tially be rather large. Fortunately, the phenomenon seems to be of
practical interest only in rather small samples, in situations where
the effect of covariates is small, or when the convergence criterion
is very strict. In situations where a unique estimator is required
(e.g. simulations, using the procedure as building block for more
complicated models, etc.) one may use the arithmetic mean of all
limit values of the algorithm as an estimator. Otherwise, the dif-
ferent values of the limiting cycle of estimators are very close and
it may suffice to report just one of them.

A very simple estimator of the variance ofB may be obtained by restrict-
ing attention to the uncensored observations:

ar() = (a'diag(di)z) ' 6%,
1 1 >
6%, = i€ — — i€ 4
5%, nu—pg (de nuE de) , (34)

i

where n, is the number of uncensored observations. This is the same
as the classical variance estimator in the linear model with uncensored
data. Since the estimator is computed from the uncensored observations
only, it will not be very efficient. Moreover, it implicitly assumes that
the variances of the non censored residuals are homoscedastic. But this
is true only if the censoring variable follows the same regression as the
uncensored dependent variable Y. With respect to the last point, a better
estimator of the residual variance is

G5y = ﬁ > <dz’€i +(1—di) > vak (B)ei) : (35)
v k

i
In this formulation, the censored squared residuals are replaced by their
conditional expectations. Combining 6%, with the first equation in (34)

provides an estimator of the variance of ,B that is (asymptotically) equiv-
alent to a bootstrap estimator when the resampling is done holding the
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censoring information fixed. Experience with the two variance estimators
suggests that the second version is more stable and has often smaller
mean squared error than the first version. Both, however, are generally
conservative.

4 Durations: Parameterization

Broadly speaking, a parameterization expresses a possibly large set of
distributions, regressions, or interdependencies through a few (real) num-
bers. Parameterizations may serve several purposes: They summarize as-
pects of the data, they focus attention on interesting specific features,
they allow for easy formal manipulations, they simplify comparisons be-
tween situations, and they can be used for simulations. In the following,
we will treat several choices of parameterizations for the two main build-
ing blocks of duration models: how covariates affect duration, and how
the class of durations and their properties can be described.

Together, these two building blocks, if fully specified, uniquely deter-
mine the conditional distribution of the durations under consideration.
From a probabilistic point of view, this is all one needs to know. Intro-
ducing a family of conditional distributions by using a parameterization
sets the frame for inference procedures, discussions, and the critique of
proposed models. But with event history data, even when dealing only
with durations, there are two more aspects that need attention. First,
taking the temporal reference of duration models seriously allows for the
introduction of covariates that change over time. Whether the marginal
distribution of conventional covariates are specified as part of the model
building process or not seems to be largely a matter of convenience. With
covariates changing over time, more care is needed. Without specifying
their path through time, one cannot even derive such simple characteri-
zations as the conditional moments of durations. Second, most observa-
tions of durations suffer from a deficiency of sample information due to
censoring. Without a formal representation of this lack of information
one cannot hope to successfully confront models and observations. Both
aspects, time dependent covariates and models for the censoring process,
will be discussed at the end of this section.
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4.1 Covariate effects

Covariates reflect the many aspects judged important in the comparative
description of durations. They may relate to properties of individuals or
groups, to group membership or changing environments and situations.
While a comprehensive classification of their possible roles does not seem
to be warranted, an understanding of the way covariate effects can be
introduced parametrically is necessary to make efficient use of the gain
they provide over the direct inspection of subgroups. The introduction
of covariates reduces the burden of comparing many different subgroups
to an examination of a vector 8 of regression parameters. But the inter-
pretation of this numerical summary depends heavily on how covariates
are supposed to affect a proposed model.

4.1.1 Scale models

In section 3 we introduced a regression model for durations derived from
the classical linear model techniques. The interpretation of covariate ef-
fects in this model can be based on a distribution function F affected
by a linear combination of covariates, z:

Pr(nT <Int| 2;6) = By r,(Int | 25 8) = Fy(Int —28)  (36)

The conditional distribution of the logarithm of duration given the co-
variates is a shift by an amount of 23 of some basic distribution F{j. The
basic distribution F{j corresponds to a situation with covariate values
z = 0.* The conditional densities, if they exist, satisfy a similar relation

fare(Int | z;8) = fg(Int — z3), (37)

exemplified in figure (1):

It is clear that one can use either one of the graphs in figure (1) as a
starting point and define the other as an appropriate shift. Therefore, in-
terpreting the action of covariates as a shift of densities does not depend
on the choice of z = 0 for the baseline distribution or density. Any other
value g can be chosen as reference point. Then the effect of covariates
x on the density is a shift of the location of the density corresponding
to covariates zo by an amount of (z — ()8 .

4Possibly up to a further shift given by the intercept term 3o
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Figure 1: Densities of InT

The relation in terms of distributions (36) or densities (37) can also be
reexpressed in terms of random variables as

InT =zB+e¢ with e ~4 Fj(.). (38)

Written in this way, some of the operation on distributions or densities
can be reduced to arithmetic operations on random variables. Often, this
leads to more transparent formulations.®

While this interpretation is familiar from the classical linear model it
only works for the logarithms of durations. It is certainly easier to have
an interpretation in terms of durations, not just their logarithms. On the
scale of durations, the distribution functions for different values of the
covariates are related by

Pr(T <t|z;8) = Pr(lnT -z <Int—z0) (39)
= Pr(Te P <te "P) = Fy(e "Pt)

Here, the basic distribution function Fy once again corresponds to a
situation with covariates z = 0. The graphs of the distribution functions

5The equality in (38) can in most cases only be interpreted as equality in distri-
bution. This is what is needed for the interpretation above. But equality of random
variables, if it can be ascertained, is a much stronger property. To take a simple ex-
ample, if Ty is uniformly distributed on (0,1), then T» := 1 — T} is also uniformly
distributed on (0,1). But Pr(Ty = T»2) = 0. We will not discuss possible uses of
equality of random variables in (40) because it can be rarely justified in social science
applications.
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for given x are squeezed or stretched along the t—axis, depending on
whether z( is negative or positive, but the lower end of their support,
namely ¢ = 0, is preserved. In terms of densities we get the relation

Ft|z;8) = folte ™P)e P

The densities are not only scaled along the ¢t—axis, but also their height
changes. The figure (1) above, comparing densities for log durations,
changes accordingly (see figure (2)). A direct comparison of the graphs

Figure 2: Densities of T

of the densities is not as easy as in the case of the logarithms of durations.
But the relation (39) of the distributions suggests an interpretation in
terms of random variables. Suppose there is a random variable Ty with
distribution function Fp, corresponding to durations with covariates z =
0. Then, durations T with covariate = are represented by

T = e®PT, with Ty ~4 Fy(.). (40)

This may be interpreted as a scaling of the underlying time structure:
Positive values of (3 expand the time relative to the one on which Tj is
defined. Events develop slower on this time scale, so that durations are
generally longer. On the other hand, negative values of 3 contract time
relative to Ty processes. Developments are faster and durations generally
shorter.

Sometimes, especially in technical applications, this model of covariate
effects can be linked directly to physical features of the environment:
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machines working under higher load, at higher voltage, higher temper-
ature etc. deteriorate faster. And these features of environment can be
captured by respective covariate values. With such examples in mind,
model (40), or its equivalent expressions (39) in terms of distribution
functions, is often called accelerated failure time model. In view of the
scale change expressed in (39) the term scale model is also used.

The relations between distributions, survivor functions, and rates in scale
models can be summarized as follows:

Pr(T <t|z;8) = F(t|z;8) =Pr(Toe®® <t)=Pr(T, < te *P)
= F(te™P)
G(t|z8) = 1-F(t|z;B) = Go(te™™)
fltlz8) = folte ™P)e P
wt) ;) = LULZO o yeamyosn (41)

Gt ap)

A further summary function is the quantile function defined as the (gen-
eralized) inverse of the distribution function:

Q(p) = F~'(p) := inf{t | F(t) > p}

From (41) we get
Q(p | 2;8) = Qu(p)e™”,

where Q(p | z;0) is the quantile function corresponding to covariate
value z and Q(p) is the one corresponding to x = 0. The logarithms of
the quantile functions are therefore related by

InQ(p | z;8) = InQo(p) + zp. (42)

As a simple check of the appropriateness of the scale model one can plot
the logarithms of empirical versions of the quantile function for different
subgroups defined by z. The resulting graphs should be separated by a
constant value.

Further consequences of (40) are simple relations for the moments of T',
namely

E(Tz; 8) e"PE(Ty)
E(T?|z;8) = e*PRE(T,) etc., (43)
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so that the relation for the variances are
V(T|z; B) = e*"PV(Ty)

Since the logarithms of durations form a location—shift family, the con-
ditional variances V(Iln T'|z; 3) are constant. This homoscedasticity may
also be used for model checking.

4.1.2 Proportional hazards models

Instead of looking at transforms of random variables as in (40) one can
consider how covariates transform some baseline distribution or other
summary function. The hazard rate is the most useful summary func-
tion from a dynamic point of view. Therefore it seems natural to examine
transforms of a hazard rate r(t|z;3). Since a hazard rate is nonnega-
tive, its transforms by any covariate values should also be nonnegative.
Moreover, a hazard rate corresponding to a proper distribution function
should transform to one corresponding to a proper distribution function.
In other words, if some baseline integrated hazard diverges to infinity,
the same should be true for its transformed counterpart. The simplest
way to achieve this is to multiply a baseline hazard rate by a positive
function of the covariates. An obvious choice for the positive function is
the exponential. With this choice we are let to the following model for
covariate effects:

r(t|2;8) = ero(t). (44)

The model posits that positive values of (3 correspond to larger inten-
sities in comparison to situations with 8 = 0. With larger intensities
for all ¢, events will tend to happen earlier and durations will be shorter.
On the other hand, negative values of 23 give rise to smaller intensities,
so that events tend to happen later, and durations will be longer.An
example is plotted in figure (3). For obvious reasons, models in which a
positive function of covariates multiplies a baseline hazard rate are called
proportional hazards models. The implied relations for the survivor func-

6Note that the sign of z3 has opposite consequences in a scale model.
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Figure 3: Proportional Hazard Rates

tions, distributions, and densities are:

—/tr(u | z, B) du
Gt| 2,8 =e Jo
e_ezﬁHO(t) _ Go(t)ezﬁ

Pr(T >t | z;B)

F(tlz;6) = 1-G(tlz;0) =1-Go(t)®"

£(tle: 8) ew(amfw—l)mm.

Of the above formulae, the first one, expressing the survivor functions
given a covariate value as an exponentiation of a baseline survivor func-
tion, is the most useful. Even though the expectation of a positive ran-
dom variable can be expressed through the integral of its survivor func-
tion as given in (11), there is no explicit formula relating the moments
for different values of the covariates.”

Moreover, the quantile function, while easily computable, cannot be used
directly for model checking purposes. On the other hand, the propor-
tional hazards model can be written in regression form:

u

InHy(T) = —zB+ewithe~gl—e"¢ | (46)

In this connexion, the formalism of Laplace transforms briefly treated in section
4.2.5 proves helpful.



EVENT HISTORY ANALYSIS 29

where Hj is the integrated hazard corresponding to the baseline distri-
bution Fy and ¢ follows an extreme value distribution with distribution
function 1 — exp(— exp(u)). For strictly increasing integrated hazards
this follows from

Gt |::8) = Pr(T >t |z:0) = Pr(ln Ho(T) > In Ho(t) | z; 6)
= Pr(—zB8+¢e>InHy(t)) = Pr(e > In Hy(t) + z0)
_ e_eln Hy(t)+z08 _ e_ezﬁHO (t)

= Go(t)°

The regression representation (46) is useful for model comparison pur-
poses. An increasing transformation of durations can be expressed as
a homoscedastic linear regression with known extreme value distribu-
tion. On this transformed scale, the covariates shift the location of the
standard extreme value distribution. Specifically, one can compare the
proportional hazards and scale models using the regression representa-
tion. First, the scale model (47) can be expressed in regression form
as

InT = z8 + oe. (47)

Here, oe specifies a random variable with distribution equal to the dis-
tribution of the logarithm of the baseline random variable In T} in (40)
and o is used as an arbitrary but fixed scale parameter. If the extreme
value distribution is chosen as the distribution of ¢, it follows that

élnTzln (Tl/”) =zf/o +e. (48)

This is precisely of the regression form (46) for proportional hazards
models with the special integrated hazard Hy(t) = t*/7. The correspond-
ing survivor function is

1 1
G(t|=p) = Pr(T>t|:c;6):Pr(—lnT>—1nt|a:;B>
o o
1 z0
% 1 —exp|—Int— —
= Pr<—+e>—1nt>=e g g
o o

— exp (—ﬂ> /e
= e g . (49)
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and the relation of the hazards is

_2B ,
r(tlz; 8) = e 0 ro(t) with ro(t) = ;tl/H (50)

Starting with a scale model and assuming the extreme value distribution
as baseline for the logarithm of durations one is lead to a proportional
hazards model with integrated baseline hazard Hy(t) = t'/?. In the
proportional hazards parameterization the covariate effect is the negative
of the one in the scale parameterization, corresponding to the fact that
positive covariate effects in the scale model express longer durations
while negative covariate effects in the proportional hazards model express
lower hazards and thus longer durations. Moreover, the covariate effect
in the proportional hazards expression is scaled by the scalar ¢. It may
be asked whether all scale models can be reexpressed as proportional
hazards models or vice versa. This is not the case and the example
above is the only one that is expressible both as scale and as proportional
hazards model.

4.1.3 Other transformation models

The effect of covariates in proportional hazards models is to multiply
some baseline hazard rate. Instead of a multiplicative transform of hazard
rates one might be interested in other easily interpretable transforms,
possibly based on other summary functions than hazards. In parallel to
the well understood logit models for binary data one might e.g. look at
the odds of an event before time ¢ versus an event after time ¢. Using
the logarithms of the odds as an appropriate scale for covariate effects,
one is lead to the following relation between log odds for an event before
vs. after time ¢:

1-G(t]z;p)
G(t | z;8)

for some baseline survivor function Gg. In terms of odds,

1= Go(t)

o Go(t)

=28 +1In (51)

1-G(t]z;8) _ezﬁl_GO(t)
Gt|z8) Go(t)

For positive z3, the odds for earlier events are larger than for the base-
line survivor function. Since this is supposed to hold for all ¢, event
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probabilities are larger and therefore durations are shorter. This model
is generally refered to as log-odds model. The implied relations between
survivor functions and hazard rates, respectively, are:

1
G(t| =) = =
1 + ezﬁTt)()
r . P
(e 8) = o)

Go(t) + (1 — Go(t)) - e*h’

As can be seen from the relation of the rate functions, the hazard rates
are not proportional. In fact, the relative rates r(t|z1;3)/r(t|z2; 8) for
any two covariate values z; and zs converge to 1 as ¢ — oo. Therefore,
the class of proportional hazards models and the class of log—odds models
do not contain common members.

As in the case of both proportional hazards and scale models the log—
odds models can be represented in regression form as

1-Go(T) _ v 1
GoT) —z0 + € with € ~4 1T exp(w)’

where the error distribution is given by the survivor function of the
logistic. Comparing this with the regression form (47) of a scale model it
is seen that the only common member of the class of scale and log—odds
models is the log-logistic distribution.

In (52)

A slight generalization of the log—odds model, the y—odds model, is given
by

=G 58 _ 1= G
VG (t | ;5 8) VG (t)
In{G(t | z,0)} e In{Go(t)} fory =0

The resulting survivor function is

1

7
(]_ + ezﬁl_—(;g@> .

for v > 0 and (53)

G(t]z8) =
G (1)

For v — 0, this approaches a proportional hazards model, while for
v = 1 it reduces to the log-odds model. Since the y—odds model inter-
polates between the proportional hazards and the log-odds models it
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is well suited for model assessment purposes. On the other hand, since
the interpretation of covariate effects depends on the value of v, and
since this value is sometimes estimated from the data, it is less suited to
express a well defined covariate effect.

4.1.4 Comparing regression coefficients across models

In the previous sections, several covariates are assumed to affect a model
through a linear combination 28 = By + B121 + ... + Brxxx only. Linear
combinations of covariates are the most popular choice for the descrip-
tion of joint effects. First, using a linear combination of covariates to
represent joint effects is only rarely a real limitation of functional form.
This is especially evident when the number of different covariate values
is small, when interaction terms are introduced, or when fixed trans-
forms of covariates (e.g. polynomials) are taken into account. Second,
linear combinations are easily treated, both mathematically and algo-
rithmically. Last but not least, the interpretation of 3; as the effect of a
unit increase in the covariate value z; on (a certain aspect of) the given
model is very simple. Moreover, if covariates, say z; and z;, are defined
on similar scales, a linear specification allows for a direct comparison of
their effects via 8; and ;.

On the other hand, as the discussion of covariate effects in the previous
sections should have made clear, a direct comparison of regression coef-
ficients across models is possible only in very special circumstances. For
the family of distributions (49), which is both a scale and a proportional
hazards model, the relation of coefficients turned out to be

Bsc

Brn = 222,

where Spg and Bgc are the vectors of regression coefficients in the pro-
portional hazards and the scale model, respectively. A similar relation
can be shown to hold for the family of distributions that are both a log—
odds and a scale model. In both cases, the respective regression vectors
are the same up to a scalar multiple. They are proportional.

This suggests to look at the equivalent effects v;; := B;/8; for B; # 0
instead of the regression coefficients themselves. The equivalent effects
7vi; express the change in the covariate value z; required to achieve an
equivalent effect on the model as a unit change in z;. In the above exam-
ple, the equivalent effects v;; do not change when the parameterization
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is changed from a scale model to a proportional hazards model. In a
simple linear regression, the v;; do not change when the scale of the
dependent variable is changed. Also, when comparing several simple re-
gressions with the same set of covariates but with the dependent variable
measured differently, the v;; can be compared across models, while the
interpretation of the 3 vectors changes with the scale of the dependent
variable and the marginal distribution of the covariates in the different
samples.

This constancy of v;; cannot be expected to hold across all contemplated
models. Astonishingly, however, it holds approximately in a variety of
circumstances. More specifically, it holds for small effects |3| ~ 0 when
using different classes of covariate effects like proportional hazards or
scale models. This approximation improves as the marginal distribution
of the covariates becomes more symmetric. In the case of jointly normal
covariates, the v;; are exactly constant across models, at least asymptot-
ically. Moreover, the approximation results also cover the case of incom-
plete data, e.g. when grouped or discrete duration data are represented
by continuous models.

Further insight into the role of the equivalent effects may be gained from
considering a nonlinear scale model. Suppose the conditional expectation
of InT is given by a nonlinear function ¢ of a linear combination of
covariates, that is

E(nT | z;8,¢) = ¢(z5) (54)
Then, since

9¢ ()
oz

0
8—:cj¢(w) = Bijs

B( g5-0000)) = ( 2552) 5, = 3,

where the expectations in the last equation are taken with respect to the
marginal distribution of the covariates and c is a scalar constant depend-
ing on ¢, B, and the distribution of the covariates. In other words, the
coefficient vector (3 is proportional to the mean derivative of the regres-
sion function ¢. Therefore, the equivalent effects v;; are also invariant
with respect to different regression functions or marginal distributions
of the covariates in this nonlinear scale model.
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4.1.5 Semi—parametric models of covariate effects

While using linear combinations of covariates is sufficient in many situ-
ations, there are cases where more general specifications are warranted.
One typical situation is when some covariates (e.g. age or income) take
on many possible values and interest centers on the comparison of effects
for all values of that covariates. It seems natural to replace the linear
combination of covariates by some nonlinear function ¢. This leads to
models of the form

d(x1,... zx) = Po+ Piz1 + ...+ Br—1zk—1 + gr(zk),

where g; is some nonlinear function. These models are called partly ad-
ditive models. One can of course add further nonlinear terms, and when
all terms, linear or not, are denoted by g;, model (4.1.5) can be written
as

d(z1y...,21) = Bo+g1(z1) + ... + gr(zp). (55)

Since the constant term (g is only identified when the nonlinear functions
g; are constrained, one often uses the normalization E(g; (X;)) = 0 or its
empirical counterpart. Also, some assumptions on the smoothness of the
g; are generally added. For estimation purposes, one wants to consider
observations close to a given covariate value z as giving information on
the value of the function ¢(z). And this is only possible if the function
¢ and therefore the g; do not change too abruptly.

Note that the additive combination of covariate effects still allows for an
interpretation of one effect when all others are kept constant. The effect
of that covariate can usefully be expressed (plotted, etc.) without regard
to the values of all other covariates.

Also, the additive structure can be used in a stepwise fitting procedure
where each term g; is treated separately. Namely, one may consider the
effect of the covariates g;(z;),j # ¢ in any step of the fitting procedure
as fixed. Since ¢ is additive, one can then fit the residual of the model
given g;(z;),j # ¢ against the covariate z; conditioned in the same way.
This leads to a sequence of one dimensional estimating problems where
each covariate is considered in turn. Such one dimensional problems are
typically solved much easier than the general multidimensional regression
problem where all covariates have to be considered simultaneously.

On the other hand, the partly additive model does not approximate all
functional forms. Nor does it cover the important case of interactions.
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To deal with nonlinear effects and interactions simultaneously, regression
trees are often employed. Instead of using sums of smooth functions the
idea is to express the regression function by step functions given by

L
(b(:cl,...,:ck):chI[(:cl,... ,Zr) € Ryl (56)
1=1

Here, R; is an element of a partition of the covariate space so that the
regression function takes on the value ¢; on the region R;. The computa-
tional burden in constructing such a regression function is much reduced
if the partition is made up from rectangles with sides parallel to the
coordinate axes in the covariate space. Moreover, an easy interpretation
of the partition becomes available in that case. The region to which an
observation belongs can be determined by a sequence of simple binary
decisions, each concerning only one variable. The regions are build by
splitting the covariate space along one dimension according to whether
the value of the jth covariate, say, is larger or smaller than a certain
value. These splits can equivalently be represented by a tree: Suppose,
e.g., (z1,z2) € R2 and consider the partition of R? into the rectangles
Ry = {z1 < 0,22 <0},Ry = {21 < 0,22 >0}, R3 = {0 < z; < 1,35 <
1},Ry ={0 < z1 < 1,20 > 1} and Rs = {z1 > 1,22 € R}. The regions
are indicated in figure (4).

R4
R2
1
X2 R5
o
R3
R1
(o} 1
X1

Figure 4: Partitions in a regression tree

The same information is given in the binary tree in figure (5), where the
terminal nodes (or leaves) represent the respective regions. Note that
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the choice of a root, the highest level in the tree representation, may
not be unique. Moreover, the interpretation of a split on a lower level of
the tree will depend on all those splits on higher levels that lead to that
split (its “ancestors”). But the tree representation can be enhanced by
adding statistical information on the subsets established at a node. This
may be the degree of subgroup homogeneity with respect to duration, or
the relative accuracy of prediction of a split etc. With such information
added, regression trees are an effective regression summary.

le =0
Q x2 >0
x2 <z>/ \ x1<1 x1>1
R1 R2

x2<1 x2>1

R3 R4

Figure 5: Regression tree

4.2 Classes of distributions

The conditional distribution of durations is fully specified if in addition
to a parameterization of covariate effects the baseline distribution is de-
fined. Traditionally, in the context of regression models, there are only
rarely discussions on the choice of a baseline distribution. In that situa-
tion, most aspects of the statistical behavior of estimators depend on the
first few moments of the distribution only. A peculiar feature of event
history analysis is a much stronger interest in families of distributions
and their properties. One of the reasons is that with censored observa-
tions, estimates of simple characteristics (e.g. expectations) will depend
strongly on the choice of baseline distributions. Another reason is that
models for durations are often only a first step in the analysis of more
complex systems of events. In this case, the properties of the constituent
distributions will constrain the properties of the whole system.
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4.2.1 Exponential distribution

This last point is well demonstrated by the exponential distribution that
frequently serves as a reference or as a starting point for the construction
of more complicated models. The exponential distribution has density

fa(t) = ae " a > 0. (57)

Its distribution, survivor, and rate functions are

F,(t) = 1—e
Go(t) = e ™ (58)
ro(t) = a,

respectively. The constancy of the rate function is sometimes referred to
as signifying no time dependence. Since the hazard function, if defined,
uniquely determines the distribution, the exponential is the only class of
distributions with this property.

The constancy of the hazard function is related to the basic characteris-
tic of the exponential distribution, its lack of memory property. It states
that at any given time ¢, the residual duration from ¢ onward has the
same distribution as the distribution itself. In other words, the infor-
mation that an event did not occur before time ¢ does not change the
probability of its occurrence within (¢,¢ + s] from the initial probability
Pr(T € (0, s]). Aging has no effect, and this is expressed by a constant
intensity for the occurrence of an event, r,. In the context of stochastic
process models, this means that information on the past of a process
does not add any information on its future beyond what is known about
the state of the process at time ¢t. This allows for the construction of
process models with an easily understood dependence on the past. More
formally, the lack of memory property of the exponential distribution
follows from

Pr(T >t + s)
Pr(T > 1)
G(t+s) e at+?
G(t) —  eat

Pr(T >t+s|T>t) =

= G(s). (59)

Moreover, the exponential distribution is the only distribution with this
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property.®

A further simple but useful property is that for any positive random
variable T with integrated hazard H(), its hazard transform H(T) is
exponentially distributed with parameter ¢ = 1. Suppose, for simplicity,
that the integrated hazard H() is continuous and strictly increasing.
Then,

Pr(H(T) > t) = Pr(T > H (t)) = eHH (1) = o1, (60)

This transformation was already used when deducing the regression form
of the proportional hazards model (46). In the present context, the haz-
ard transform is often used as a device for model checking and for the
comparison of distributions since it allows for the reduction of any dis-
tribution to the exponential. This may then serve as standard against
which departures can be judged.

The expectation and variance of the exponential distribution are

@m|_\®|>—k

It follows that the coefficient of variation, the ratio of the standard de-
viation to the mean, is unity. For this reason, the exponential may also
serve as a baseline for judging relative dispersion.

4.2.2 'Weibull distribution

Because of the lack of memory property, the exponential distribution is
often not an appropriate representation of durations in the social sci-
ences. Moreover, since it depends on one parameter only, it is not very
flexible when fitted to data. A two parameter extension of the expo-
nential distribution arises from the introduction of a second parameter
transforming the time scale. A simple choice is the class of distributions

8Excluding the degenerate case Pr(T > t) = 0, this follows from Cauchy’s equa-
tion. Writing V(¢) := InPr(T > t) and multiplying (59) by Pr(T' > t) leads to
V(t+s) = V(t) + V(s). The only continuous solutions to this equation are the linear
functions, V(t) = V(1)t = —at, say. The result follows upon exponentiation.
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having survivor, distribution, density, and rate function

~(at)"

Gap(t) = e
Fop(t) = 1-e (@
fan(t) = babtt=te(at)’ (61)
rap(t) = balt®~ 1,

where a,b > 0. This class of distributions is referred to as the Weibull
class of distributions. The parameter b is often called the Weibull pa-
rameter.

The rate function is monotone increasing or decreasing depending on
whether b > 1 or b < 1. For b = 1, it reduces to the exponential dis-
tribution. The Weibull family therefore often serves as a representation
for deviations from a constant hazard rate in the direction of mono-
tone time dependence (compare figure 6). The Weibull class was already

ooo
1L

Figure 6: Weibull hazard rates

encountered, in thin disguise, when discussing the intersection of the
proportional hazards class and the scale model for covariate effects. To
recapture the representation used in (49) from the one given above, one
only has to put

1
b = —
o

a = e P,
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Consequently, a representation using a proportionality factor for the haz-
ard function instead of a scale factor is also possible. This can be achieved
by setting

b* = b

a* — ab

resulting in the hazard function ro(t) = a*t*" ~!. These different param-
eterizations of the class of Weibull distributions are equivalent in that
they give rise to exactly the same class of distributions. Moreover, from
an analytic point of view, transforming one parameterization into an-
other in the foregoing example is a smooth operation. Still, the different
types of parameterizations should be kept in mind. One reason is that
existing software packages tend to use different versions of parameteri-
zations implying different interpretations and the necessity to translate
the interpretation for one parameterization into another. A second reason
is that the statistical properties of some inference procedures, notably
Wald’s test for regression parameters, do change with the parameteriza-
tion employed (see section 5 for some further comments).

A property of the Weibull class that makes it quite popular in several ar-
eas of application is its appearance as the asymptotic distribution of the
minima of independent random variables. To start with, a simple consid-
eration shows that the minima of Weibull distributions are themselves
distributed according to the Weibull law. Suppose that there are n in-
dependent random variables T;,72 = 1,... ,n, each distributed according
to the same Weibull law with parameters a,b as in (61). Then

Pr(min(Ty,...,T,) >t) = Pr(Ty>tN...NT, >1t)
K3

I
=

PI‘(TZ' > t)
1
= (Pr(Ty > t)",

«.
Il

where the second equality follows from independence and the third from
the assumed identical distribution. Inserting the survivor function of the
Weibull distribution gives

Pr(min(Ty,...,T,) > t) = e—n(at)’ _ ,—(n'"at)"
2



EVENT HISTORY ANALYSIS 41

That is, the minimum of n identically distributed, independent Weibull
random variables follows again the Weibull distribution with the same
Weibull parameter b and a scale parameter equal to n'/?a. Therefore,
the Weibull family is said to be closed under the forming of minima.

Of greater importance in social science applications is the more general
fact that a similar result holds asymptotically without specifying an un-
derlying class of distributions. Namely, for a large class of distributions it
can be shown that their appropriately scaled minima tend to the Weibull
distribution. More precisely, given a sequence of such random variables,
T;,i = 1,..., there are sequences of numbers ¢, and d, such that the
distribution of

dp (min(Ty, ... ,T,) — cn)

tends to a Weibull distribution. This fact is sometimes exploited in mod-
eling situations where one is interested in the time to the first arrival of
a job offer, say, presupposing that there were many simultaneous appli-
cations for a job and the applicant chooses the offer that arrives first.
In the social sciences, variants of the argument are invoked to justify
the choice of the Weibull distribution in applications ranging from the
theory of choice and the theory of search unemployment to theories of
information processing in the human brain. In a more formal context,
it is used to generate models for competing risks. Multivariate gener-
alizations of the argument are employed in models involving a discrete
response with only a few categories. It should be noted, however, that
in contrast to the situation described by the central limit theorem, the
norming constants c¢,, d,, and the rate of convergence depend heavily
on the underlying distribution.®

The expectation and variance of the Weibull distribution can be derived
from a change of variables by setting u = (at)?. The Jacobian of the

9E.g., in the case of the minima of Weibull distributions, it is seen from the above
result for n random variables that the normalizing sequence d, needs to be of the
form nl/b. The norming thus changes for any change in the underlying common
Weibull parameter. This situation should be compared with a simple version of the
central limit theorem, where the asymptotic normal distribution for sums of inde-
pendent identically distributed variables follows from a condition on the existence of
moments, irrespective of other features of the underlying distributions. Moreover, the
standard norming 1./n always applies. An argument based on extreme value theory,
if only based on a rough asymptotic approximation, cannot sustain the same force of
argument as similar ones based on the central limit theorem. A thorough but accessi-
ble discussion of the probabilistic aspects of the theory can be found in: J. Galambos:
The Asymptotic Theory of Extreme Order Statistics; Wiley 1978.
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transformation u — t = u'/?/a is given by J(u) = u'/*~1/ab, so that

E(T) :/ Gap(t)dt = 1/ ul/be " du = w7
0 a Jo

a
where I'() is the gamma function satisfying the functional equation I'(z+
1) = zT(z). Specifically, I'(n) = (n—1)! for all integers n > 0. Repeating
the same argument leads to

T(2/b+1)

5 .

R(T?) = / 2 fapdt =
0

a

Thus the variance of the Weibull distribution is given by

1 2 1 5
Y(T) = pe (F(b +1) [‘(b +1) )
An argument to the same effect, but perhaps closer in spirit to the prob-
abilistic arguments used thus far, would be to refer to the moments of
the exponential distribution via the hazard transform. Since (aT)? is
exponentially distributed with unit parameter, the n—th moments of T
is simply the n/b—th moment of the exponential distribution divided by
a™. This connexion will also be exploited in section 4.2.4.

4.2.3 Log-logistic distribution

A further two parameter class of distributions with some convenient
properties is given by the following survivor, distribution, density, and
hazard functions:

Gorl®) = T
Fal) = 18
) = (62)
) = P

where a,b > 0. This is called the log-logistic class of distributions. If
b > 1, the hazard function has a single maximum at (b — 1)/*/a. If
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Figure 7: Log-logistic hazard rates

b < 1, the hazard function is decreasing. This is illustrated in figure 7.
From the relation

Fas(®) = FGas ]I = Gas(0)

one can reduce the problem of finding the moments of the log—logistic
distribution to that of the moments of a beta distribution with density
proportional to ! (1 — )%~ on the interval [0,1]. This is achieved by
the substitution u = G4 5(t). It follows that

1 n n
E(T") = a—nI‘(l + E)F(l - =) (63)
Note that the n—th moment of the log—logistic distribution only exists if
b > n. The log-logistic distribution therefore has heavier tails than the
other distributions treated in this section.

The log—odds transform of the log—logistic distribution is linear in In#

1-— Ga,b(t)

]
0

=b(lna +1nt),

and this may be used for model checking and in characterizations involv-
ing the log—odds model as in (52). The log-logistic distribution and its
parameterization will be further discussed in section 4.2.6.
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4.2.4 Gamma distribution

Another two parameter family of distributions that is often applied is
the gamma-distribution. It is given by:

t
Ga,b(t) = 1- %/ abub 1e—au du
1 ’ b, b—1 e au
Fa,b(t) = m/o au du
fap(t) = fvalat)’™lem (64)

Ol
Jan(t)
Gap(t)’

with a,b > 0. It reduces to the exponential distribution for b = 1. Its
moments are

’I‘ayb(t) =

V(T) = (65)

@m|@blo~

The presence of the incomplete gamma function in the survivor function
makes it a rather cumbersome model to work with. But its usefulness
in theoretical arguments derives from the fact that the family is closed
under summation. If 77, T are independent gamma variates with the
same scale parameter a but possibly different gamma parameters b; and
ba, then their sum T + T is once again a gamma variate with the same
scale parameter a and gamma parameter b; + by. Since the exponential
distribution corresponds to b = 1, an immediate consequence is that the
sum of n independent exponential distributions with the same scale a
is gamma distributed with scale a and gamma parameter b = n. This
makes the gamma family an attractive candidate if an event is assumed
to happen after the cumulative effects of several intermediate events. It
is also used in the context of renewal processes and as a computationally
convenient component in mixture models.

4.2.5 Mixtures

The weighted mean of two survivor functions GG; and Gs,

G(t) = pGa(t) + (1 —p)Ga(t) ,p€0,1] (66)



EVENT HISTORY ANALYSIS 45

is again a survivor function. This is a useful and fundamental device
to produce new distributions from given ones. It is often interpreted in
terms of heterogeneity: Suppose that there is an indicator V € {1,2}
identifying two groups with different survivor functions G; and Gs. If
Pr(V = 1) = p, the marginal survivor function of the duration T is
given by (66). The mixture therefore describes the survivor function if
either the information on group membership V' cannot be obtained or if
one is interested in describing the situation without reference to group
membership.

A special case of this model, the mover—stayer model, has a long tradition
in sociological research. It posits that there is a subgroup that never
experiences the type of event under consideration. In mobility research
or demography, there are persons never changing their position or never
marrying. Since these subgroups cannot be identified beforehand, the
marginal survivor function is a mixture of the form

G(t) = pGi(t) + (1 - p), (67)

where the survivor function of the group not experiencing an event is
unity. The above survivor function is sometimes called defective, be-
cause its limit for ¢ — oo is 1 — p > 0. Equivalently, the corresponding
distribution function converges to p < 1. As a result, the expectation
in this model is infinity. Considering the above mentioned applications,
the model is mildly unrealistic, if only because no one can live up to
its expectation. Still, it might produce a useful approximation in some
applications.

The idea of heterogeneity can be generalized by allowing not only dis-
crete but general random variables. The realizations of these random
variables are then often interpreted as characterizing a certain property
of individuals. In the model building process, the heterogeneity vari-
ables are therefore treated on the same footing as other covariates. Thus
the introduction of covariates in the general discussion of mixtures will
make it possible to examine the effects of heterogeneity with respect to
the different forms of covariate effects discussed earlier.

Suppose that in addition to the covariate vector x there is a random
variable V, having the same distribution for all values of z, and influ-
encing the conditional distribution of duration. If V is not included in
the set of regressors, the resultant survivor function of T' conditional on
x is the expectation of the conditional distribution of T" given z and V
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with respect to the distribution of V', M(), say:
Pr(T >t|z;8) = G(t|x;8) =Em(Go(t|z,V;0)) (68)
= [Golt 2,08 aM()

The survivor function G is said to be a mizture derived from the mizing
distribution M and the mized distribution Gg. The mixed distribution
G is also called a kernel.

The effect of the mixing operation in the the present context is twofold.
First, it generally changes the mixed distribution. If the mixed distri-
bution belongs to some parameterized family, one gets a new family of
distributions. If, in addition, the mixing distribution is allowed to come
from a parameterized family, the mixing operation leads to a new pa-
rameterized family described by the parameters of both, the mixed and
the mixing distribution. Second, except in special circumstances, the op-
eration changes the way the included covariates act on the underlying
family of distributions. Mixture models are therefore a useful tool to en-
large both the families of distributions and the classes of covariate effects
considered.

The case that the random variable V acts as in a proportional hazards
model on the kernel is of special importance. Suppose, therefore, that
the hazard conditional on z and V is of the form

r(tlz,V;B) = Vro(tlz; ) with Pr(V >0) = 1. (69)

Mixtures of this special form are called proportional miztures. In techni-
cal or medical applications—where durations describe times to a failure
or death and where the variable V refers to environmental effects—the
model is often termed frailty model.

Computations and the derivation of characteristics of the mixed distri-
bution can be eased considerably by noting the close connexion of this
model with the Laplace transform. The Laplace transform of a positive
random variable V is defined to be

Lar(t) = Ens (V) = f =t dM (v). (70)

The function £ys(t) is thus seen to be the survival function of a propor-
tional mixture with a unit exponential distribution as kernel. But there
are extensive tables of Laplace transforms and many characterizations
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of their properties.'®This relationship can also be exploited for general
proportional hazards models, since

G(t|z;8) = Ey (e—Vexp(fvﬁ)Ho(t))

/e_vemﬁHo(t) dM(’U) - EM (em’BHo(t)) . (71)

That is, a proportional mixture of a proportional hazards model is the
Laplace transform of the mixing distribution, evaluated at the integrated
hazard, e®® Hy(t).

As an example, consider the gamma distribution as a mixing distribution

with scale a = k¥ and gamma parameter b = k. Its density is

1 K, k—1_—Kv
my(v) = mn v e Y, (72)

Setting a = b = k as above leads to the standardization E(V') = 1 and
V(V) = 1/k, compare (65). Its Laplace transform is of an especially
simple form:

1

L (t) = m

Using the exponential distribution and proportional covariate effects as
the kernel, one gets

1

Gt 236, = £ar (91) = g e

The density and hazard function of this distribution are

P
f(tlz;8,5) = (15 Lewhp)ert
ezg
r(tlz; B, k) = 15 Leaht’ (73)

"
This family of distributions is called after Pareto. Note that the last
formula above implies that the covariates do not act proportionally in

10gee: F. Oberhettinger/L. Badii: Tables of Laplace Transforms; Springer 1973 and
W. Feller: An Introduction to Probability Theory and its Applications, vol. IT; Wiley
1971, chap. XIII, for a general discussion.
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the mixed distribution. Specifically, the ratio of any two hazard functions
corresponding to two different values of the covariates converges to unity
for t — oo.

Using the above gamma distribution as the mixing distribution in con-
junction with a general proportional hazards model as the kernel leads
to survivor functions of the form

1
(1+ LewAHo(t))"

G(t|z;8,k) = (74)

Now, the integrated hazard function Hy(¢) is monotone increasing. The
same is true for the odds of survival (1 — G(t))/G(t), as well as for the
transform (1 — G(¢)7)/G(t)” that was used in the definition of the -
odds model (53). In the absence of further restrictions on the rate or
survivor function, the proportional mixture with gamma mixing distri-
bution represents the same family of distributions and the same covariate
effect as the y—odds model. In other words, a proportional hazards model
with gamma heterogeneity is formally and observationally equivalent to
the y—odds model. While the former posits a proportional effect of the
covariates on the hazard function plus heterogeneity, the latter posits
non—proportional effects but no heterogeneity. It follows that a good fit
of the proportional mixture model cannot be regarded as empirical evi-
dence for some form of heterogeneity. It may equally well be an indication
of non—proportional covariate effects.

To end the discussion of proportional gamma mixture, we note its po-
tential usefulness in the context of dependent durations. If, say, two du-
rations are independent given covariate information and heterogeneity
V, and if the heterogeneity term acts proportional on the hazard rate,
Pr(Ty > t1,Ts > ta | 2,V = v; 8)
=Pr(Ty > t1 | 2;61)" Pr(T2 > t2 | 7;82)". (75)

If V follows the gamma distribution (72), the joint survivor function of
T:,T5 is given by

PI‘(T1 > t1, Ty > to | fb,ﬂ)
= /Pr(Tl >ty | &;51)° Pr(Ty >ty | 2;62)" dM (v)

1
(L+ pHi(ty | ;) + Haltz | 762))"
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where H; and Hs are the integrated hazard functions of the distribu-
tions in (75). The value of V may characterize a common property of
individuals or a common environment. Since 77 and 75 share the same
value of V = v, marginalizing the distribution of the two distributions
with respect to V leads to dependent duration variables.

In the special case of a gamma heterogeneity term, k can be seen as a
measure of dependence, with kK — oo corresponding to independence.
At the same time, K — oo implies a vanishing variance for the mixing
distribution, so that the values of V' become concentrated around the
value 1. In other words, the influence of common factors or the environ-
ment tends to a common value for all random variables considered. For
an interpretation, however, it should be noted that x features also in
the marginal distributions of T) and T, respectively, via (74). Since the
marginal distributions alone contain information on k, the parameter
cannot be said to pertain solely to dependence.

As the above examples demonstrate, proportional mixtures of propor-
tional hazards models will in general lead to non—proportional covariate
effects. It may be asked whether this is true for all mixing distributions
M. The answer is in the negative. Using the relation given by the Laplace
transform of a mixing distribution and the mixture (71), one needs only
to consider Laplace transforms

Ly(t) =e ¥ witho < 1.

It can be shown that such Laplace transforms do correspond to the
distributions of positive random variables. But (71) then results in

G(tlz; B) = Lo (e Hy(t)) = e~ (¢ Ho®)"

which is again a proportional hazards model. A sufficient condition to
insure that proportional mixtures of proportional hazards models are
not also in the class of proportional hazards models is to postulate a fi-
nite expectation for the heterogeneity term. This condition is sometimes
stipulated when an empirical distinction between heterogeneity and pro-
portional kernel is required. While this might be a reasonable assumption
in special cases, there is obviously no way to decide problem empirically.

It remains to examine scale models—the second broad class of covari-
ate effects—in conjunction with mixtures. Suppose, therefore, that the
covariates as well as the heterogeneity term act as in a scale model,
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multiplying an underlying duration variable Tg. In terms of logarithmic
durations, the model can be written as

InT = 26+e+U, U~;M(u) or (76)
InT = zB+¢", € =¢+U

On the transformed scale, mixing changes only the residual distribution.
On this scale, introducing a mixing distribution does not lead to interest-
ing consequences with regard to covariate effects. It simply increases the
variability of the error term. Specifically, a scale mizture of a scale model
of covariate effects is a scale model. However, the baseline distribution
designated by T is changed. This once again illustrates the interplay
between the specification of covariate effects and mixtures.

4.2.6 Combining models for covariate effects and distributions

Given a class of distributions together with a parameterization, a rather
direct way to introduce covariate effects is to make the parameters func-
tions of the covariates. This will in some cases reduce to one of the classes
of covariate effects discussed before. For example, in the parameteriza-
tions used here, the parameter a in the exponential, Weibull, log-logistic,
and gamma distributions are scale parameters. Putting a = exp(—z/0)
leads to a scale model of covariate effects.

However, the second parameter in all the above two parameter classes
does not have such an easy interpretation. Still, under certain circum-
stances it might be desirable to let these parameters be functions of some
of the covariates, and flexible software packages allow for this possibility.
Since the parameterization of a class of distributions is highly arbitrary
and mostly follows custom, the interpretation of such models will require
close scrutiny of the underlying parameterization.

Another possibility is to use one of the classes of covariate effects in con-
junction with a class of distributions. E.g., none of the two parameter
classes has a parameter representing proportional effects on the hazard
rate. Introducing a proportional hazards model for the log—logistic dis-
tribution results in the hazard rate

babtb71
. 3) — B
ra,b(t|ma/8) =€ 1+ (at)b (77)
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with survivor function

1
Gap(tlz; B) = W- (78)

Comparison with the general proportional gamma mixture (74) reveals
that this is the same as a gamma mixture of a Weibull model, where
the variance of the mixing distribution is given by V(V) = 1/k =
aexp(—zB3) and the Weibull scale parameter in this interpretation is
exp(z3/b)a!®>=1/?, Thus, in this model the covariate effect might be seen
as either arising from a proportional hazards model or from the simul-
taneous determination of the variance of a mixing distribution and the
scale.

It has sometimes been proposed to use both a proportional hazards and
a scale model for covariate effects. While some covariates might multi-
ply the hazard rate, others might multiply the scale of a model. Whether
such a distinction is possible will depend on the class of distributions cho-
sen. Both effects are basically the same within the Weibull class, while
the log-logistic might be extended to allow both for a scale and a pro-
portional hazards effect. However, extreme care is needed when the two
covariate sets contain common members. First, the ability to distinguish
the two effects hinges strongly on the family of distributions considered.
Second, as can be seen from the case of the extended log-logistic distri-
bution above, changes in proportional effects will also be reflected in the
scale of the model. Third, both, higher rates and accelerated scales, while
theoretically distinct concepts, lead to shorter durations. Since observa-
tions of durations are the only empirical basis for claims about covariate
effects, estimators of the effects for the same covariates will tend to be
highly correlated.

4.3 Time dependent covariates

One of the distinguishing aspects in the analysis of durations is the
possibility to consider the impact of time varying covariates. Whether
covariates represent the state of the environment, the stages of a decision
process, or the contingencies of an actor, these changing circumstances
can be incorporated in most duration models. The interpretation of their
effects will depend not only on the form of covariate effects considered,
but also on assumptions on the time path of these covariates.
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Suppose first that the development of covariate values through time can
be assumed to be fixed, or known in advance, or, at least, not to depend
on the action of subjects figuring in the description of the durations
of interest. This kind of covariates is called a defined time dependent
covariate, if its time path can be ascertained without recourse to the
actual event history. Otherwise, it is called ancillary.

Suppose next a proportional hazards model for the effect of such covari-
ates. The effect of time dependent covariates can then be reflected in an
immediate effect on the hazard at time ¢ induced by the value of the
covariate at the same time. Formally, this is written as

r(tlz(t)) = ro(t)e” . (79)

An important special case arises when the process z(t), considered as a
function of time, is a step function. Let the process z(t) be piecewise
constant in the time intervals 0 < 71 < ... < 7, < 00. Then the
resultant conditional survivor function has a rather simple form since
the integrated hazards can be evaluated piecewise also. For 7,,, < t < o0,

e.g.,

¢
—/ e’”(“)ﬁrg(u) du
G(t|z(u)yepo,ry) =€ 70

_ e— (e“ﬁ /07'1 ro(u)du + ...+ P /Ti ro(u) du) (0)
—ai(Ho(m1) — Ho(0)) — ... — aum (Ho(t) — Ho(Tm))

= € .

An important application of this idea is used in a generalization of the
class of exponential distributions. Fixing the values of the time intervals
=0<m <...< Ty < oo and setting exp(z(u)B) = o for u in the
interval [1,_1, 7)) as above, while choosing the constant rate ro(u) = 1
gives rise to the piecewise exponential distribution. Its hazard rate is
given by the function that is constant on the intervals 7o = 0 < 71 <
.o. < Ty < 00, taking the value o on the k th interval. The hazard rate
is therefore a step function. It follows that the survivor function is given
by

Gtz (w)ucoy) = e~ (@07 T a1 (r2 = 71) .. 4 am(t = 7))
(81)
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Choosing appropriate intervals and steps, it might be used to approx-
imate other hazard rate functions. From (80), if o = 0 < 7 < ... <
Tm < 00 are the jump times of the covariate process z(t), we get

G(t‘z(u)ue[o,t))

o—e" P (Ho (7o) — Ho(0)) — ... — e*™P(Hq (t) — Ho(7m))
m e®(Tk—1)8 e®(Tm)B

T ( Go(7) ) ( Go(t) ) (82)
P Go(Tr-1) Go(Tm)
Mo 2 (Th—1)8

= [I Px(To > 7| To > 7i—1)) X
k=1
(Pr(To > t|Tp > Tm))em(fm)ﬁ

More generally, time dependent proportional covariates that are step
functions with respect to time can be treated as in (80), if the integrated
hazards have closed form expressions.

If the covariates act proportional on the hazard but are not step func-
tions, one needs to be able to compute the integral with respect to time of
exp(z(u)B)ro(u) to get an expression for the survivor function and other
summary functions. Models of this form with defined covariates are some-
times used to express deviations from the assumed proportional effect of
covariates. A case in point is the use of the covariate z(u) = z/(1 + u)
for some fixed covariate x. The covariate effect in a proportional hazards
model is then

$((1); B) = e"F/0FD. (83)

The ratio of the hazard rates for two values of z, say z; and z», will
then tend to one, in contrast to the proportional hazards model that was
used as a starting point. Obviously, other forms of covariate effects or of
classes of distributions can be obtained from deliberately choosing time
dependent functions as covariates. As an example, consider z(u) = lnu
in an exponential model. The rate then is r(t|z; 8) = exp(Bo+S1z(t))t =
exp(Bo)tP1 1. In other words, the covariate transforms the exponential
model into a Weibull model.

One may also start with a scale model of covariate effects. If time depen-
dent variables are supposed to act immediately at each point in time, the
physical interpretation of scale models leads the interpretation of covari-
ate effects as changing the velocity of the underlying process as compared
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to a uniform motion represented by the duration Tg. But change of ve-
locity is acceleration. Therefore, putting

¢
U(t) :/ e (W8 gy,
0
one arrives at the expression
T =¥ (Ty),

which may be compared to the relation T = exp(z3)Ty for the scale
model with fixed covariates. However, there is no special case similar to
the piecewise constant case considered above. The integrals have to be
worked out on a case by case bases. Moreover, if there are two or more
time dependent covariates, the order of applying the respective transfor-
mations will matter. For both reasons, this type of transformation model
is only rarely considered.

Defined or ancillary time dependent covariates can be used to extend
the form of covariate effects and/or the class of distributions, and may
have a direct interpretation as immediate effects of changing values of
covariates. These simple interpretations are no longer available for evolu-
tionary covariates. These covariates depend on the history of the whole
process, and might not even be defined independently of the process un-
der consideration. Simple examples are provided by measures that are
outcomes of the process itself, like the amount of unemployment bene-
fits received, when the interest centers on the duration of unemployment.
Because of respective regulations, the amount of unemployment benefits
will often simple be a re-expression of the duration of unemployment. In
these cases, measures of effects can only be interpreted when the joint
process is taken into account.

4.4 Censoring processes

The process that leads to censored observations is in general not of in-
terest in itself. If censoring is judged to be non-informative, it neither
enters into the construction of estimators nor in the interpretation of
results.

On the other hand, censoring will certainly play a decisive role for the
evaluation of estimators and for their precisions in any given sample.
If in a sample of a hundred observations, two are censored, this is will
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certainly signify a different information than that based on a hundred ob-
servations of which 90 are censored. Information on the censoring process
is therefore needed for both the theoretical and the practical comparison
of estimation procedures and results.

Of even greater practical importance is the fact that the probabilistic de-
scription of situations with censored observations is incomplete. If only
the conditional distribution of the durations and the covariate effects are
given, it is only possible to simulate complete observations, but never the
impact of censored observations. This hampers the analysis of implica-
tions of assumed models as well as their criticism in a context where
analytical results are especially difficult to obtain.

Specification of any censoring time independent of the duration time is
sufficient to guarantee non-informative censoring. But a special case of
that situation is very useful, both conceptually and empirically. Suppose,
therefore, that censoring times and durations are independent. Moreover,
assume that the rates of the durations and the censoring times do exist,
and that they are proportional. Disregarding covariates for the moment,
the assumption implies the existence of a constant a with

ro(t) = aro(t), (84)

where r¢ is the rate function of the censoring time and rg is the rate
function of the duration of interest. This special relationship between
independent censoring times and durations is called the Koziol-Green
model. The model has some simple but extremely useful consequences
for simulations. First, the survivor function of the censored time T =
min(C,T) is

Pr(T* >t) = Pr(C>tT>1)
e aHo(t) p—Ho(t) — ,—(1+a)Ho(t)

In other words, all the distributions of 7', C', and T* have proportional
hazards.

Second, the probability of censoring, Pr(D = 0), is equal to the ratio
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a/(1+ a):
Pr(D=0) = Pr(C<T)
_ /Pr(T > whe(u) du
= oanuge o

= /e*(H”)H"(“)am(u) du

a
T 1+a /6_(1+G)H°(u)(1 +a)ro(u) du

a
1+4+a

)

where the equality in the last line follows upon observing that the in-
tegrand in the next to last line is the density of the random variable
T*.

Third, the censoring indicator D and the censored duration time T* are
independent. This follows from the same reasoning as above, in reverse
order:

_ 9 —(+a)Ho(t)

1+a

= a / (14 a)ro(u)e” 1T Ho(w) g,
¢

Pr(D =0)Pr(T* > t)

1+a
o0
= / e (W) gpo (u)e~2Ho (W) gy,
t

/ Pr(T > u)he(u) du
t
Pr(T>C>t)=Pr(D=0,T" >t).

It can also be shown that the independence of the censoring indicator
and the censored durations is sufficient for the Koziol-Green model to
hold.

If the Koziol-Green model holds, it is possible to simulate censored ob-
servations by independently simulating the censoring indicator D and
the censored times T*. This allows for a simple control over censor-
ing proportions in simulations. Moreover, some awkward computations
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in the evaluation of the performance of estimators are considerably re-
duced. The Koziol-Green model of censoring has therefore become a
convenient starting point for the evaluation of censored data models,
both practically—through simulations—and theoretically.

5 Estimation

In the presence of censored observations there is no unified method for
the construction of estimators with good properties. Of the many pro-
posals, we have already mentioned two non—parametric estimators of
survivor functions and the Buckley-James regression estimator. Three
other construction methods that are especially useful in the context of
regression models are treated next.

5.1 Maximum likelihood

Suppose first that a fully specified model for both the distribution and
the covariate effect are given. Denote the parameter(s) of the distribution
by 6, the parameters of the covariate effect model by 3, and the resulting
conditional density by f(t|z;6,3). In the case of uncensored observations
from independent replications of T'|z, the joint density of n observations
is given by

n

11 #(tilz:;6,8).

i=1
This may also be seen as a function of 6, 3 for given (¢;,z;),i =1,... ,n,
in which case it is called the likelihood function

n

L(6,8) = [] f(tilzi;6,8). (85)

=1

One may define estimators as those values of 6,3 that maximize the
function L,

(é,/;’) = arg maxy 5L(6, 8), (86)

the mazimum likelihood estimator. To be of use in the analysis of du-
rations, censoring must be included in the definition. Using the inde-
pendent random censoring model from section 2.2, the data are now
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(ti,d;i, ;). Their density involves the survivor function K and the den-
sity k of of the censoring variable C' and is given by

(f(tilzs 0, B)K (t:)" (G (ti|zs; 0, B)k(t:)) '~ . (87)

1

n
1=
The contribution of n uncensored observation (d; = 1) to the likelihood
is the density of the duration, f(¢;|z;;0,3), times the probability of a
censoring time C after the observed duration, K (¢;). The contribution
of a censored observation (1 — d; = 1) is the probability of a duration
larger than ¢; time the density of a censoring time at ;.

If the censoring distribution does not contain information on (6, 3), the
likelihood function is up to a multiplicative constant (terms not depend-
ing on 6 or B)

n

L(6,8) = [[(f(tilzs; 6, 8))% (G(ti|zs; 6, 8)' . (88)

i=1

That is, the likelihood is the product of the densities of the uncensored
observations times the survivor functions of the censored observations.

Because of the product structure of the likelihood function it is ad-
vantageous to use the logarithm of the likelihood, the log-likelihood
£(0,8) = InL(6,3) as the function to be maximized. It is the sum of
the logarithms of the densities or the survivor function respectively.

As an example, suppose T|z is exponential with hazard rate e”®. The
density is e®” exp(—e®Pt) and the survivor function is exp(—e®%t), so
that the log-likelihood function is

ag) Z di (2B — e"Pt;) + (1 — d;) (—eP1;)

n n
= Z d,acl,é’ — Z ez"ﬁti.
i=1 i=1

If the covariate vector contains only a constant, the maximum likelihood
estimator can be given explicitly, since then

(B)=> dif - et
i=1 i=1
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The derivative of the log-likelihood function, the score function U(f) is

8 n n
U = %e(g) =>"di - et
i=1 i=1
Setting this to 0 results in

Z?:1 di
Z?:l ti

In general, the score function of the i th observation has expectation 0
and its covariance, the information matriz, can also be expressed as

)

In the exponential example, Z = E; (e8T*). This equals 1 in the absence
of censoring. The large sample theory of regular models suggests that
the inverse of the information matrix is the asymptotic variance of 3, so
that it can be used for the computation of confidence intervals and test
statistics. However, the expectation in the definition of the information
will normally depend on the censoring distribution so that it cannot
be evaluated without strong assumptions. In our example, Eg(e#T*) =
e? [ exp(—ePu)K (u) du.

In practice, the information is therefore replaced by the observed infor-
mation, the negative of the sum of the second derivatives of the log—
likelihood function. In the case of the exponential,

Iobs(’B) = - Z (8;8(2/8)> = eﬁ Z t; (90)

i=1

B:ln

L.(8) = s (UB)UL(8)) = ~E; ( (89)

In the context of tests, ,3 is substituted for B in Z <(3). In the example,
Tohs(B) = X, di. The Wald test then uses (8 — 80)Zypg(8) ™ (B — Bo)
as a test statistic of the hypotheses 3y. It should be born in mind that
this procedure is not invariant under re-parameterization, such as when
the exponential distribution in the example is reexpressed by a = €.
Moreover, in regression contexts the procedure may lead to unreliable
results if the absolute value of some regression coefficients § gets large.

The method of maximum likelihood is applicable in most situations
where the censored likelihood (88) can be written down and where the
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factoring of the likelihood (87) is judged appropriate. It provides a gen-
eral method of estimation in many situations and is algorithmically sim-
ple. It may fail to produce reliable results, however, in situations with
threshold parameters, for models containing many parameters, and in
the presence of forms of incomplete data other than random censoring.

5.2 EM and the missing information principle

A much more flexible approach to incomplete data follows from the
missing information principle that was already encountered when dis-
cussing the self-consistency property of the Kaplan—Meier estimator and
the Buckley—James estimator. In both cases, some standard estimators,
the empirical distribution function in the case of the Kaplan—Meier esti-
mator and the least squares estimator in the case of the Buckley—James
estimator were generalized to allow for censored data by replacing the
unknown quantities by their expectation given the available data. The
same principle can be used within the context of maximum likelihood
estimation. The starting point in this case is the log-likelihood function.
If there are incomplete observations, the full data log-likelihood terms
are replaced by

Eo 5 (:(6, 8; T, 2)|T* = 1), (91)

where the expectation depends on the current parameter values (6, 3)
and T* are the incomplete data (min(T, C), D in the case of censoring).
The resulting log-likelihood function is then maximized with respect to
the parameters, and the procedure is iterated.

In the case of the Buckley—James procedure the complete data score
function is U(B) = z'(Y — z8) from the normal linear regression model
(27). The expectation satisfies

Es(U(B;Y,z)) =0. (92)
and the root /3’ of

Z U(B;yi,z:) =0

is the maximum likelihood estimator. Even if theA distribution is not
normal — so that the root of the score function 5 need no longer be
a maximum likelihood estimator — it is often consistent and efficient.
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When the variables are censored with variables Z, d, z, then the censored
normal score function can be expressed as

U*(/B; Za daz) = E(U(/Ba Y,I) ‘ Za daa:)a (93)

the conditional expectation of the score function with complete observa-
tions given the incomplete observations. This suggests using an empirical
version

E;(U(B,Y,z | Z,d,z)) =0

for estimation, and this is just (31). It remains to consider the computa-
tion of the conditional expectation. From the perspective of the normal
linear regression model one might try to use the normal distribution.
However, one can only expect the good properties of the estimators even
outside the normal distribution to extend to censored data situations if
the conditional expectation is computed from a non—parametric estima-
tor. In the case of right censored observations, this amounts to using the
Kaplan—-Meier estimator (which is the non-parametric maximum likeli-
hood estimator) as in the Buckley—James procedure.

5.3 Partial likelihood

Another extension of maximum likelihood ideas is the partial likelihood
that allows estimation of proportional covariate effects without speci-
fying a parameterized baseline distribution. Consider the proportional
model

— tezﬁru du
ft,2;8) = ePr(t)e /0 ) : (94)

Let t(1) < t(2)... < t(n) be n ordered event times, all assumed to be
uncensored. Let I; be the label of an observation with an event at ¢;) and
R(t(j)) be the set of observations without an event before ¢;). R(t(;)) is
called the risk set at the event time ¢;). Note that R(t(;)) from (15) is the
number of elements in R(t(;)). As an example consider figure 5.3. Here,
Rty ={1,2,3,4}, R(t(a)) = {1,2,4},R(t(3)) = {1,2}, and R(t(4)) =
{2}. The set of indices I}, the ordered event times ¢(;), and the covariates
z(;) are jointly equivalent to the original data. If nothing is known about
the hazard function r, the ¢(;) will contain little information about 3.
On the other hand, the distribution of I; can be computed without
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Figure 8: Risk Sets

knowledge of r. The conditional probability of an event for observation
i at the j th event time given the history up to the j th event is

PI‘(IJ’ =1 | (t(k),m(k))kzl...j, (Ik)kzl...jfl)

)b
_ 95
> e )
)

kER(t (i)

Because of the proportional covariate effect, this conditional probability
does not depend on the hazard rate r. Neither does it depend on the event
times t ;). Therefore, the joint distribution of the indices {I1,..., I, } is
the product of the above conditional probabilities

n zr. B
e 7
Pr(ly Loy 1) = [ ——=——— (96)
o) e
KER(t(;))

If some observations are censored, a similar expression results in which
all possible event times of the censored observations are considered. If D
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is the set of distinct uncensored observations and R; the risk set corre-
sponding to the event time of the 7 th observation, the partial likelihood
can be written as

emiP

PL) = [ =5 (97)
i€D €
kER;

where the product is taken with respect to uncensored observations only.
The partial likelihood depends only on the order of events, not on their
timing. It is therefore invariant with respect to monotone transforms of
the time scale.

The derivation of the partial likelihood included only the probabilities
of the indices and information from the covariates. But from (95) alone,
one cannot reconstruct the probability of the sample. Thus, no fully
specified probability distribution is used, in contrast to the derivation of
maximum likelihood estimators. Hence the name partial likelihood.

Though the maximizer of the partial likelihood, the partial likelihood es-
timator, is not in general equivalent to a maximum likelihood estimator,
it shares a lot of the properties of the maximum likelihood estimators.
Specifically, the second derivatives of the log partial likelihood behave
like the observed information and can be used for the construction of
tests and confidence intervals.

The score function of the partial likelihood is

0
9 nPLB) = D UBitidiz)
Z ) e"P

Z ’ kER;
Ty
i€D E €

kER;

= ) (i — 4i(B)). (98)

i€D

The term A;(8) may be interpreted as the expectation of the covariates
z in the 7 th risk set if the z; are sampled proportional to e*:# from the
risk set. Similarly, the negative of the second derivative of the partial
likelihood is the sum of covariance matrices of covariates from the risk
sets. It follows that it is non negative definite if the moment matrices in
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the risk sets are non singular. The partial likelihood is therefore concave
and function maximizing algorithms generally converge rapidly.
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