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Chapter 1

Introduction

We discuss statistical methods for longitudinal data from a life course per-
spective. This chapter briefly introduces a few elementary notions.

1.1 Life Courses

We consider human individuals, or other objects, which exist in the form
of a life course: The life course begins with the individual’s birth and ends
with its death.

A life course will be considered as a sequence of states. The notion
presupposes, and is dependent on, a state space, that is, a predefined set
of possible states. The state space will be denoted by Y .

1.2 Biographical Frames

The specification of a set of possible life courses will be called a biographical

frame. It can be represented by a directed graph where the nodes represent
states and the arcs represent possible transitions.

Exercise 1.1 Specify a biographical frame based on a state space com-
prising the states (1) unemployed, (2) employed, (3) out of labor force, (4)
dead.

1.3 Multidimensional State Spaces

A multidimensional state space consists of two or more, say m, state spaces
combined in the following way:

Y = Y1 × · · · × Ym

Exercise 1.2 Define a state space comprising the states (1) not married,
(2) married. Then create a two-dimensional state space that also contains
the states introduced in Exercise 1.1.

Exercise 1.3 Specify a biographical frame based on the two-dimensional
state space defined in Exercise 1.2.

1.4 Time Axes

The basic idea is to think of a life course as a sequential walk through a
state space. This obviously requires the reference to a time axis. There are
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Box 1.1 Data set 1

Begin of End of

ID Birth Study Study

----------------------------------

1 1970 1990 1995

2 1975 1994 1999

3 1973 1991 1996

4 1970 1989 1995

5 1975 1993 1999

6 1973 1993 1996

7 1970 1988 1995

8 1975 1995 1999

9 1973 1992 1997

two possibilities:

• One can use a discrete time axis , defined as a sequence of temporal
locations (e.g., days, months, years), numerically represented by (a
subset of) the set of integers.

• Or one can use a continuous time axis , numerically represented by (a
subset of) the set of real numbers.

We begin with assuming a discrete time axis. This allows to think of a
sequence of temporal locations.

1.5 Events

We will use a narrow notion of events, defined as changes from one state
into another state.

Exercise 1.4 Describe all events which are possible in the biographical
frame developed in Exercise 1.1.

1.6 Calendar Time and Process Time

While the collection of data must begin with a calendar time axis, the
description and modeling of life courses most often employs a process time

axis , that is, a time axis that begins with a specified event, e.g., the birth
of an individual, or the beginning of a partnership.

Exercise 1.5 Consider the data in Box 1.1. Suppose the data refer to
students and the dates they start and finish their studies. Define a state
space and a biographical frame. Present the data on a process time axis
that starts from the beginning of study.



Chapter 2

Statistical Descriptions

How to describe life courses? There are two complementary approaches.
One can consider life courses of particular individuals and provide descrip-
tions of their specific development; or one can start from a (relatively large)
set of life courses and develop statistical descriptions. Here we follow a sta-
tistical approach.

It will be assumed that one can refer to a collection of individuals, de-
noted by Ω, and for each individual there is a life course (based on the same
biographical frame). In this chapter, we briefly introduce a few statistical
notions that will be used in subsequent chapters.

2.1 Statistical Variables

A statistical variable will be defined as a function

X : Ω −→ X

To each individual ω ∈ Ω, the variable X assigns a value X(ω) that is an
element of the property space X . It will be assumed that the property space
has a numerical representation and can be viewed as a set of real numbers.
The variable is called discrete if its property space can be represented by
a subset of the natural numbers. Otherwise it is called continuous .

2.2 State Variables

Given a biographical frame based on a state space Y , statistical variables
can be used to represent life courses. We first assume a discrete time axis

T = { 0, 1, 2, 3, . . .}

One can define state variables

Yt : Ω −→ Y

Yt(ω) is the state of the individual ω ∈ Ω in the temporal location t. Each
individual life course is then given by a sequence

(Y0(ω), Y1(ω), Y2(ω), . . .)
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2.3 Partial Life Courses

Social research is most often not concerned with complete life courses that
begin with birth and end with the death of an individual. The question
then occurs how to define partial life courses. There are two possibilities.
In both cases, the partial life courses begin with a specified type of event,
e.g., the beginning of a job or marriage.

a) The first possibility is to fix a maximum duration, e.g., until age 20,
or the first 10 years after the beginning of a new job. Formally, one
specifies a maximum duration t∗, and partial life courses are then
given by sequences

(Y0(ω), Y1(ω), Y2(ω), . . . , Yt∗(ω))

Of course, realized life courses might be shorter than t∗.

b) Another possibility is to define the end of a partial life course when
a specific event occurred, e.g., an individual’s death, or the end of a
job.

Social research most often uses the second approach.

2.4 Statistical Distributions

Statistical descriptions are based on distributions of statistical variables.
The basic idea is that one is not interested in the attributes of particular
individuals, but in frequencies of attributes defined for a collection of indi-
viduals. This has been well formulated in the “Declaration on Professional
Ethics” published by the International Statistical Institute:

“Statistical data are unconcerned with individual identities. They are
collected to answer questions such as ‘how many?’ or ‘what propor-
tions?’, not ‘who?’. The identities and records of cooperating (or non-
cooperating) subjects should therefore be kept confidential, whether
or not confidentiality has been explicitly pledged.”1

A statistical distribution is defined as a function

P : A(X ) −→ [ 0, 1 ]

A(X ) is a set of subsets of the property space X (assumed to be complete
with respect to set-theoretic operations). The elements of A(X ) are called
property sets . The function P assigns to each property set x̃ ∈ A(X ) the
proportion of members of Ω having values in this set, i.e.:

P(x̃) := | {ω ∈ Ω |X(ω) ∈ x̃} |
/

|Ω |

1International Statistical Institute 1986, p. 238.
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Box 2.1 Data set 2

ID t = 0 1 2 3 4 5

-------------------------

1 0 0 1 1 0 1

2 1 0 0 0 1 1

3 1 1 0 0 0 0

4 0 0 0 1 1 1

5 0 1 1 1 0 1

6 1 1 0 0 1 1

Using this definition, there is no longer any reference to identifiable indi-
viduals; instead, the only information is about frequencies of properties in
the collection of individuals.

For easy reference to property sets, we shall also use the following no-
tations:

P(X ∈ x̃) := P(x̃)

P(X = x) := P({x})

A further notation for quantitative variables is

P(X ≤ x) := P({ω ∈ Ω |X(ω) ≤ x})

called the distribution function of the variable X . A commonly used abbre-
viation is F (x) := P(X ≤ x).

Exercise 2.1 Assume that Ω is a collection of 10 individuals and there are
the following values of a variable X :

3, 2, 3, 1, 4, 3, 1, 3, 4, 2

(a) Specify a minimal property space of X . (b) Calculate the distribution
function of X .
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2.5 State Distributions

A simple approach to the statistical representation of life courses uses state
variables. These statistical variables represent for each point in time the
states occupied by the individuals (see Section 2.2).

Exercise 2.2 Consider the data in Box 2.1, interpreted as job histories
of six individuals (1 = employed, 0 = unemployed). Calculate the state
distributions and provide a graphical illustration.

Sequences of state distributions are most informative if states cannot be
repeated. For example: 0 = never been married, 1 = married, or having been
married. However, if states are repeatable, sequences of state distributions
can easily be misleading.

Exercise 2.3 Construct an example that illustrates the problem. Assume
two repeatable states: 1 = employed, 0 = not employed. Now construct two
variants of six processes such that the proportion of unemployed individuals
is always 1/3. In the first variant, two individuals are always, and four
individuals are never unemployed; in the second variant all individuals have
identical unemployment durations.



Chapter 3

Duration Distributions

This chapter introduces some statistical notions describing episode data.
Throughout the chapter, it is assumed that observations are complete. How
to use incomplete (right censored) observations will be discussed in the next
chapter.

3.1 Episodes

Given a biographical frame, a life course shows how an individual sequen-
tially stays in the states of the state space. The individual starts in some
specific state, remains in that state for some time, then changes into an-
other state and remains in that state for some time, and so on until the
(observed) life course ends. This suggests to view a life course as a sequence
of episodes, each episode being characterized by four pieces of information:

• an origin state (a change into this state indicates the beginning of
the episode);

• a destination state (a change into this state indicates the end of the
episode);

• a starting time (at which the origin state takes place for the first
time);

• an ending time (at which the destination state takes place for the
first time).

This notion suggests a general scheme to represent episode data. It will be
called an episode data scheme. Box 3.1 provides an illustration with four
life courses. The state space consists of four states. Each row represents one
episode of an individual. The abbreviations have the following meaning:

• ID identifies the individuals,

• SN counts the individual’s episodes,

• ORG is the origin state,

• DES is the destination state,

• TS is the starting time,

• TF is the ending time.
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Box 3.1 A general scheme for episode data (data set 3)

ID SN ORG DES TS TF

----------------------------

1 1 1 2 0 10

1 2 2 3 10 15

1 3 3 4 15 20

2 1 1 4 0 15

3 1 1 3 0 16

3 2 3 4 16 18

4 1 1 2 0 6

4 2 2 3 6 11

4 3 3 2 11 17

4 4 2 4 17 23

Exercise 3.1 Using the data in Box 1.1, first construct a biographical
frame, and then present the data in the form of an episode data scheme.

Exercise 3.2 Using the data in Box 2.1, first construct a biographical
frame, and then present the data in the form of an episode data scheme.

3.2 Statistical Framework

We now consider an approach to the description of life courses that takes
episodes as its starting point. The idea is to refer to the collection of all
episodes that begin in the same origin state. These episodes are then com-
pared on a common process time axis where each episode begins at time
zero. Such a collection of episodes can be represented by a two-dimensional
statistical variable

(T, D)

where T denotes the duration and D the destination state of the episodes,
respectively.

3.3 Single Destination State

If there is only a single destination state, it suffices to describe the distri-
bution of the duration variable T . The conceptual tools depend on whether
one uses a discrete or a continuous time axis. In both cases, the distribution
function can be defined by

F (t) = P(T ≤ t)

and the survivor function can be defined by

G(t) = P(T ≥ t)
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Somewhat different definitions are used for the density and rate function.
For a discrete time axis, the density function is defined by

f(t) = P(T = t)

and the rate function is defined by

r(t) = P(T = t |T ≥ t)

For a continuous time axis, the density function is defined by

f(t) = lim
∆→0

P(t ≤ T < t + ∆)

∆

and the rate function is defined by

r(t) = lim
∆→0

P(t ≤ T < t + ∆ |T ≥ t)

∆

Exercise 3.3 Show, both for a discrete and for a continuous time axis,
that the four notions just introduced are equivalent. In particular, derive
the equation

r(t) = f(t)/G(t)

which is independent of the form of the time axis, the equation

G(t) =

t−1
∏

τ=0

(1 − r(τ))

for a discrete time axis, and the equation

G(t) = exp

{

−
∫ t

0

r(τ) dτ

}

for a continuous time axis.

Exercise 3.4 Using the data set 1 in Box 1.1, calculate the discrete rate
function for study durations.

Exercise 3.5 Based on data set 2 in Box 2.1, consider the groups of
episodes beginning, respectively, in state 0 and in state 1. For each group,
only use episodes that have an identifiable destination state. Then calculate
rate functions for the transition from 0 to 1, and from 1 to 0.
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3.4 Multiple Destination States

If there are two or more possible destination states, one needs a two-
dimensional variable (T, D) with D providing the destination state. Very
helpful is then the notion of state-specific rate functions . Based on a discrete
time axis, they are defined by

rd(t) = P(T = t, D = d |T ≥ t)

where d indicates a destination state. Analogously, for a continuous time
axis, the definition is

rd(t) = lim
∆→0

P(t ≤ T < t + ∆, D = d |T ≥ t)

∆

The set of possible destination states will be denoted by D, and we assume
as a convention that

D = {1, . . . , m}

if there are m possible destination states.

Exercise 3.6 Consider in Box 3.1 all episodes which begin in state 1.
Determine the set D of possible destination states, and for each d ∈ D,
calculate the rate function rd(t).

Exercise 3.7 Even if episodes can end in several destination states, one
can ignore the distinctions and only consider a single destination state (‘end
of the episode’). Show that

r(t) =
∑

d∈D

rd(t)

and illustrate this equation with the results of Exercise 3.6.

Exercise 3.8 Given episodes with multiple destination states on a contin-
uous time axis, one can define so-called sub-survivor functions

Gd(t) = exp

{

−
∫ t

0

rd(τ) dτ

}

Show that the relationship

G(t) =
∏

d∈D

Gd(t)

holds. Then consider the question whether the sub-survivor functions can
be given a sensible interpretation.



Chapter 4

Censored Observations

So far we assumed that observations are complete, i.e. the duration and
the destination state of each episode are known. In practice, this is often
not the case. This chapter considers the special case that some observation
are right censored.

4.1 Right Censored Observations

The observation of an episode is called right censored if one only knows its
duration up to some point in time, but neither the completed duration nor
the destination state (if there are several possibilities). To formally repre-
sent this we start from a statistical variable (T, D) where the set of possible
destination states is given by D. Observations for i = 1, . . . , n individuals
provide values not immediately of (T, D), but of another variable (T ∗, D∗).
D∗ can take values in a set

D∗ = D ∪ {0}

where 0 represents the origin state of the episode and consequently is not
a possible element of D.1 Observation are given as

(t∗i , d
∗
i ) for i = 1, . . . , n

and are connected with values (ti, di) of the theoretically assumed variable
(T, D) in the following way:

a) If d∗i ∈ D, the observation is complete: ti = t∗i and di = d∗i .

b) If d∗i = 0, the observation is right censored and one only knows that
ti > t∗i (or ti ≥ t∗i ).

This allows to represent complete and right censored observations in the
same formal framework (cf. Section 3.1). Right censored observations are
indicated by the value zero in the destination state variable, implying that
the value of the duration variable provides not the completed but the hith-
erto observed episode duration.

Exercise 4.1 Reorganize the data of Box 2.1 as episode data using the
just mentioned convention to indicate right censored observations.

1Remember the convention to represent destination states by positive natural numbers.
Therefore, D∗ = {0, 1, . . . ,m} if there are m possible destination states.
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Box 4.1 Data set 4

ID DUR CEN

---------------

1 17 1

2 5 0

3 22 1

4 13 1

5 2 0

6 9 1

7 12 0

8 15 1

4.2 Calculation of Survivor Functions

We begin with episodes having only a single destination state. Conse-
quently, D∗ = {0, 1}, with 0 indicating censored and 1 indicating complete
observations. The direct calculation of a survivor function is obviously not
possible since one does not know all values ti. However, one can calculate
lower and upper limits for the unknown survivor function G(t).

a) One gets a lower limit, denoted by G`(t), if one assumes, for right
censored observations, that the episode ends immediately after the ob-
servation period, i.e., at ti = t∗i or ti = t∗i + 1.

b) One gets an upper limit, denoted by Ga(t), if one assumes that com-
pleted durations of right censored episodes are longer than the longest
completely observed episode.

The unknown survivor function G(t) is somewhere between these limits:

G`(t) ≤ G(t) ≤ Ga(t)

Of course, the (time-varying) widths of the interval depend on the propor-
tion of censored observations and on their distribution on the time axis.

Exercise 4.2 Using the data in Box 4.1, calculate lower and upper limits
of the survivor function.

4.3 The Kaplan-Meier Procedure

If one doesn’t know something exactly, one can try to estimate it. A proce-
dure for estimating the survivor function G(t) when the data contain right
censored observations was proposed by E. L. Kaplan and P. Meier (1958).
In order to explain the procedure, we first assume a discrete time axis.
There is then the following relationship between the rate and the survivor
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function (see Section 3.3):

G(t) =

t−1
∏

τ=0

(1 − r(τ))

This suggests to begin with estimates of the rate function r(t), and then
to use the formula to derive an estimate of the survivor function.

Obviously, if all observations were complete, one could calculate the
rate function with

r(t) =
E(t)

R(t)

where E(t) denotes the number of episodes ending at t, and R(t) denotes
the number of episodes that ended not earlier than t. If some observations
are right censored, one does not know these quantities, but it might be
possible to estimate comparable quantities: E∗(t), the number of episodes
that are observed to end at t; and R∗(t), the number of episodes which are
not completed, or censored, earlier than t. With the help of these quantities
one can define an observed rate function

r∗(t) =
E∗(t)

R∗(t)

to be used as an estimate of r(t). The above mentioned formula leads to
an estimate of the survivor function:

G∗(t) =

t−1
∏

τ=0

(1 − r∗(τ))

Basically the same procedure can be used if one assumes a continuous
time axis. The resulting estimated survivor function is then a step function
having steps at the points in time when events occur.

Exercise 4.3 Using the data in Box 4.1, calculate a survivor function
G∗(t) with the Kaplan-Meier procedure. Observe that the calculation of
r∗(t) is only required for points in time at which events occur.

4.4 Multiple Destination States

The Kaplan-Meier procedure can also be used if episodes can end in two or
more destination states. The procedure leads to estimates of sub-survivor
functions

G∗
d(t) =

t−1
∏

τ=0

(1 − r∗d(τ))
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where d ∈ D. They are also called pseudo survivor functions because they
cannot be interpreted as survivor functions (in its normal sense). Inter-
pretations should be based on state-specific rate functions which can be
estimated by

r∗d(t) =
E∗

d(t)

R∗(t)

where E∗
d(t) now denotes the number of episodes ending at t in destination

state d.



Chapter 5

Regression Models for States

We now begin with a discussion of models that can be used to consider re-
lationships between variables. As a starting point, remember the two forms
for the representation of life course data: A sequence of state variables, Yt,
with t referring to a discrete time axis, and a two-dimensional duration
variable (T, D). Both forms can be used for the development of models.
This chapter assumes the first form.

5.1 The Modeling Approach

We assume a sequence of state variables

Yt : Ω −→ Y

defined for a discrete process time axis t = 0, 1, 2, . . . The state space con-
sists of two or more states. The state space will be denoted by Y . When
the process has developed until time t, its statistical representation is given
by the distribution

P(Yt = yt, Yt−1 = yt−1, . . . , Y0 = y0)

where y0, . . . , yt are the possible states in Y .

Models serve to think about relationships between variables. In order to
develop our modeling approach, the following abbreviation will be helpful:

Ȳt := (Yt, Yt−1, . . . , Y0)

It will be called a process variable. Possible values will be denoted by cor-
responding lower-case values

ȳt := (yt, yt−1, . . . , y0)

They represent possible sequences of states. The starting point for the
model construction can then be denoted by

P(Ȳt = ȳt)

In order to assess dependence relations between the state variables, one can
use conditional distributions. The basic idea is that the process develops

19

sequentially in time, beginning with a given initial distribution. This can
be symbolically depicted as

Y0

Y1 | Y0

Y2 | Y0, Y1

...

Yt | Y0, Y1, . . . , Yt−1

Then, by successively creating conditional distributions, one gets

P(Ȳt = ȳt) =

t
∏

τ=1

P(Yτ = yτ | Ȳτ−1 = ȳτ−1) P(Y0 = y0) (5.1)

5.2 Theoretical Speculations

The general approach (5.1) can be used in two different ways as a start-
ing point for further considerations. It can be used for speculations about
possible forms of processes, and it can be used as a formal framework for
the representation of given data. We begin with a short discussion of some
theoretical possibilities.

Since we assume that the initial distribution of Y0 is given, speculations
concern the conditional distributions

P(Yτ = yτ | Ȳτ−1 = ȳτ−1)

A particularly simple assumption is a one-step memory:

P(Yτ = yτ | Ȳτ−1 = ȳτ−1) = P(Yτ = yτ |Yτ−1 = yτ−1)

It is assumed that the state in some temporal location t only depends on
the state in the temporal location t−1. Somewhat more complicated would
be a two-step memory

P(Yτ = yτ | Ȳτ−1 = ȳτ−1) =

P(Yτ = yτ |Yτ−1 = yτ−1, Yτ−2 = yτ−2)

Exercise 5.1 Consider a process with a one-step memory. The state space
is Y = {0, 1}, initially all individuals are in state 0, and the transition
probabilities are given by

P(Yτ = 1 |Yτ−1 = 0) = 1/2

P(Yτ = 1 |Yτ−1 = 1) = 1/3

For t = 0, . . . , 8, using a die, construct 10 realizations of the process and
present the development of the state distribution in form of a table.
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Exercise 5.2 Assume that there are 5 distinct states. How many transition
probabilities would be necessary in order to completely specify a process
with a two-step memory?

5.3 Models with Two States

We consider processes with two possible states, Y = {0, 1}, and furthermore
assume a one-step memory. Without further restrictions, a model requires
two parameters for each point in time:

P(Yt = 1 |Yt−1 = 0) = θ10,t

P(Yt = 1 |Yt−1 = 1) = θ11,t

The quantities θ10,t and θ11,t are called parameters of the process . In gen-
eral, these parameters can change while the process is going on. As a rad-
ical simplification, one can assume that they will not change. The process
is then called stationary , and the modeling approach becomes

P(Yt = 1 |Yt−1 = 0) = θ10

P(Yt = 1 |Yt−1 = 1) = θ11

Exercise 5.3 Using the data in Box 2.1, calculate the time-varying process
parameters

θij,t for i, j ∈ {0, 1}, t = 1, . . . , 5

Then assume that the data result from a stationary process and calculate
the time-constant process parameters

θij for i, j ∈ {0, 1}

5.4 Models with Covariates

So far we considered a single state variable, Yt, and models concerned the
question how its distribution might depend on earlier values of the same
state variable. Often, one is (also) interested in how the distribution of Yt

depends on values of other variables which are then called covariates . There
are two kinds of such covariates:

• time-constant covariates having values that are fixed at the beginning
of the process and do not change while the process is going on; and

• time-varying covariates having values that might change while the pro-
cess is going on.

21

Box 5.1 Data set 5

ID t = 0 1 2 3 4 5 6

-----------------------------

1 Y 0 0 0 1 1 0 0

X1 0 0 0 0 0 0 0

X2 20 21 22 23 24 25 26

2 Y 1 1 0 0 0 1 1

X1 0 0 0 0 0 0 0

X2 22 23 24 25 26 27 28

3 Y 1 1 1 0 0 0 0

X1 0 0 0 0 0 0 0

X2 21 22 23 24 25 26 27

4 Y 0 0 0 0 1 1 1

X1 1 1 1 1 1 1 1

X2 20 21 22 23 24 25 26

5 Y 0 0 1 1 1 0 0

X1 1 1 1 1 1 1 1

X2 22 23 24 25 26 27 28

6 Y 1 1 1 0 0 1 1

X1 1 1 1 1 1 1 1

X2 21 22 23 24 25 26 27

Since time-constant covariates can be considered as a special case of time-
varying covariates, we consider only the more general case. The idea of
parallel processes provides a useful framework. The process of primary in-
terest is given by Yt. A covariate process defined on the same time axis is
given by Xt, i.e:

(Xt, Yt) : Ω −→ X ×Y
As before, we assume that Yt is a discrete one-dimensional state variable.
Xt can be a multidimensional variable with an arbitrary property space,
for example, an m-dimensional variable

Xt = (Xt1, . . . , Xtm)

However, to ease notations, we assume that also Xt is a one-dimensional
discrete variable.

The idea is that the distribution of Yt depends not only on previous
state variables but also on previous values of covariates. For the discussion
of models, we shall assume that covariates will not depend on state variables
(covariates are then called exogenous). The modeling framework (5.1) can
then be extended as follows:

P(Ȳt = ȳt) = (5.2)
t

∏

τ=1

P(Yτ = yτ | Ȳτ−1 = ȳτ−1, X̄τ−1 = x̄τ−1)

P(Y0 = y0, X0 = x0)
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Again, this framework can be simplified in many different ways. For ex-
ample, assuming a one-step memory also for the dependence on covariates,
would lead to

P(Yτ = yτ | Ȳτ−1 = ȳτ−1, X̄τ−1 = x̄τ−1) =

P(Yτ = yτ |Yτ−1 = yτ−1, Xτ−1 = xτ−1)

As an example, we consider the data set 5 in Box 5.1. These data contain
information about the development of states for six persons. There are
two possible states, Y = {0, 1}, and two covariates. The covariate X1 is
time-constant, e.g., the sex (0 = men, 1 = women); the covariate X2 is
time-varying, e.g., the age of persons.

5.5 Binary Logit Models

Modeling processes with covariates is often done with logit models. We here
discuss these models for processes with only two states, Y = {0, 1}. The
general model with time-varying parameters is

P(Yt = 1 |Yt−1 = 0, Xt−1 = xt−1) =
exp(α10,t + xt−1β10,t)

1 + exp(α10,t + xt−1β10,t)

P(Yt = 1 |Yt−1 = 1, Xt−1 = xt−1) =
exp(α11,t + xt−1β11,t)

1 + exp(α11,t + xt−1β11,t)

Assuming a stationary process, one can drop the references to time on
the right-hand side. Obviously, the model without covariates discussed in
Section 5.3 is a special case.

Exercise 5.4 Draw the graph of the logit function

z =
exp(x)

1 + exp(x)

in the range −3 ≤ x ≤ 3.

Exercise 5.5 Using the notation of exercise 5.4, derive the inverse function
that shows how x depends on z. Calculate the values of x that correspond
to z = 0.5, 0.6, and 0.7.

Exercise 5.6 Write down a logit model for the data in Box 5.1 that as-
sumes a stationary process. Indicate the model parameters that should be
estimated.

5.6 Maximum Likelihood Estimation

We briefly discuss the maximum likelihood estimation of the parameters
of a logit model. Assuming a model for a stationary process, one has to
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estimate four parameters:

α10, β10, α11, β11

It will be assumed that data are given as

(xit, yit) for i = 1, . . . , N, t = 0, . . . , T

The model then implies

P(Yt = yi,t |Yt−1 = yi,t−1, Xt−1 = xi,t−1) =


























exp(α10+xi,t−1β10)
1+exp(α10+xi,t−1β10)

if yi,t = 1, yi,t−1 = 0
1

1+exp(α10+xi,t−1β10)
if yi,t = 0, yi,t−1 = 0

exp(α11+xi,t−1β11)
1+exp(α11+xi,t−1β11)

if yi,t = 1, yi,t−1 = 1
1

1+exp(α11+xi,t−1β11)
if yi,t = 0, yi,t−1 = 1

In a more compact notation:

P(Yt = yi,t |Yt−1 = yi,t−1, Xt−1 = xi,t−1) =

(

exp(α10 + xi,t−1β10)
yit

1 + exp(α10 + xi,t−1β10)

)1−yi,t−1
(

exp(α11 + xi,t−1β11)
yit

1 + exp(α11 + xi,t−1β11)

)yi,t−1

Viewed as a function of the model parameters, this is called the likelihood

of the ith observation at t. Combining these likelihoods for all observations,
one gets the likelihood function

L(α10, β10, α11, β11) =

N
∏

i=1

T
∏

t=1

(

exp(α10 + xi,t−1β10)
yit

1 + exp(α10 + xi,t−1β10)

)1−yi,t−1

(

exp(α11 + xi,t−1β11)
yit

1 + exp(α11 + xi,t−1β11)

)yi,t−1

Maximizing this function, one gets the ML estimates of the model param-
eters, denoted by

α̂10, β̂10, α̂11, β̂11

Exercise 5.7 Calculate the log-likelihood function

`(α10, β10, α11, β11) = log
(

L(α10, β10, α11, β11)
)

Exercise 5.8 Calculate the value of the log-likelihood function derived in
exercise 5.7 for the data in Box 5.1 and for the parameter values

α10 = β10 = α11 = β11 = 0
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Box 5.2 Data set 5a

ID t Y(t) Y(t-1) X1(t-1) X2(t-1)

--------------------------------------

1 1 0 0 0 20

1 2 0 0 0 21

1 3 1 0 0 22

1 4 1 1 0 23

1 5 0 1 0 24

1 6 0 0 0 25

2 1 1 1 0 22

2 2 0 1 0 23

2 3 0 0 0 24

2 4 0 0 0 25

2 5 1 0 0 26

2 6 1 1 0 27

3 1 1 1 1 21

3 2 1 1 1 22

3 3 1 0 1 23

3 4 0 0 1 24

3 5 0 0 1 25

3 6 0 0 1 26

4 1 0 0 1 20

4 2 0 0 1 21

4 3 0 0 1 22

4 4 1 0 1 23

4 5 1 1 1 24

4 6 1 1 1 25

5 1 0 0 1 22

5 2 1 0 1 23

5 3 1 1 1 24

5 4 1 1 1 25

5 5 0 1 1 26

5 6 0 0 1 27

6 1 1 1 1 21

6 2 1 1 1 22

6 3 0 1 1 23

6 4 0 0 1 24

6 5 1 0 1 25

6 6 1 1 1 26

Exercise 5.9 ML estimates of model parameters result from the maxi-
mization of the log-likelihood function. In order to find the values, one can
use standard packages that allow to estimate simple logit models. This is
based on the fact that the likelihood function can be partitioned into two
factors that can be maximized separately. Describe how to reorganize the
data set (see Box 5.2).
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Exercise 5.10 Using for X the age variable (X2 in Box 5.1), one gets the
following ML estimates of the model parameters:

α̂10 = −3.14, β̂10 = 0.10, α̂11 = 4.91, β̂11 = −0.16

A computer program (e.g. TDA) computes the maximized log-likelihood
function as -12.14 (for the first half model, Yt−1 = 0) and -8.88 (for the
second half model, Yt−1 = 1). Calculate the values of the log-likelihood
function of the combined model.

Exercise 5.11 Using the parameter estimates mentioned in exercise 5.10,
create a table that shows for age values X = 20, . . . , 26 and values Yt−1 =
0, 1 the estimated probabilities

P(Yt = 0 |Yt−1 = · · · , X = · · · ) and

P(Yt = 1 |Yt−1 = · · · , X = · · · )



Chapter 6

Models for Durations

We consider single episodes, represented by a two-dimensional statistical
variable

(T, D) with T ∈ T , D ∈ D
D is the set of possible destination states, T is the (discrete or continuous)
time axis. For the following discussion, we assume a continuous time axis
and identify T with the set of nonnegative real numbers.

Statistical models can serve, both, to represent data and to formulate
(more general) hypotheses that concern how episodes could, or probably
will, develop. One can distinguish, respectively, between descriptive and
analytical models.

6.1 Time-constant Rates

For episodes with a single destination state it suffices to consider a duration
variable T . A statistical model consists in making an assumption about the
variable’s distribution. In order to characterize the distribution, one can
use, equivalently, a distribution function F (t), a survivor function G(t), a
density function f(t), or a rate function r(t).

In order to formulate assumptions, it is often easiest to use the rate
function. The simplest assumption is to assume a constant rate:

r(t) = θ

where θ is a parameter that can vary in some specified set (parameter
space), in the following denoted by Θ. Since rates are nonnegative, we
identify Θ with the set of nonnegative real numbers.

A model that is based on the assumption of a time-constant rate is called
an exponential model . The distribution is called an exponential distribution

with parameter θ.
Using the formula for the relationship between rate and survivor func-

tion, the survivor function of the exponential distribution is given by

G(t) = exp

{

−
∫ t

0

r(τ) dτ

}

= exp(−θt)

Exercise 6.1 Derive formulas for the distribution function and for the
density function of the exponential distribution with parameter θ.

Exercise 6.2 Draw graphs of the distribution function and of the density
function of the standard exponential distribution (θ = 1).
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6.2 Weibull Distribution

Most models use rates that change in some specific way with time. Of-
ten used is the Weibull distribution which implies a rate function that can
monotonically rise or decrease. The Weibull distribution has two parame-
ters; the survivor function is

G(t) = exp{−(αt)β}

It is assumed that both parameters, α and β, can only take positive values.
Differentiating the survivor function, one gets the density function

f(t) = βαβtβ−1 exp{−(αt)β}

and the rate function

r(t) = βαβtβ−1

Exercise 6.3 Show step by step how one can derive the density function
and the rate function from the survivor function of the Weibull distribution.

Exercise 6.4 For which parameter values does one get the exponential
distribution as a special case of the Weibull distribution?

Exercise 6.5 Based on a time axis from 0 to 3, draw the graph of the
Weibull rate function for parameter values α = 1 and β = 0.5, 1.0, 1.5.

6.3 Log-Logistic Distribution

A simple model with non-monotonic rate functions is based on the log-
logistic distribution. The distribution has two parameters, α and β, re-
stricted to positive values. The survivor function is

G(t) =
1

1 + (αt)β

Differentiation leads to the density function

f(t) =
βαβtβ−1

(1 + (αt)β)2

and one then finds the the rate function

r(t) =
βαβtβ−1

1 + (αt)β

Exercise 6.6 Show step by step how one can derive the density function
and the rate function from the survivor function of the log-logistic distri-
bution.
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Exercise 6.7 Show that the exponential distribution is not a special case
of the log-logistic distribution.

Exercise 6.8 Based on a time axis from 0 to 3, draw the graph of the
log-logistic rate function for parameter values α = 1 and β = 1 and 2.

Exercise 6.9 Show that the log-logistic rate function (if it is concave) has
its maximum at

tmax =
1

α
(β − 1)

1

β

For which parameter values is the rate function concave? Which is the value
of the maximum?

6.4 Log-Normal Distribution

Standard regression models often assume a normal distribution (of residu-
als). Since the duration variable T can only take positive values, one might
assume that its logarithm is normally distributed.1 It is then said that T
has a log-normal distribution.

In order to follow this idea, we begin with a general consideration. Let X
denote a continuous variable with distribution function FX (x) and density
function fX(x). Also, let g denote an arbitrary monotonically increasing
function. One can then consider the variable

Y = g(X)

and ask how to derive the distribution and density functions of Y , i.e.,
respectively, FY (y) and fY (y), from the corresponding functions of X .2

For the distribution functions, one can use the relationship

FX (x) = P(X ≤ x) = P(Y ≤ g(x)) = FY (g(x))

For the density functions, one finds

fX(x) =
dFX(u)

du

∣

∣

∣

u=x
=

dFY (g(u))

du

∣

∣

∣

u=x
= fY (g(x))g′(x)

with g′(x) denoting the derivative of the transformation function g.

1We always mean the natural logarithm, i.e., the inverse function of the exponential.

2Since g is monotonic, also the inverse relationship

X = g−1(Y )

exists; the problem if obviously symmetrical.
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Now assume that Y is normally distributed, and the relationship with
the duration variable T is given by

Y = log(T )

The density function of Y is then

fY (y) =
1√
2πσ

exp

{

−1

2

(

y − µ

σ

)2
}

Applying the transformation derived above, one gets the density function
of T , now denoted by f(t), as follows:

f(t) =
1√

2πσt
exp

{

−1

2

(

log(t) − µ

σ

)2
}

This is the density function of the log-normal distribution with parameters
µ and σ. µ can take any, σ only positive values.

Exercise 6.10 Based on a time axis from 0 to 3, draw the graph of the
log-normal rate function for parameter values µ = 0 and σ = 1.

6.5 Multiple Destination States

In order to represent episodes with multiple destination states, one needs
a two-dimensional variable (T, D). Its distribution can be characterized by
state-specific rates

rd(t) for d ∈ D

Models can be specified by simply using the approaches discussed in the
foregoing sections separately for each state-specific rate function. For ex-
ample, an exponential model would assume

rd(t) = θd

6.6 Mixture Distributions

Mixture models result from the assumption that the collection of individu-
als, Ω, consists of two or more parts with different rate functions. Assume
that there are m parts and that, at t = 0, the proportion of the jth part is
given by πj , implying that

m
∑

j=1

πj = 1
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For each part j, rj(t) denotes the rate function, fj(t) the density func-
tion, and Gj(t) the survivor function. The temporal development of the
proportion of the jth part is then given by

πjGj(t)
/

m
∑

k=1

πkGk(t)

where

G(t) =

m
∑

k=1

πkGk(t)

is the overall survivor function. This allows to derive the density function

f(t) = −dG(t)

dt
=

m
∑

j=1

πj

(

−dGj(t)

dt

)

=

m
∑

j=1

πjfj(t)

Finally, one finds the mean rate in Ω as

r(t) =

∑m

j=1 πjfj(t)
∑m

j=1 πjGj(t)

Exercise 6.11 Assume two parts and π1 = π2 = 0.5. Assume also time-
constant rates r1(t) = 1 and r2(t) = 2, respectively. Derive the development
of the mean rate and show that it decreases with time.

Chapter 7

Rate Models with Covariates

This chapter considers rate models with time-constant covariates. Formu-
lations are now based on a statistical variable (T, D, X) representing single
episodes. T denotes durations, D denotes the destination state (or is zero
if an observation is right censored), and X (possibly multidimensional)
represents the values of a time-constant covariate.

We begin with models for episodes having only a single destination
state. Models for episodes with multiple destination states will be discussed
in Section 7.4.

7.1 The Exponential Model

The exponential model assumes a time-constant rate

r(t) = θ

The basic idea is to make this rate dependent on values of covariates. Nor-
mally, one uses a link function that guarantees that the rate will be positive.
The standard model uses an exponential link function:

r(t |X = x) = exp(β0 + xβ1)

If there are m covariates (X1, . . . , Xm), a general formulation is

r(t |X1 = x1, . . . , Xm = xm) = exp(β0 + x1β1 + . . . + xmβm)

Exercise 7.1 Derive the following formula for the mean of an exponential
distribution with parameter θ:1

E(T ) =

∫ ∞

0

tf(t) dt =

∫ ∞

0

θt exp(−θt) dt =
1

θ

Exercise 7.2 Find a formula for the median of an exponential distribution
with parameter θ.

1Use the following rule for partial integration:
Z

F (t)g(t) dt = F (t)G(t) −

Z

f(t)G(t) dt

where f(t) = dF (t)/dt and g(t) = dG(t)/dt. Use F (t) = t, g(t) = θ exp(−θt).
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Box 7.1 Data set 6

ID T D X1 X2

-----------------------

1 17 1 8 1

2 5 0 5 0

3 22 1 9 1

4 13 1 7 0

5 2 0 5 0

6 9 1 6 1

7 12 0 5 1

8 15 1 7 1

7.2 Estimation of Model Parameters

Assume that n observations

(ti, di, xi1, . . . , xim) for i = 1, . . . , n

are given. ti is the value of the duration variable T , di shows whether the
observation is right censored (di = 0) or not (di = 1), and xi1, . . . , xim are
the values of the covariates.

Models are estimated with the maximum likelihood approach. Using
the density

f(ti |X1 = xi1, . . . , Xm = xim)

for uncensored observations and the survivor function

G(ti |X1 = xi1, . . . , Xm = xim)

for censored observations, the likelihood function looks as follows:

L(β0, . . . , βm) =
n

∏

i=1

f(ti |X1 = xi1, . . . , Xm = xim)di

G(ti |X1 = xi1, . . . , Xm = xim)1−di

Since r(t) = f(t)/G(t), the likelihood function can also be written in the
following form:

L(β0, . . . , βm) =
n

∏

i=1

r(ti |X1 = xi1, . . . , Xm = xim)di

G(ti |X1 = xi1, . . . , Xm = xim)

We now consider the exponential model introduced in Section 7.1. One then
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gets

r(ti |X1 = xi1, . . . , Xm = xim) = exp(β0 + xi1β1 + . . . + ximβm)

G(ti |X1 = xi1, . . . , Xm = xim) =

exp{− exp(β0 + xi1β1 + . . . + ximβm) ti}

and finds the likelihood function

L(β0, . . . , βm) =

n
∏

i=1

exp(β0 + xi1β1 + . . . + ximβm)di

exp{− exp(β0 + xi1β1 + . . . + ximβm) ti}

Maximization most often uses the corresponding log-likelihood function

`(β0, . . . , βm) =

n
∑

i=1

di(β0 + xi1β1 + . . . + ximβm)−

exp(β0 + xi1β1 + . . . + ximβm) ti

If the model contains covariates, it is normally not possible to find the max-
imum with analytical methods. Instead, one must use an iterative maxi-
mization procedure (that requires a computer).

A simple approach is possible, however, if the model does not contain
covariates. Then, the log-likelihood function is

`(β0) =

n
∑

i=1

diβ0 − ti exp(β0)

and one can derive the gradient (first derivative)

∂`(β0)

∂β0
=

n
∑

i=1

di − ti exp(β0)

Finally, equating the gradient with zero leads to the ML estimate of β0,
namely

β̂0 = log

(∑n

i=1 di
∑n

i=1 ti

)

Exercise 7.3 Using the second derivative, show that the log-likelihood
function of the exponential model without covariates has exactly one max-
imum.

Exercise 7.4 Based on the data in Box 7.1, estimate the time-constant
rate of an exponential model without covariates. Derive an estimate of the
mean duration.
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7.3 A General Modeling Approach

Rate models can be based on many different rate functions. The exponen-
tial model with a time-constant rate is just one special case. The general
formulation of a parametric rate model starts from a rate function that
depends on a one- or multidimensional parameter θ. Rate, density, and
survivor function can then be written as follows:

r(t | θ), f(t | θ), G(t | θ)

In order to include covariates, one uses a link function that makes the dis-
tribution parameter θ dependent on values of the covariates. For example,
if the distribution has two parameter, say θ = (α, β), one can use link
function having the following form:

α = gα(α0 + x1α1 + . . . + xmαm)

β = gβ(β0 + x1β1 + . . . + xmβm)

Exercise 7.5 Derive the log-likelihood function for a Weibull model with-
out covariates.

Exercise 7.6 Derive the log-likelihood function for a log-logistic model
without covariates.

7.4 Multiple Destination States

The modeling approach introduced in the previous section can be general-
ized for episodes with multiple destination states. Starting point is a general
rate function

rd(t | θd) for d ∈ D

where d refers to possible destination states. From this, one gets the overall
rate function

r(t | θ) =
∑

d∈D

rd(t | θd)

with θ denoting the collection of destination-specific parameters θd. From
the overall rate the formula of the survivor function becomes

G(t | θ) = exp

{

−
∫ t

0

r(τ | θ) dτ

}

An equivalent formulation would be

G(t | θ) =
∏

d∈D

Gd(t | θd)
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with

Gd(t | θd) = exp

{

−
∫ t

0

rd(τ | θd) dτ

}

Finally, in order to derive the likelihood function, we assume that the data
are given as in Section 7.2 (with di now denoting the individual’s destination
state). Using the indicator function I(d = di) (taking the value 1 if d = di

and zero otherwise), the likelihood function can be written in the following
form:

L(θ) =

n
∏

i=1

G(ti | θ)
∏

d∈D

r(ti | θd)
I(d=di)

Exercise 7.7 Derive the likelihood and the log-likelihood function of an
exponential model with three destination states.

7.5 Pseudo Residuals

In contrast to simple regression models with a quantitative dependent vari-
able, there is no simple method to judge the goodness-of-fit of a rate model.
As an aid, one sometimes uses so-called pseudo residuals. In order to ex-
plain the idea, we refer to episodes with a single destination state. Data
are assumed to be given as

(ti, di, xi) for i = 1, . . . , n

We also assume that one has estimated a rate model so that the functions

r(t |x; θ̂), f(t |x; θ̂), G(t |x; θ̂)

can be computed, where θ̂ denotes the estimated model parameters.
This model can now be viewed as the description of a two-step random

generator

- -X Tx (t, x)
x

The first random generator generates a value x of the covariate vector ac-
cording to the statistical distribution of X (given by the data). The second

random generator generates a duration t, based on the model f(t |x; θ̂),
i.e., conditional on the value x that was realized in the first step.

This method can be used to generate an arbitrary number of pseudo
observations (t∗j , x

∗
j ) (j = 1, 2, 3, . . .), such that the distribution of the values

x∗
j equals the distribution of X , and the conditional distribution of the
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durations t∗j conforms with the model. Accordingly, for each possible value
x in the property space of X , one can consider the generated durations
as realizations of a random variable Tx having a distribution defined by
f(t |x; θ̂).

In a second step, one considers a transformation of the random variable
Tx such that it no longer depends on specific values of the covariate vector.
Using the transformation

Tx −→ J(Tx) , defined by t −→ J(t) =

∫ t

0

r(τ | x; θ̂) dτ

results in a standard exponential distribution of J(Tx) (having the constant
rate 1). This can be seen in the following way:

P (J(Tx) > t) = P (Tx > J−1(t))

≡ G(J−1(t) | x; θ̂)

= exp
{

−
∫ J−1(t)

0

r(τ | x; θ̂) dτ
}

= exp
{

−J(J−1(t))
}

= exp(−t)

The survivor function of the transformed random variable J(Tx) equals the
survivor function of a standard exponential distribution and consequently
is independent of x and θ.2

This then allows to check the hypothesis that the data can be viewed
as a random sample from the random generator described by the estimated
model. If the hypothesis is true, the procedure should lead to a set of values

ei = J(ti)

having approximately a standard exponential distribution. The values ei

are called pseudo residuals (sometimes also generalized residuals). In order
to check whether they follow a standard exponential distribution, one can
calculate, and then check, their survivor function (of course, taking into
account right censored observations). If Gr(t) denotes the survivor function,
one can consider the graph

t −→ − log {Gr(t)}

If the residuals follow a standard exponential distribution, this graph should
be approximately equal a 45◦ line.

Exercise 7.9
2Note that the distribution of Tx is defined through G(· | x, θ), not through G(· |x, θ̂).

The procedure is, however, based on the hypothesis that θ has been correctly estimated.
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Exercise 7.8 Derive a formula for the calculation of pseudo residuals for
an exponential model with covariates.

Calculate pseudo residuals for the exponential model without covariates
that was estimated in exercise 7.4.



Chapter 8

Time-varying Covariates

This chapter considers time-varying covariates defined as covariates that
may change their values during an episode.

8.1 Conditional Survivor Functions

Remember the relationship between the rate and the survivor function:

G(t) = exp

{

−
∫ t

0

r(τ) dτ

}

Accordingly, we define a conditional survivor function by

G(t | s) = exp

{

−
∫ t

s

r(τ) dτ

}

It follows that

G(t) = G(t | s) G(s)

Such a partition can be repeated. Assume a division into k subintervals:

0 = t0 < t1 < · · · < tk−1 < tk = t

One then finds:

G(t) =
k

∏

j=1

G(tj | tj−1)

8.2 Reformulation of the Likelihood Function

Remember the likelihood function for the estimation of a rate model for a
single episode with one destination state:

L(θ) =
n

∏

i=1

r(ti | θ)di G(ti | θ)

For each individual i, the duration ti can be divided into an arbitrary
number of subintervals:

0 = ti,0 < ti,1 < · · · < ti,ki−1 < ti,ki
= ti
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The likelihood function can then be written as follows:

L(θ) =

n
∏

i=1

r(ti | θ)di

ki
∏

j=1

G(ti,j | ti,j−1, θ)

This will be called a likelihood function based on episode splitting.

Exercise 8.1 Starting from an arbitrary division of the process time axis
into subintervals, write down a likelihood function for the estimation of a
simple exponential model, first with, then without episode splitting. Show
that both lead to identical parameter estimates.

8.3 Time-varying 0-1-Variables

We now assume that the data contain time-varying covariates and are given
in the following form:

(ti, di, xi, zi,1(t), . . . , zi,m(t)) for i = 1, . . . , n

xi is a vector of time-constant covariates, the variables zi,j(t) are time-
varying. It will be assumed that these are 0-1-variables. ti,j denotes the
point in time when zi,j(t) changes its value from 0 to 1.

Now consider all points in time when at least one covariate changes its
value and assume that these points in time are ordered as follows:

0 = τi,0 < τi,1 < · · · < τi,ki−1 < τi,ki
= ti

The likelihood function can then be written in the following form:

L(θ) =

n
∏

i=1

r(ti |xi, zi,1(ti), . . . , zi,m(ti), θ)
di

ki
∏

j=1

G(τi,j | τi,j−1, xi, zi1(τi,j−1), . . . , zi,m(τi,j−1), θ)
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Box 8.1 Data set 7: Episode Splitting

ID ORG DES TS TF ID SPN ORG DES TS TF

-------------------- -------------------------

1 0 1 0 10 1 1 0 0 0 3

2 0 0 0 12 1 2 0 0 3 6

1 3 0 1 6 10

2 1 0 0 0 5

2 2 0 0 5 9

2 3 0 0 9 11

2 4 0 0 11 12

Box 8.2 Data set 8: Episode Splitting

ID ORG DES TS TF Z ID SPN ORG DES TS TF D

----------------------- -----------------------------

1 0 1 0 10 7 1 1 0 0 0 7 0

2 0 1 0 8 -1 1 2 0 1 7 10 1

3 0 1 0 5 8 2 1 0 1 0 0 1

4 0 0 0 12 9 3 1 0 1 0 5 0

4 1 0 0 0 9 0

4 2 0 0 9 12 1

8.4 Episode Splitting

The approach just depicted is called the method of episode splitting (for
the incorporation of time-varying variables into rate models). Box 8.1 illus-
trates the method with two episodes without covariates. The episodes are
arbitrarily split respectively into three and four parts.

Box 8.2 illustrates the method with a time-varying covariate called
Z. This variable indicates the point in time when the corresponding 0-
1-variable (D) changes its value from 0 to 1. The right half of the box shows
the splitted data set.
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