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Preface

This text is an introduction to concepts and methods of demographic de-
scription and analysis. The substantial focus is on the demographic devel-
opment of Germany, all data refer to this country. The main reason for
this focus on a single country is that we want to show how the tools of de-
mography can actually be used for the analysis of demographic problems.

The text consists of two parts. Part I introduces the conceptual framework
and explains basic statistical notions. This part also includes a short chap-
ter that explains how we speak of “models” and why we do not make a
sharp distinction between “describing” and “modeling” demographic pro-
cesses. Then follows Part II that deals with data and methods. In the
present version of the text, we almost exclusively discuss mortality and
fertility data; migration is only mentioned in Chapter 6 and briefly con-
sidered in the context of a Leslie model at the end of the text.

In addition to providing a general introduction to concepts of demography,
the text also intends to show how to practically work with demographic
data. We therefore extensively document all the data used and explain the
statistical calculations in detail. In fact, most of these calculations are quite
simple; the only exception is the discussion of Leslie models in Chapters
17 and 18 which requires some knowledge of matrix algebra. Except for
these chapters, the text has been so written that it may serve as an intro-
duction to elementary statistical methods. The basic approach is identical
with the author’s Grundzüge der sozialwissenschaftlichen Statistik (2001).
Virtually no previous knowledge of statistical methods is required for an
understanding of the present text. Some notations from set theory that we
have used are explained in Appendix A.2.

Most of the data that we have used in this text are taken from publi-
cations of official statistics in Germany (Appendix A.1 provides a brief
introduction to data sources). We are grateful to Hans-Peter Bosse of the
Statistisches Bundesamt who provided us with some unpublished materi-
als. We also thank Bernhard Schimpl-Neimanns of ZUMA (Mannheim) who
prepared a table with birth data from the 1970 census that we have used
for several analyses. In addition, we have used several data files from non-
official sources, in particular, data from the German Life History Study
(Max Planck Institut für Bildungsforschung, Berlin), the Socio-economic
Panel (Deutsches Institut für Wirtschaftsforschung, Berlin), the Fertil-
ity and Family Survey (Bundesinstitut für Bevölkerungsforschung, Wies-
baden), the DJI Family Surveys (Deutsches Familieninstitut, München),
and historical data on mortality prepared by Arthur E. Imhof and his co-
workers (1990). All these data sets can be obtained from the Zentralarchiv
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für Empirische Sozialforschung in Köln.

The extensive documentation of the data is also intended to allow readers
to replicate our calculations. Many calculations can simply be done with
paper and pencil. If the amount of data is somewhat larger, one might
want to use a computer. Several statistical packages are publicly available.
We have used the program TDA which is available from the author’s home
page: www.stat.ruhr-uni-bochum/tda.html. This program was also used
to create all of the figures in this text.

For helpful comments and discussions we thank, in particular, Gert
Hullen (Bundesinstitut für Bevölkerungsforschung) and Bernhard Schimpl-
Neimanns (ZUMA).

Bochum, March 2003

G. Rohwer, U. Pötter
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Chapter 1

Introduction

1. The present text is an introduction to concepts and methods of demog-
raphy, exemplified with data from the demographic development of Ger-
many. The basic idea is to think of a society as a population [Bevölkerung],
a set of people. This is the common starting point of almost all demo-
graphic investigations and many definitions of demography. As an exam-
ple, we cite the following definition from a dictionary published by the
United Nations (1958, p. 3):1

“Demography is the scientific study of human populations, primarily with respect
to their size, their structure and their development.”

In a German adaptation of the dictionary by Winkler (1960, p. 17) this
definition reads as follows:

”
Die Demographie (Bevölkerungswissenschaft, Bevölkerungslehre) ist die Wis-

senschaft, die sich hauptsächlich in quantitativer Betrachung mit dem Studium
menschlicher Bevölkerungen befaßt: Zahl (Umfang), Gliederung nach allgemei-
nen Merkmalen (Struktur) und Entwicklung.“

Given this understanding, demography is concerned with human popula-
tions.

2. The focus on populations also provides a view of society. In this view a
society simply is a population, a set of people living in some region however
demarcated. It might be objected that such a view is greatly incomplete
because human societies not only consist of people. It would be difficult,
however, to add further characterizations to the definition of a society. All
too often the result is no longer a definition but an obscure and dubious
statement. The following quotation from Matras (1973, p. 57) can serve
as an example:

“As a working definition, we may say that a society is a human population
organized, or characterized, by patterns of social relationships for the purpose
of collective survival in, and adaptation to, its environment.”

This clearly is no longer a definition but an obscure formulation of a du-
bious assumption. Of course, beginning with the idea that a society is a

1In this text we distinguish between single and double quotation marks. Single quo-
tation marks are used to refer to linguistic expressions; for example, to say that we
are referring to the term ‘social structure’. Double quotation marks are used either for
citations or to indicate that an expression has no clear meaning or that it is used in
a metaphorical way. Within citations, we try to reproduce quotation marks in their
original form. If we add something inside a quotation this will be marked by square
brackets.
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human population, it is possible to describe institutional arrangements and
to reflect specific purposes possibly served by such arrangements. But this
can only result from an investigation and not anticipated in a definition.

3. The demographic view of society is closely linked with a statistical ap-
proach. Demography, to a large extent, is the application of statistical
methods to study the development of human populations. This is the
main idea which accompanied the history of demography from its begin-
ning.2 Conversely, demography inspired many developments in statistics.
The fundamental role played by the word ‘population’ in the statistical
literature is but one indicator. This term has often been used to define
statistics; as an example, we refer to Maurice Kendall and Alan Stuart,
who begin their “Advanced Theory of Statistics” (1977, p. 1) as follows:

“The fundamental notion in statistical theory is that of the group or aggregate, a
concept for which statisticians use a special word – “population”. This term will
be generally employed to denote any collection of objects under consideration,
whether animate or inanimate; for example, we shall consider populations of
men, of plants, of mistakes in reading a scale, of barometric heights on different
days, and even populations of ideas, such as that of the possible ways in which
a hand of cards might be dealt. [. . .] The science of Statistics deals with the
properties of populations. In considering a population of men we are not inter-
ested, statistically speaking, in whether some particular individual has brown
eyes or is a forger, but rather in how many of the individuals have brown eyes
or are forgers, and whether the possession of brown eyes goes with a propensity
to forgery in the population. We are, so to speak, concerned with the properties
of the population itself. Such a standpoint can occur in physics as well as in
demographic sciences.”

As far as demography applies a statistical view to human populations these
remarks also contribute to an understanding of demography. The concern
is with properties of populations, not with their individual members.

4. Since populations do not have properties in an empirical sense of the
word, one also needs to understand how demographers construct such
properties by using statistical concepts. This will be discussed at length
in subsequent chapters. Here we only mention that statistically construed
properties of populations are always conceptually derived from properties
of their individual members. For example, referring to a human popula-
tion, each of its members can be assigned a sex and the population can
be characterized then by two figures reporting the proportion of male and
female members. This also provides a simple example of a statistical dis-
tribution: to every individual property is assigned the relative frequency
(proportion) of its occurrence in a population.

5. Almost always this is also meant when statisticians, including demogra-
phers, speak of the “structure” of a population: an account of the frequen-

2For an informative overview see Lorimer (1959).
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cies of some individual properties in a population. Here are some examples
from the demographic literature:

“Demography is the discipline that seeks a statistical description of human pop-
ulations with respect to (1) their demographic structure (the number of the
population; its composition by sex, age and marital status; statistics of families,
and so on) at a given date, and (2) the demographic events (births, deaths, mar-
riages and terminations of marriages) that take place in them.” (Pressat 1972,
p. 1)

”
Unter der demographischen Struktur einer Bevölkerung versteht man ih-

re Aufgliederung nach demographischen Merkmalen.” (Feichtinger 1973, p. 26)

”
Die Struktur einer bestimmten Bevölkerung wird beschrieben durch die abso-

lute Zahl der Einheiten sowie die Verteilung der jeweils interessierenden Merk-
malsausprägungen bei den Einheiten dieser Bevölkerung zu einem bestimmten
Zeitpunkt t.“ (Mueller 1993, p. 2)

We mention that sociologists use the word ‘structure’ often in different
meanings. A frequent connotation is that “structure” in some way deter-
mines conditions for the behavior of the individual members of a society.
It is important, therefore, that this can not be said of a statistical distri-
bution.

6. In order to sensibly speak of conditions one would need to think of the
individual members of a society as being actors whose possible actions
depend in some way on a given environment. The statistical view is quite
different. Not only has statistics no conceptual framework for a reference
to actors; as shown by the above quotation from Kendall and Stuart, there
also is no reference to individuals. Instead, the focus is on populations.
This was clearly recognized, for example, by Wilhelm Lexis:

”
Bei der Bildung von Massen für die statistische Beobachtung verschwindet das

Individuum als solches, und es erscheint nur noch als eine Einheit in einer Zahl
von gleichartigen Gliedern, die gewisse Merkmale gemein haben und von deren
sonstigen individuellen Unterschieden abstrahiert wird.“ (Lexis 1875, p. 1)

The same idea was expressed by another author in the following way:

”
Innerhalb der Demographie interessiert eine individuelle Biographie nur als Ele-

ment der kollektiven Geschichte der Gruppe, zu welcher das Individuum gehört.“
(Feichtinger 1979, p. 13)

7. The method to characterize populations by statistical distributions (of
individual properties) is obviously quite general. Almost all properties
which can sensibly be used to characterize individuals can also be used
to derive statistical distributions characterizing populations. Statistical
methods are therefore used not only in demography but more or less ex-
tensively in almost all empirical social research. In fact, there is no clear
demarcation between demography and other branches of social research.
Some authors have therefore proposed to distinguish between demographic
analysis in a narrow sense, also called formal demography , and a wider
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scope, often called population studies .3 Given this distinction, the current
text is only concerned with formal demography.4 The following explana-
tion is taken from a widely known textbook by Shryock and Siegel (1976,
p. 1):

“Formal demography is concerned with the size, distribution, structure, and
change of populations. Size is simply the number of units (persons) in the
population. Distribution refers to the arrangement of the population in space at
a given time, that is, geographically or among various types of residential areas.
Structure, in its narrowest sense, is the distribution of the population among its
sex and age groupings. Change is the growth or decline of the total population
or of one of its structural units. The components of change in total population
are births, deaths, and migrations.”

This explanation of formal demography is quite similar to the understand-
ing of Bevölkerungsstatistik in the older German literature.5 It is also
similar to the definition of demography cited at the beginning of this chap-
ter.6 The quotation also shows once more that the term ‘structure’ is used
synonymously with ‘statistical distribution’. On the other hand, the word
‘distribution’ is here not used to refer to a statistical distribution but to
“the arrangement of the population in space”. — This topic, including in-
ternal migration, will not be systematically discussed in the present text.
On the other hand, demographic data as provided by official statistics, are
always limited to bounded regions, historically defined as “nation states”.
One therefore cannot avoid to take into account in- and out-migration.
This is true, in particular, when dealing with the demographic develop-
ment in Germany that is the empirical concern of the present text.

3See Hauser and Duncan (1959, pp. 2-3), and Shryock and Siegel (1976, p. 1). In the
older German literature a similar distinction was made between Bevölkerungsstatistik
and Bevölkerungslehre, see v. Bortkiewicz (1919).

4This is not to deny the importance of many questions discussed under the heading
of population studies. However, we will not try to make this a special sub-discipline
of social science but consider a reflection of demographic developments as being an
essential part of almost all investigations of social structure.

5As an example, we cite L. v. Bortkiewicz (1919, p. 3):
”
Soll aber eine besondere

wissenschaftliche Betrachtung über die Bevölkerung angestellt werden, so kann es sich
dabei unmöglich um eine Erörterung alles dessen handeln, was ihr Wohl und Wehe
irgendwie angeht. Es gilt hier vielmehr, zunächst die Bevölkerung als unterschiedslo-
se Menschenmasse ins Auge zu fassen, ihre räumliche Verteilung und die zeitlichen
Änderungen ihrer Größe zur Darstellung zu bringen, sodann aber auch ihre Gliederung
nach gewissen natürlichen Merkmalen, vor allem nach dem Geschlecht und nach dem
Alter, klarzulegen und im Anschluß hieran auf die unmittelbaren Ursachen ihres je-
weiligen Standes zurückzugehen, als welche sich in erster Linie die Geburten und die
Todesfälle und in zweiter Linie die Wanderungen darstellen. Damit ist der Gegenstand
der Bevölkerungsstatistik im althergebrachten Sinne dieses Wortes angedeutet.“

6Since there is a common conceptual framework, it seems not necessary, as propo-
sed by the cited dictionary, to distinguish explicitly between formal demography and
population statistics.

Part I

Conceptual Framework



Chapter 2

Temporal References

The chapters in Part I of this text briefly introduce the conceptual frame-
work used to develop a demographic view of society. The main conceptual
tool is the notion of a ‘demographic process’. An explicit definition will
be given in the next chapter. The present chapter deals with a prelimi-
nary question that concerns a suitable temporal framework. Technically,
one uses a time axis that allows to temporally locate events; but how to
represent a time axis? There are two general approaches:

a) One approach treats time as a sequence of temporal locations (e.g.,
minutes or days) and represents time by integral numbers with an
arbitrarily fixed origin. This is called a discrete time axis .

b) Another approach treats time as a continuum (a “continuous flow of
time”) and represents a time axis by the set of real numbers. This is
called a continuous time axis .

Since a time axis is used to provide a conceptual framework for the rep-
resentation of phenomena which occur “in time”, the decision for one or
the other of the two approaches should depend on the kind of phenom-
ena that one wants to describe and analyze. In demographic and, more
general, social research, the primary phenomena are events, for example,
birth and death events. Thinking in terms of a continuous time axis would
require to conceive of events as “instantaneous changes”. While this ap-
proach is quite widespread in the demographic literature,1 it conflicts with
the simple fact that events always need some time to occur. As we will
try to show in the present chapter, this suggests to represent a time axis
by real numbers but to think of temporal locations not as “time points”
but as temporal intervals. Within such a framework a discrete time axis
arises as a special case from an assumption of intervals of equal length.
This assumption will be sufficient for most practical purposes and also
greatly simplifies the mathematics. Therefore, in later chapters, we most
often use a discrete time axis with temporal locations to be understood
as temporal intervals having an equal length. In the present chapter we
first discuss our notion of events and how thinking in terms of events al-
lows temporal references. We then deal with possibilities of quantifying
temporal references.

1Examples of textbooks that use a continuous time axis for temporal references are,
e.g., Keyfitz (1977), and Dinkel (1989).
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2.1 Events and Temporal Locations

1. We all have learned to make temporal references by using clocks and
calendars and to think of time as a linearly ordered time axis. But leaving
aside for the moment clocks and calendars, what enables us to speak about
time? One possible approach begins with events. This notion is extremely
general and therefore quite difficult to make precise. However, for the
present purpose, it seems possible to neglect philosophical discussions and
simply take a common sense view of events.2 The following four points
seem to be essential.

• The occurrence of an event always involves one or more objects.

• Each event has some finite temporal duration.

• For many events one can say that one event occurred earlier than
another event.

• Events can be characterized, and classified, by using the linguistic con-
struct of kinds of events.

2. Using these assumptions it seems, first of all, important to distinguish
between events and kinds of events . An event is unique; it occurs exactly
once. On the other hand, several events can be of the same kind, for ex-
ample, marriages. Therefore, characterizing an event as being of a certain
kind does not give a unique description. Furthermore, an event does not
necessarily belong to only a single kind of event. Most often one can char-
acterize an event as an example of several different kinds of events. For
example, an event that is a marriage can also be a first marriage.

3. While common language clearly distinguishes between objects and
events, one might well think of a certain correspondence between, on the
one hand, objects and their properties, and on the other hand, events and
kinds of events. This has led some authors (e.g., Brand 1982) to think of
objects and events as being ontologically similar. Even without defending
this position, we will assume that talking of events always implies a refer-
ence to objects. The idea is that it should be possible to associate, with
each event, some objects that are involved in the event. Of course, these
objects need not be individuals in the sense of behavioral units.

4. Following the common sense view of events it also seems obvious that
events occur “in time”. The notion of event therefore provides a way to
think about time. We assume that one can associate with each event a
temporal location. In the following, we will use the letter e to refer to
an event and t(e) to denote its temporal location. t(e) will be called the

2For related philosophical discussion see Hacker (1982) and Lombard (1986).
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t-location of the event e. While a strict definition cannot be given it seems
important to think of t-locations not as being “time points”. Quite to
the contrary, one of the most basic facts about events is that each event
has a certain temporal duration. This is not only obvious when we think
of standard examples of events, but seems logically implied if we think of
events in terms of change. Change always needs some amount of time.
This also has an important further implication: only when an event has
occurred and, consequently, when it has become a fact belonging to past
history, can we say that the event has, in fact, occurred. We cannot say
this while the event is occurring.3

5. That one thinks of events in terms of change is quite essential for the
common sense view of events that we try to follow here. Without a change
nothing occurs. Fortunately, one need not be very specific about what
kinds of changes occur. Also, whether these changes occur “continuously”
or “instantaneously” is quite unimportant as long as we require that the
event has some temporal duration. The event is defined by what happened
during its occurrence and must therefore be taken as a whole. Of course,
one might be able to give a description of the event in terms of smaller
sub-events; but these will then simply be different events. An event is
semantically indivisible. In particular, the beginning of an event is not
itself an event, and consequently has no t-location.

6. Finally, it is important that one can often say of two events that one
occurred earlier than the other. Of course, this cannot always be said.
One event may occur while another is occurring. However, there are many
clear examples where we have no difficulties to say that one event occurred
earlier than another one. We therefore assume that the following partial
order relations are available when talking about events (e and e′ are used
to denote events):

e 4 e′ meaning: e′ begins not earlier than e

e / e′ meaning: e′ begins not before e is finished

e v e′ meaning: e occurs while e′ occurs

We also write e @ e′ if e v e′ and not e′ v e. All relations are only partial
order relations. Nevertheless, they can be used to define corresponding

3Thinking of human actions as particular types of events, this implication has been
described by Danto (1985, p. 284) as follows: “Not knowing how our actions will be seen
from the vantage point of history, we to that degree lack control over the present. If
there is such a thing as inevitability in history, it is not so much due to social processes
moving forward under their own steam and in accordance with their own natures, as it
is to the fact that by the time it is clear what we have done, it is too late to do anything
about it.”
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Fig. 2.1-1 Illustration of order relations between four
events on a qualitatively ordered time axis.
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Fig. 2.1-2 Graph illustration of ‘4’ relation between
the four events shown in Figure 2.1-1.

relations between the t-locations of events. We use the same symbols:

t(e) 4 t(e′) ⇐⇒ e 4 e′

t(e) / t(e′) ⇐⇒ e / e′

t(e) v t(e′) ⇐⇒ e v e′

We will say that a set of events is equipped with a qualitatively ordered
time axis if these three relations are available.

7. As an illustration consider the four events in Figure 2.1-1 where one
can find the following order relations:

e1 4 e2, e1 4 e3, e1 4 e4, e2 4 e3, e2 4 e4, e3 4 e4

e1 / e3, e1 / e4, e2 / e3, e2 / e4

e2 v e1

Of course, on a qualitatively ordered time axis, the lengths of the line
segments used in Figure 2.1-1 to represent events do not have a quantitative
meaning in terms of duration. This becomes clear if one represents the
order relations between events by means of a directed graph. This is
illustrated in Figure 2.1-2 where the arcs represent the 4 relation between
the events.
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Composing Events

8. Our language is quite flexible to compose two (or more) events into
larger events. As an example one can think of clock ticks as elementary
events. It seems quite possible to think also of two or more successive clock
ticks as events. To capture this idea formally, one can introduce a binary
operator, t , that allows to create (linguistically) new events. The rule
is: If e and e′ are two events then also e t e′ is an event. Events created
by using the operator t will be called composed events . When classes of
events are considered, one can assume that these are closed with respect to
t by extending the time order relations defined above for composed events
in the following way:

e t e′ 4 e′′ ⇐⇒ e 4 e′′ or e′ 4 e′′

e t e′ / e′′ ⇐⇒ e / e′′ and e′ / e′′

e t e′ v e′′ ⇐⇒ e v e′′ and e′ v e′′

This also allows to introduce the notion of an elementary event. A possible
definition would be that an event, say e, is an elementary event if there is
no other event, e′, such that e′ @ e. Using this definition, one conceives of
elementary events as not being divisible into smaller events with respect
to a class of events.

9. It might seem questionable whether elementary events do exist. When
describing an event it often seems possible to give a description in terms
of smaller and smaller sub-events, without definitive limit. However, we
are not concerned here with the ontological status of events. Regardless
of whether it is possible to give descriptions of events in terms of smaller
sub-events, when talking about events one cannot avoid to assume some
“universe of discourse” that provides the necessary linguistic tools. This
justifies the assumption that one can single out a finite number of elemen-
tary events from any finite collection of events.

10. Interestingly, it seems not possible to define a converse operation, u,
by using the interpretation that e u e′ occurs while both events, e and
e′, are occurring. The reason is that we should be able to say that an
event has, in fact, occurred as soon as the event no longer occurs. But this
condition will in general not hold for e u e′ because one can only say that
e and e′ occurred when both are over. There is, therefore, no obvious way
to define an algebra of events.

2.2 Duration and Calendar Time

1. Having introduced the idea of a qualitatively ordered time axis, one can
think about possibilities to quantify temporal relations. We begin with an
elementary notion of duration. If an event, e, occurs while another event,
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e′, is occurring (e v e′), one can say that the duration of e is not longer
than the duration of e′. This introduces a partial ordering of events with
respect to duration and can be used as a starting point for a quantitative
concept of duration.

a) In order to measure the duration of an event e we count the number
of pairwise non-overlapping events e′ such that e′ v e.4 The maximal
number of those events can be used as a discrete measure for the dura-
tion of e having t-locations as units. As an implication, all elementary
events will have a unit duration.

b) In the same way one can measure the duration between two events, say
e and e′. Again, simply determine the maximal number of pairwise not
overlapping events, e′′, such that e / e′′ / e′. If such an event cannot
be found we say that e′ immediately follows e.5

2. These definitions make duration dependent on the number of events
that can be identified in a given context. An obvious way to cope with
this dependency is to enlarge the number of events that can be used to
measure duration. This is done by using clocks. Defined in abstract terms,
a clock is simply a device that creates sequences of (short) events. Then,
if a clock is available when an event occurs, its duration can be measured
by counting the clock ticks that occur while the event is occurring. Let e
be the event whose duration is to be measured and let cn denote an event
composed of n clock ticks. One might then be able to find a number, n,
such that

t(cn) v t(e) v t(cn+1)

This will allow to say that the duration of event e is between n and n + 1
clock ticks.

3. Many different kinds of clocks have been invented,6 and this has led
to the difficult question how to compare different clocks with respect to
accuracy. Fortunately, we are not concerned here with the problem of how
to construct good clocks. We can simply use the clocks that are com-
monly used in daily life to characterize, and coordinate, events. We are,
however, concerned with the problem how to numerically represent du-
rations, independent of the device actually used for measurement. Since

4It will be said that two events, e′ and e′′, do not overlap if e′ / e′′ or e′′ / e′.

5In fact, we then do not have any reason to believe in a duration between e and e′.
Leibniz (1985, p. 7) made this point by saying: “Ein grosser Unterschied zwischen Zeit
und Linie: der Zwischenraum zwischen zwei Augenblicken, zwischen denen sich nichts
befindet, kann auf keine Weise bestimmt werden und es kann nicht gesagt werden,
wieviele Dinge dazwischen gesetzt werden können; [. . .] In der Zeit berühren sich daher
die Momente zwischen denen sich nichts ereignet.”

6See, e.g., Borst (1990).
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clocks with different accuracies do exist we should find a numerical repre-
sentation that is independent of any specific clock. This suggests to use
intervals of real numbers to represent durations. Since duration is always
positive a sensible choice is

R]+] := { ] a, b ] | 0 ≤ a < b, a, b ∈ R}

This representation is intended to capture both conceptual and empirical
indeterminacy.7

4. Thinking of events one needs to distinguish between t-locations and
durations. The duration of an event tells us how long the event lasted
while the t-location of an event provides information about the location
of the event in a set of events equipped with the partial orders, 4, /, and
v. The basic tool for the introduction of quantitative statements about
t-locations is a calendar . Calendars can be defined by specifying a base
event and using the concept of duration between events. This allows to lo-
cate every event by providing information about the (positive or negative)
duration between the event and the base event of the calendar. To make
this idea precise one only needs a definition of duration between events.
In principle, one can follow the approach already mentioned above. Then,
having available a clock, the duration between two events, say e and e′,
can be measured by counting the number of non-overlapping clock events
having a t-location between e and e′. However, this definition of duration
between events is not fully satisfactory because the events also have a du-
ration. This fact obviously creates some conceptual indeterminacy and it
seems therefore preferable to proceed in terms of a minimal and maximal
duration as follows:

e1

minimal duration
︷ ︸︸ ︷

e2

︸ ︷︷ ︸

maximal duration

This suggests to use again the set of positive real intervals, R]+], now for
the numerical representation of duration between events.

5. The main conclusion is that each event refers to time in two different
ways.

a) First, events have an inherent duration. This qualitative notion can be
represented numerically by positive real intervals. It will be assumed,
therefore, that one can associate with each event, e, a positive duration

dur(e) ∈ R]+]

7A fuller exposition of the idea to use intervals for the representation of data hav-
ing both empirical and conceptual indeterminacies, including a discussion of statistical
methods based on this kind of data representation, has been given elsewhere, see Rohwer
and Pötter (2001, Part V).
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Of course, the interpretation of dur(e) requires information about the
kind of elementary events that have been used to measure duration.
If all elementary events are of the same kind, as is normally the case
when using clocks, one of these events (or a suitably defined composed
event) provides a sensible unit of duration. In any case, it will most
often be possible to assume that duration can be measured in some
standard units like seconds, days, months, or years.

b) Second, one can associate with each event a t-location that provides
information about the place of the event in the order of time. Again,
this is a purely qualitative notion defined with respect to three partial
order relations between events. However, one can introduce a quan-
titative representation of the duration between events, by using real
intervals. Then, for each pair of events, e and e′, one can use

dur(e, e′) ∈ R]+]

to represent the duration between the two events.

Finally, one can introduce a calendar as a quantitative representation of
t-locations. Having specified a base event, e†, one can represent the t-
location of any other event, say e, by the duration between e and e†.
Then, if e† 4 e, dur(e†, e) provides a quantitative representation of the
t-location of e with respect to the calendar defined by e†.8 So one finally
can use a single numerical representation, R]+], both for the durations and
t-locations of events.

2.3 Calculations with Calendar Time

1. Calendars, like methods of measuring time, changed considerably in
the course of history. The choice of a suitable base event and the use of
different clocks signify the main differences between the historical calendars
used. The idea that nature provides the human experience with many
periodic phenomena that, in some sense, should be accommodated by a
calendar often provided reasons for calendar reforms.9 Today, in European
countries, the most often used calendar is the Gregorian calendar that was
introduced by Gregor XII in 1582. A German encyclopedia (Brockhaus,
20th ed. 2001, vol. 11, p. 367) provides the following explanations:

”
Der heutige bürgerliche Kalender basiert auf dem gregorian. K. Er ist demnach

ein Schalt-K. mit einem Gemeinjahr von 365 Tagen. Ein Schalt-Zyklus von 400
K.-Jahren hat 146097 K.-Tage. Ein mittleres K.-Jahr hat somit 365,2425 Tage,
ist also um 26 s länger als das trop. Jahr.

8If e 4 e†, one can use the same approach by allowing for negative real intervals.

9The history of calendars is described in several books, see, e.g., Borst (1990) and
Richards (1998).
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Die K.-Jahre werden ab Christi Geburt gezählt, beginnend mit dem Jahr 1 nach
Christus (Abk. n. Chr.). Die K.-Jahre vor dem K.-Jahr 1 werden mit 1 beginnend
in die Vergangenheit nummeriert und durch den Zusatz >vor Christus< (Abk.
v.Chr.) gekennzeichnet. Ein K.-Jahr 0 gibt es nicht (außer für den Bereich der
Astronomie).

Ein K.-Jahr wird in 12 Monate unterteilt, von denen die Monate Januar, März,
Mai, Juli, August, Oktober, Dezember 31 Tage haben, die Monate April, Ju-
ni, September, November 30 Tage und der Monat Februar 28 oder in einem
Schaltjahr 29 Tage. Unabhängig hiervon wird das K.-Jahr in K.-Wochen zu je 7
Wochentagen unterteilt, von denen es 52 oder 53 hat. Als erste K.-Woche eines
Jahres zählt diejenige Woche, in die mindestens 4 der ersten 7 Januartage fallen
(dabei gilt der Montag als erster Tag der K.-Woche). Ist das nicht der Fall, so
zählt diese Woche als letzte K.-Woche des vorausgehenden K.-Jahres.“

Many readers of this text will be familiar with this calender and know how
it can be used for temporal references. Some difficulties only arise in the
calculation of durations for longer periods. For example, how long is the
period beginning June 13, 1911, and ending February 7, 2001, in days,
weeks, months?

2. To answer this kind of question, an often used method consists in trans-
forming Gregorian dates into numbers defined by an algorithm that simply
counts days.10 The idea is to first fix some day in the Gregorian calen-
dar to become day 0 in the algorithmic calendar, and then to develop an
algorithm that allows, for any other day in the Gregorian calendar, to
calculate its temporal distance from day 0. As an example, we describe
an algorithm proposed by Fliegel and van Flandern (1968) that uses the
Gregorian Date November 24, in the year 4714 B.C., as day 0.

3. The algorithm consists of two parts. Given a Gregorian date by d (day),
m (month) and y (year), one algorithm is used to calculate a corresponding
Julian day which we denote by k. In a first step, one calculates two
auxiliary quantities:

a = (m − 14)/12 und b = y + a + 4800

Then the following formula provides the Julian day k :

k = d − 32075 + 1461
b

4
+ 367

m − 2 − 12 a

12
− 3

b+100
100

4

It should be noticed that all calculations must be done in integer arith-
metic. This means that all (intermediate) floating point results must be
truncated to the next integer. For example, 25/9 = 2.

10Such an algorithm is often called a Julian calendar . The name goes back to Joseph
Scaliger who, in the year 1583, first proposed this kind of algorithmical calendar. In
fact, it has nothing to do with the calendar, also often called a Julian calendar, that
was introduced by Julius Caesar in 46 B.C. [v.Chr.].
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4. Conversely, a second algorithm is used to calculate the Gregorian day
d, month m, and year y, that correspond to a given Julian day k. The
calculations consist of the following steps:

p = k + 68569

q = (4 p)/146097

r = p − (146097 q + 3)/4

s = 4000 (r + 1)/1461001

t = r + 31− (1461 s)/4

u = (80 t)/2447

v = u/11

d = t − (2447 u)/80

m = u + 2 − 12 v

j = 100 (q − 49) + v + s

The following table shows a few examples.11

d m j k d m j k

1 1 1 1721426 1 1 2001 2451911
31 12 0 1721425 31 12 2000 2451910

The table also shows that the first year B.C. is given by y = 0, not by
y = −1 as the explanation of the Gregorian calendar cited above might
suggest.

2.4 Limitations of Accuracy

1. Depending on the purpose, temporal references use different units of
time: days, weeks, months, years, also smaller units like minutes and
seconds. When recording statistical data, a suitable choice of temporal
units depends on the kinds of phenomena to be captured by the data. For
example, to record the age of a person one can use age in completed years,
and there are rarely occasions to use a finer time scale. One exception is
the analysis of mortality of newborn children. On the other hand, years are
not well suited to record the length of unemployment spells. We would like
to distinguish between persons who are unemployed, for example, less than
3 or longer than 6 or 12 months. This suggests to measure unemployment
durations not in years, but at least in months. A finer time scale seems

11Most statistical packages provide some means to convert between Gregorian dates
and Julian days. TDA, for example, provides operators that directly use the algorithms
of Fliegel and van Flandern as described above. SPSS uses a similar algorithm but a
different base day (October 14, 1582).
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to introduce but irrelevant information, since most jobs end at the end of
calendar months and start at the beginning of calendar months.

2. There are thus no natural temporal units, neither to locate events in
historical time nor to measure durations. Moreover, the precision of data
recording might be limited. While an observer might be able to measure
the duration of a football game in terms of minutes, a demographer can
not determine the age of a person by using a clock. He sometimes can
rely on records, like birth certificates, but most often needs to ask persons
for their age and the dates of other potentially interesting events. The
accuracy of demographic data then also depends on person’s memory and
the temporal framework that is used by them to temporally locate events.
While these are empirical limits to the accuracy of demographic data, there
also are theoretical limits. One of these limits, already mentioned, derives
from the fact that demographic events always have some intrinsic duration.
Even if it would be possible to provide a birth date exactly to the hour,
or to measure marriage duration in days, the accuracy of the data would
be useless because there is no theoretical argument that might justify a
distinction. Why should one want to distinguish between two marriages,
one of them lasting 5734 and the other one 5735 days? Even if true, it
would be misleading to say that the second marriage lasted longer than the
first one. As another example suppose that one has a job just in February
while someone else has a job just in July. Then the length of employment
of the first person is three days shorter than that of the second person,
but both get the same renumeration, social security insurances, etc. The
point is simply that data should serve to report relevant differences, not
just any differences.



Chapter 3

Demographic Processes

Since demography is concerned with describing and modeling the devel-
opment of human populations it is dealing with Gesamtheiten embracing
many individuals. Their size may vary depending on the spatial or tem-
poral demarcation. However, in most cases already its sheer size makes a
direct and complete observation impossible. While it might be possible,
at least in principle, to empirically approach each individual member of
a population, the same is not true for the population as a whole. For
example, we might want to talk about the totality of people who are cur-
rently living in Germany. While it is possible to empirically approach any
number of individual persons, no one is able to observe the population as
a whole. Put somewhat differently, the population as a whole is not an
empirical object but a conceptual construction. This is not to deny that
all of its members, and consequently also the population, really exists.
However, the statement says that one needs some kind of representation
of the population in order to have an object that one can think of and
talk about. This chapter begins with the introduction of a rudimentary
conceptual framework and some notations that allow to make the required
representations explicit.

3.1 A Rudimentary Framework

1. In order to think of a human population one first needs a spatial and
temporal context. To specify a temporal context we assume a discrete
time axis as discussed in Chapter 2. Such a time axis can be thought of
as a sequence of temporal locations which may be days, months, or years.
To provide a symbolic representation we use the notation1

T := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

The elements t ∈ T are not just numbers but represent temporal locations.
For example, 0 represents a ‘day 0’, 1 represents a ‘day 1’, and so on. Since
we want to develop a general conceptual framework that can serve both
for descriptions and models, the duration of the temporal locations will be
left unspecified. We only assume that all temporal locations have the same
duration, and the existence of a temporal ordering in the following sense:

1In this text we distinguish between ‘=’ and ‘:=’. Preceeding the equality sign by
a colon shall mean that the expression on the left-hand side will be defined by the
expression on the right-hand side. In contrast, the equality sign without a colon states
an equality that requires both sides to be defined beforehand.
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temporal location t precedes, and is followed by, the temporal location t+1
(for any t ∈ T ). For the moment, we do not require any specific link with
historical (calendar) time.

2. In a similar way one can introduce a set of spatial locations, in the
following denoted by the symbol S. The idea is that the elements of S

provide a spatial context for human individuals. The spatial locations can
be defined in many different ways, for example, by referring to geographical
or political demarcations. But like temporal locations, spatial locations
only need to be specified when it is required by the specific empirical
purpose. For the moment, we also do not introduce any kind of topology or
metric. Furthermore, we do not make any assumptions about the number
of spatial locations in S. In particular, we allow for the limiting case that
S only contains a single spatial location. We only require that our space
is complete, in the sense that spatial mobility can only occur across the
spatial locations given by S.

3. Having introduced a temporal and spatial context, one can think of
people who live in this context. The symbol Ωt will be used to represent
the totality of people who live in the space S during the temporal location
t ∈ T .2 The sets Ωt are finite, and so one can sensibly speak of the
number of people living during the temporal locations t. The temporal
index t is necessary because the composition of the population sets Ωt

changes through time. In each temporal location, some people might die
and others might be born. Also, if two sets, Ωt and Ωt′ , contain the
same number of people, they might not be identical. Referring to a set of
people implies that one is able to identify and distinguish its members. In
addition, we assume that, for each individual ω ∈ Ωt, there is exactly one
spatial location s ∈ S where ω is currently living.

4. One further question needs consideration. Regardless of their specifi-
cation, temporal locations have some inherent duration. People are born,
marry or die during a temporal location. One therefore needs a convention
about starting and ending times for the membership in the sets Ωt. Our
convention will be as follows: If a child is born in a temporal location t, it
will be considered as a member of Ωt but not of any earlier population set;
conversely, if a person dies in a temporal location t, she will be regarded as
a member of Ωt but not of any later population set. How this convention
relates to the measurement of age will be discussed in Section 3.4.

5. This then is our rudimentary context: a space S where people live,
a time axis T that allows temporal references, and population sets Ωt

that contain (fictitious) names of people living in the space S during the

2More precisely, the elements of Ωt are not human individuals but (fictitious) names.
However, having understood the distinction it should be possible to refer to the elements
of Ωt as individuals without creating confusion.
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temporal locations defined by T . While this context is quite abstract and
certainly requires a lot of specifications to become empirically useful, it
already allows to formulate the two basic demographic questions: How are
the population sets Ωt changing across time, and how do these changes
depend on births, deaths, and migrations?

A Fictitious Illustration

6. A small fictitious example can serve to illustrate the conceptual frame-
work. Imagine a small island with only a few inhabitants.3 Sometimes a
new child is born or one of the inhabitants dies, and sometimes someone
leaves the island or comes from outside as a new member of the island
community. How to get more information? This is the task of a chronicler
who, more or less systematically, writes down what is happening on the
island. His chronicle may contain entries for any kinds of event, but here
we are only interested in elementary demographic events. So we assume
that the chronicle gets an entry whenever a child is born, one of the in-
habitants dies, a person enters the island from outside and becomes a new
inhabitant, or one of the inhabitants leaves the island.

7. Obviously, the chronicle must begin at some point in time. We assume
that the records begin in 1960 and are continued until 1990. In the first
year, the chronicler makes a list of all people who are currently living on
the island and also records their age and sex. This list might look as
follows:4

Name ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Age 40 38 4 16 63 70 25 8 63 11
Sex 0 1 1 0 1 0 1 0 1 0

This is the stocktaking in the first year, 1960, when the chronicle begins.
In the following years the chronicler adds entries whenever a demographic
event occurs. The complete chronicle, up to the year 1990, might then
look as shown in Table 3.1-1.

8. It is quite possible that the chronicler not only records demographic
events but adds a lot more information about the life of the people on the
island and their living conditions. Since, in this example, the number of
people is very small one also can imagine that the chronicler creates his
chronicle not simply as a list of records, but uses some literary form and

3For example, one may think of Hallig Gröde, a small island at the west coast of
Schleswig-Holstein in northern Germany. With currently 16 people living on this island,
it is the smallest municipality [Gemeinde] in Germany.

4Age is recorded as usual in completed years; sex is represented by numbers, 0 repre-
senting ‘male’ and 1 representing ‘female’ individuals.
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Table 3.1-1 Chronicle of our fictitious island.

Year Name Age Sex Kind of event

1961 ω4 17 0 leaves the island

1963 ω6 73 0 dies

1964 ω11 30 0 becomes new inhabitant

1966 ω12 0 1 is born

1970 ω13 0 0 is born

1971 ω9 74 1 dies

1975 ω8 23 0 leaves the island

1975 ω14 26 1 becomes new inhabitant

1980 ω15 0 0 is born

1982 ω16 0 1 is born

1985 ω5 88 1 dies

really tells a story about the life on the island. It is evident, however, that
this is not possible if the number of people becomes very large. But then
also the simple list of records becomes larger and larger and difficult to
survey; and so it becomes necessary to condense the list into comprehen-
sible information. This is the task of statistical methods. The basic ideas
will be discussed in the next chapter.

3.2 Representation of Processes

1. It is often said that demography, like other social sciences, is concerned
with “processes”. Taken literally, this only expresses an interest in se-
quences of events that are assumed to be related in some way. But how
does one delineate the events that are part of the process? Observations
will not provide an answer because the possibilities to consider objects
and events as being part of a process are virtually unlimited. We therefore
understand ‘process’, not as an ontological category (something that ex-
ists in addition to objects and events), but as belonging to the ideas and
imaginations of humans aiming at an understanding of the occurrences
they are observing. Put somewhat differently, we suggest to understand
processes as conceptual constructions. This is not do deny that processes
can meaningfully be linked to observations of objects and events; but this
will then be an indirect link: one can observe objects and events, but not
processes. The fictitious chronicle of the previous section can serve as an
example. The chronicle can meaningfully be understood as the charac-
terization of a process and, as we have construed the example, it derives
from observations. However, what the chronicler actually observes is not a
process but the people on the island and a variety of events involving these
people. The process only comes into existence by creating the chronicle.
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This example also illustrates the abstractions that cannot be avoided in
the construction of processes. Only a small number of events can be given
an explicit representation. In the example, the chronicler only records
some basic demographic events and consequently abstracts from most of
what is actually happening on the island.

2. In order to explicitly define processes it seems natural to begin with
events. For demographic processes, the basic events are births, deaths,
and migrations. An explicit representation of these events can be avoided,
however, by using the conceptual framework introduced in the previous
section.5 This allows to think of a demographic process simply as a se-
quence of population sets, Ωt. Birth and death events are then taken
into account by corresponding updates of these population sets; each birth
adds a person and each death removes one. This motivates the following
notation to represent a demographic process without external migration:

(S, T ∗, Ωt)

to be understood as a sequence of population sets, Ωt, which are defined
for all temporal locations t ∈ T

∗. In this formulation, T
∗ denotes a

contiguous subset of the time axis T that covers the period for which the
process shall be considered, and S provides a representation of the spatial
context.6

3. The assumption on S introduced in the previous section implies that
migration can only occur inside this space. People can move between
the spatial locations defined by S, but such events will not change the
size of the population and need not be taken into account for a general
definition of demographic process. The situation is somewhat different
when a demographic process is restricted to a subset of S, say S

∗ ⊂
S, which is often the case in empirical applications, for example, when
considering the demographic development in a specific country. People
can then migrate between S

∗ and S \ S
∗. However, if a definition of

population sets is restricted to the subspace S
∗, such events can formally

be treated like births and deaths; in-migration adds a person and out-
migration removes a person. One therefore can use an analogous notation,

(S∗, T ∗, Ωt)

in order to represent a demographic process with external migration. As
already explained, the notation is meant to imply that S

∗ is a proper
subset of S and the population sets Ωt are restricted to S

∗.

4. All further concepts to be introduced in this text, including statistical

5An alternative approach that explicitly begins with events is taken, e.g., by Wunsch
and Termote (1978, ch. 1).

6A fully explicit notation would therefore be: (S, T ∗, {Ωt | t ∈ T
∗}).
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variables, will be derived from the notion of a demographic process (with
or without external migration). As a first step, one can simply refer to the
number of people who are members of the population sets Ωt. We will use
the following notations:

nt := number of people in temporal location t (nt = |Ωt|)

bt := number of children born in temporal location t

dt := number of people dying in temporal location t

For a demographic process without external migration the relation between
population size and birth and death events can then be written as follows:

nt+1 = nt + bt+1 − dt (3.2.1)

For a demographic process with external migration we use, in addition,
the notations:

mi
t := number of people who enter S

∗ in temporal location t

mo
t := number of people who leave S

∗ in temporal location t

The basic equation then becomes

nt+1 = nt + bt+1 − dt + mi
t+1 − mo

t (3.2.2)

These equations will be called accounting equations of a demographic pro-
cess (with or without external migration). One should notice that these
accounting equations are true by definition. They simply are book-keeping
identities about demographic processes and do not have any causal mean-
ing. Illustrations will be given in Chapter 6 with data for the demographic
development in Germany.

5. Notwithstanding the conventions introduced in the last paragraph of
the preceding section, referring to the number of people who live during a
temporal location t inevitably involves some conceptual indeterminacies. If
temporal locations are short, e.g. days, such indeterminacies might well be
ignored. On the other hand, if the temporal index t refers to years, or even
longer periods, one might want to distinguish the number of people who
live during this period from the number of people who live at the beginning,
or end, of the period. This is done, for example, in many publications of
population statistics by the Statistisches Bundesamt . The distinction is
between the number of people at the end of a year, defined as the last
day in the year, and a midyear population size.7 When analyzing data

7The definitional apparatus of the STATIS data base (see Appendix A.1) provides
the following explanations:

”
Der Bevölkerungsstand gibt die Zahl der Personen an,

die zur Bevölkerung gehören, nachgewiesen zu verschiedenen Zeitpunkten. Der Bevöl-
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from population statistics it is therefore necessary to distinguish between
the different definitions used in the data construction. The notation nt

is always meant to represent some kind of mean population size in the
temporal location t, most often a year. In addition, we use the following
notations:

n`

t := population size at the beginning of t

na

t := population size at the end of t

and assume that na

t = n`

t+1. The exact meaning of “beginning” and “end”
will be left unspecified because possible meanings depend on the applica-
tion context and availability of data.

6. If the beginning and end of a temporal location are explicitly distin-
guished, the formulation of the accounting equations has to be changed
accordingly:

na

t = n`

t + bt − dt (3.2.3)

for a demographic process without external migration, and

na

t = n`

t + bt − dt + mi
t − mo

t (3.2.4)

for a demographic process with external migration. These versions of the
accounting equations will be used in Section 6.4.

3.3 Stocks, Flows, and Rates

1. Demographers have invented a large number of measures to character-
ize demographic processes.8 Some of these measures will be introduced in

kerungsstand im Jahresdurchschnitt insgesamt ist das arithmetische Mittel aus zwölf
Monatswerten, die wiederum Durchschnitte aus dem Bevölkerungsstand am Anfang und
Ende jeden Monats sind. Zur Berechnung des durchschnittlichen Bevölkerungsstandes
nach Altersjahren und Geschlecht wird ein vereinfachtes Verfahren angewendet: Es wer-
den lediglich die arithmetischen Durchschnittswerte aus dem Bevölkerungsstand jeder
Gruppe zum Jahresanfang und -ende gebildet und mit einem Korrekturfaktor multipli-
ziert. Dieser Korrekturfaktor ist der Quotient aus dem durchschnittlichen Bevölkerungs-
stand insgesamt und der Summe aller vereinfacht berechneten Durchschnittswerte des
Bevölkerungsstandes in den einzelnen Altersjahren.“ One should also note that these
definitions have exceptions and have changed through time.

”
In den Jahren 1961, 1970

und 1987 wurden keine Durchschnittwerte gebildet, sondern die Ergebnisse der jeweili-
gen Volks- und Berufszählungen nachgewiesen.“

”
Bis 1953 und von 1956 bis 1960 wurde

zur Berechnung des Bevölkerungsstandes im Durchschnitt insgesamt das arithmetische
Mittel aus jeweils vier Vierteljahreswerten gebildet; dagegen wurde der Bevölkerungs-
stand von 1953 bis 1955, von 1962 bis 1969 und wird seit 1971 – wie oben beschrieben
– als Durchschnitt aus Monatswerten berechnet.“

8For a fairly complete compilation of the many measures that are used in the demo-
graphic literature see Mueller (1993 and 2000), or Esenwein-Rothe (1982).
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Part II of this text when dealing with real data. In the present section
we briefly discuss a general idea that has motivated many of these mea-
sures and is derived from a distinction between stock and flow quantities.
As an example, we refer to equation (3.2.1) in the previous section. The
equation connects two kinds of quantity: nt and nt+1 are stock quantities
[Bestandsgrößen] which record the number of people who live in the re-
spective temporal locations; on the other hand, bt+1 and dt are called flow
quantities [Stromgrößen] because they record changes (events) which oc-
cur during the respective temporal locations. The general idea is: a stock
quantity records some state of affairs that is (assumed to be) fixed in a
given temporal location, and a flow quantity records changes that occur
during some time interval. A flow quantity then counts the number of
events of a certain kind which occur during that time interval.

2. A further step consists in the definition of rates [Raten]. The basic idea
is to relate the number of events to a number of people who can, in some
sense, contribute to the occurrence of the events. A marriage rate can
serve as an example:

marriage rate :=

number of marriages in year t

number of people who might become married in year t

As shown by this example, a rate is always a ratio where the numerator
refers to a flow quantity. The only question is how to define a sensible
denominator. In a strict sense, the denominator should refer to the number
of people who might experience the events referred to in the numerator.
This is possible, for example, when referring to death events. Since any
living individual might die at any time, the denominator of a mortality
rate can simply refer to all people still alive at a given temporal location.
In other cases the definition of a sensible denominator is more difficult.
How should one define the number of people who might become married
in a certain year? It does not suffice to exclude people who are already
married, one should also exclude children below a certain age.

3. Actually, the term ‘rate’ is used quite loosely in the demographic lit-
erature and other areas of social statistics. While it is most often a ratio
where the numerator refers to a flow quantity in the sense of a number
of events occurring during a time interval, the denominator might refer
to any kind of stock quantity that is assumed to exhibit some sensible
relation to the numerator. An example is the crude birth rate [allgemeine
Geburtenziffer9] which is defined by

crude birth rate :=
number of births in year t

mean population size in year t

9This expression that avoids the term ‘rate’ is used by the Statistisches Bundesamt .
In the literature one also finds other expressions, for example ‘rohe Geburtenrate’.
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(often multiplied by 1000).

4. Another example is the notion of a rate of change [Veränderungsrate],
also called a growth rate [Wachstumsrate]. This notion can be applied to
any sequence of stock quantities. As an example, we refer to a sequence of
population sizes, nt. The rate of change, or growth rate, of the population
is then defined by10

ρt :=
nt+1 − nt

nt
(3.3.1)

For a demographic process without external migration this can also be
written in the form

ρt =
bt+1 − dt

nt
=

bt+1

nt
−

dt

nt

This formulation shows that the numerator is a flow quantity and the
denominator a stock quantity. However, the calculation only requires a
knowledge of the stock quantities. As an example, we use some figures
that refer to the demographic development in Germany for the period
1990 to 1996:11

t 1990 1991 1992 1993 1994 1995 1996

nt 79365 79984 80594 81179 81422 81661 81896
ρt 0.0078 0.0076 0.0073 0.0030 0.0029 0.0029

Of course, growth rates can also be expressed in percent.

5. The definition of growth rates given above immediately implies the fol-
lowing equation:

nt+1 = nt (ρt + 1)

If one considers not just two consecutive temporal locations but some
longer time interval, say from t to t + t′, one finds the more general rela-
tionship

nt+t′ = nt (1 + ρt) · · · (1 + ρt+t′−1) = nt

t′−1∏

τ=0

(1 + ρt+τ )

10Since a growth rate conceptually relates to two temporal locations, it is an arbitrary
convention to index the rate by the first temporal location. Some authors, e.g. Rinne
(1996, p. 84), use the second temporal location. We mention that growth rates can also
be defined differently. For example, when it seems sensible to distinguish the beginning
and end of a period t, one might define a growth rate for this period by (na

t − n`
t )/n`

t .

11The figures refer to the midyear number of people in 1000 and are taken from Statis-
tisches Jahrbuch 1997 für die Bundesrepublik Deutschland (p. 46).
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This equation can also be used to define a mean growth rate [durchschnitt-
liche Wachstumsrate]. The idea is to assume a constant growth rate during
the time interval from t to t + t′. If this constant growth rate is denoted
by ρ, one gets the equation

nt+t′ = nt (1 + ρ)t′

The mean growth rate for a period from t to t + t′, in this text denoted
by ρt,t+t′ , is defined as the solution of this equation and can be calculated
with the following formula:

ρt,t+t′ =

(
nt+t′

nt

)1/t′

− 1

As an illustration, using the figures from the above example, one finds

ρ1990,1996 =

(
81896

79365

)1/6

− 1 ≈ 0.00525

3.4 Age and Cohorts

1. A substantial part of the demographic literature is concerned with the
“structure” of the population sets Ωt, where ‘structure’ refers to statisti-
cal distributions of individual properties. Two of these properties are of
particular importance in demography: sex and age. This is due to the fact
that both are important preconditions of many demographic events.12 For
example, only women, during a certain period of their lifes, can give birth
to children; and also death events depend in some way on age. So it is
often sensible to distinguish people with respect to their sex and age. To
distinguish numbers of male and female individuals we use superscripts:
nm

t and nf
t will denote, respectively, the number of men and women living

in temporal location t; of course, nt = nm
t + nf

t .

2. Age refers to the duration between a current temporal location and
the date of birth of a person. A commonly used measure is completed
years . Demographers also use another measure often called exact age.
The meaning of this term depends on the time axis used to provide a
temporal framework. As an example, we assume a discrete time axis, T ,
with temporal locations defined as days. The exact age of a person is then
simply the number of days that passed away since the person was born.

12We speak of conditions in order to avoid causal connotations. Both, sex and age,
are clearly not “factors” which in some way “produce” demographic events. Thinking
of age as a “causal variable” has been called “fallacy of age reification” (Riley 1986,
p. 158).
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The following graphic illustrates the connection between exact age and age
in completed years:

- time

-� -�

6
birth

6
first birthday

6
second birthday

age 0 age 1

In this example, the exact age of a person is 0 during the day the person
is born, it is 1 during the next day, and so on. We will avoid, however, the
term ‘exact age’ and speak of age in completed days, or month, or years,
whatever unit of time is used for measurement. Furthermore, we simply
speak of age if the time unit is identical with the temporal locations of the
time axis that provides the temporal framework.

3. Given these conventions for the measurement of age, the members of
the population sets Ωt can be distinguished by their age. We will use
the notation Ωt,τ to refer to the subset of members of Ωt being of age τ
(τ = 0, 1, 2, . . .). This results in a partition

Ωt = Ωt,0 ∪ Ωt,1 ∪ Ωt,2 ∪ · · · =

∞⋃

τ=0

Ωt,τ

Using the notation nt,τ to refer to the number of members of Ωt,τ , a
corresponding equation is

nt = nt,0 + nt,1 + nt,2 + · · · =
∞∑

τ=0

nt,τ

Of course, there is an upper limit to the length of human life; summation
to ∞ simply avoids the specification of a definite limit.

4. If age is measured in the units of a time axis T , the relationship be-
tween age and time is quite simple: whenever a person survives a temporal
location t ∈ T this adds one unit to the person’s age.13 This relationship
can be graphically illustrated by an age-period diagram, also called a Lexis
diagram, as follows:14

13This statement assumes that age is measured in the same units as used for the def-
inition of T ; this also implies that, if an individual is of age τ in temporal location t,
then it was born in temporal location t − τ .

14Beginning with G.F. Knapp and W. Lexis, demographers have developed many vari-
ations of this basic age-period diagram; for a discussion see Esenwein-Rothe (1992,
pp. 16-30).

3.4 AGE AND COHORTS 35

- time

6

age

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

t1 t2

ppppp
ppppp
ppppp
ppppp
ppppp
ppppp

t

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pτ1

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pτ2

C1 C2

The horizontal axis represents time, the vertical axis represents age. The
diagonal arrows depict the life courses of individuals born in the same tem-
poral location. For example, the arrow denoted by C1 refers to individuals
born in temporal location t1. When time goes on they grow older and
their age can be read from the vertical scale. A vertical line that begins
at any temporal location, say t, intersects the diagonal life course lines at
the corresponding ages.

5. We use the notation Ct to refer to the set of people born in the temporal
location t, and C[t,t′] to refer to the set of people born in the time interval
from t to t′. Such sets are called birth cohorts .15 As shown by the Lexis
diagram, a demographic process can be considered as a temporal sequence
of birth cohorts, and this is one reason why this concept plays a prominent
role in demography. It is also a basic concept for much of the research that
deals with human life courses.16 The approach bases an understanding of
long-term changes in the development of societies on a comparison of the
life courses of members of successive birth cohorts.17 This research has
also led to a more general definition of the term ‘cohort’:

“A cohort is an aggregate of individual elements, each of which experienced
a significant event in its life history during the same chronological interval.”
(Ryder 1968, p. 546)

A similar definition was given by Glenn (1977, p. 8):

15Some demographers also use the word ‘generation’ or use both terms synonymously.
However, except when referring to relationships between parents and children, we will
avoid to speak of “generations” because this word has many different and often unclear
meanings; see, e.g., the discussion by Mannheim (1952), Pfeil (1967), and Kertzer
(1983).

16For an overview, see Wagner (2001).

17An early exposition of this view was given by Ryder (1965).
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“a cohort is defined as those people within a geographically or otherwise delin-
eated population who experienced the same significant life event within a given
period of time.”

Not just birth events, also most other kinds of event can then be used
to define cohorts; for example, one can speak of a marriage cohort that
comprises all people who married in the same time period.

6. In the present text cohorts will always be birth cohorts for which we have
introduced the notation Ct. Similar to the population sets Ωt, we think
of cohorts as sets of people, not as some kind of social group.18 We shall
also avoid any kind of analogy with individuals. A cohort is a conceptual
construction, not some object that exists apart and independent of its
members. In particular, we shall not think of cohorts as some kind of
“agents” that “drive” social change.19 This is not to deny that one may
find some similarities among the members of the same cohort. However,
whatever similarities one may find, they result from the life courses of
the individual cohort members.20 It is, therefore, conceptually senseless
to think of such similarities as resulting from being members of the same
cohort, that is, from being born in the same year. The argument becomes
not better if one refers, not just to the fact of being born in the same year,
but to events and social conditions that were experienced by members of
the same cohort at the same age. Such considerations might well be used
for a retrospective interpretation of similarities among members of the
same cohort. It would be a mistake, however, to use such considerations
for implicitly changing the meaning of the term ‘cohort’. The term is
defined by referring to people born in the same year, or historical period,
possibly adding some spatial demarcation. So whatever happens to be
the case afterwards is irrelevant for the meaning of the term ‘cohort’.21

The only fact derivable from the definition is that members of the same
cohort are always of (approximately) the same age during their life courses.
But being of the same age can not be used to explain facts or events. In
our view, therefore, cohort is not an explanatory concept, but a conceptual

18This distinctions has already been stressed by Mannheim (1952, pp. 288-9). Unfortu-
nately, Mannheim’s notions of a “generation as an actuality” and a “generation unit”
eventually obscure this distinction.

19This view has been suggested, more or less explicitly, by Ryder (1965). In another
paper, he wrote: “Some reservations to this discussion are necessary to obviate the
implication that cohorts are the exclusive agents of social change.” (Ryder 1968, p. 548)
The point, however, is not that there are also other agents, but that cohorts never are
agents. Cohorts do not bring anything about.

20This has been explicitly recognized by Mayer and Huinink (1990, p. 213): “the char-
acteristics of a cohort are aggregated outcomes of the individual behavior of cohort
members in the social context, indicated crudely by calender time.”

21An additional argument is simply that the members of a cohort experience quite
different events, and live under quite different social conditions, during their life courses;
see, e.g., Rosow (1978).
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tool that allows to think in terms of life courses and their development. As
we have mentioned, this also might help in retrospective interpretations.
But the explanatory value of such interpretations derives from locating
individual life courses within the historical periods in which they develop.

7. It should also be stressed that ‘cohort’ is essentially a retrospective con-
cept. The definition given above suggests that cohorts, like Ωt, are sets
of people. While this is formally correct, there is an important ontologi-
cal distinction. The population sets Ωt consist of people who live in the
historical time t. Therefore, if we know that a person is a member of Ωt,
we can infer that this person is alive in t. But now think of a cohort of
people born in some year t0. Knowing that a person is member of the
cohort Ct0 only allows to infer that this person lived during t0. For all
later periods, nothing definite can be inferred. Of course, most members
of Ct0 will live for some period following t0. But life beyond t0 is a property
of an individual member of the cohort, not of the cohort itself. It is thus
dubious how to speak of the temporal existence of a cohort. One might
say that Ct0 appears in the year t0 and remains existent until the death of
its last survivor. But this implies that the cohort is no longer a definite
population set but part of a demographic process, formally

Ct0 ≡ (Ct0,0, Ct0,1, Ct0,2, . . .)

where Ct0,τ denotes the set of members of Ct0 still alive at age τ . In
the framework of a demographic process without migration one can then
formally identify the sets Ct0,τ with the population sets Ωt0+τ,τ .

8. This temporal view is quite sensible and is used, for example, in the
construction of cohort life tables (Chapter 8). However, it is no longer
possible, then, to identify a cohort with a definite set of people. The
problem is somewhat obscured by the fact that most empirical cohort
studies actually condition on survivorship. They are concerned with people
born in t0 and having survived until some temporal location t > t0. So one
can speak of a definite set of people, formally identical with Ωt,t−t0 ; but
clearly, this set is not identical with Ct0 . Of course, there is nothing wrong
in referring to a population set Ωt,t−t0 . It implies, however, a retrospective
point of view. The population set Ωt,t−t0 only comes into existence when
history has passed the temporal location t. Therefore, thinking of cohorts
as definite population sets presupposes a retrospective point of view.



Chapter 4

Variables and Distributions

The last chapter introduced the notion of a demographic process, formally
denoted by (S, T ∗, Ωt). This suffices to represent the population size,
that is, the number of people in the population sets Ωt, and to record its
development through time. Additional questions concern properties of the
members of Ωt. Two such properties, sex and age, were already part of
the example discussed in Section 3.1, but many other properties can also
be considered. If the size of Ωt is large, how can one sensibly represent
the properties of all its members? This is the task of statistical methods
as has been expressed by a famous statistician, Ronald A. Fisher, in the
following way:

“Briefly, and in its most concrete form, the object of statistical methods is the
reduction of data. A quantity of data, which usually by its mere bulk is inca-
pable of entering the mind, is to be replaced by relatively few quantities which
shall adequately represent the whole, or which, in other words, shall contain as
much as possible, ideally the whole, of the relevant information contained in the
original data.” (Fisher 1922, p. 311)

The present chapter introduces two basic notions, statistical variables and
statistical distributions (additional concepts will be added in later chap-
ters). Definitions and notations mainly follow the author’s “Grundzüge der
sozialwissenschaftlichen Statistik” (2001). Some notational simplifications
will be discussed in Section 4.3.

4.1 Statistical Variables

1. Unfortunately, the word ‘variable’ is easily misleading because it sug-
gests something that “varies” or being a “variable quantity”. In order to
get an appropriate understanding it is first of all necessary to distinguish
statistical from logical variables. Consider the expression ‘x ≤ 5’. In this
expression, x is a logical variable that can be replaced by a name. Obvi-
ously, without substituting a specific name, the expression ‘x ≤ 5’ has no
definite meaning and, in particular, is neither a true nor a false statement.
The expression is actually no statement at all but a sentential function
[Aussageform]. A statement that is true or false or meaningless only re-
sults when a name is substituted for x. For example, if the symbol 1 is
substituted for x, the result is a true statement (1 ≤ 5); if the symbol 9 is
substituted for x, the result is a false statement (9 ≤ 5); and if some name
not referring to a number is substituted for x, the result is neither true nor
false but meaningless. As the reader will remember from his or her math-
ematical education such logical variables are heavily used in mathematics,
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often to formulate general statements, for example:

For all numbers x: if 0 ≤ x ≤ 5, then 0 ≤ x2 ≤ 25

This example also shows that logical variables are in no way “variable
quantities”.1

2. Statistical variables serve a quite different purpose. They are used to
represent the data for statistical calculations which refer to properties of
objects. The basic idea is that one can characterize objects by properties.
Since this is essentially an assignment of properties to objects, statistical
variables are defined as functions:2

X : Ω −→ X̃

X is the name of the function, Ω is its domain, and X̃ is a set of possible
values. To each element ω ∈ Ω, the statistical variable X assigns exactly
one element of X̃ denoted by X(ω). In this sense, a statistical variable
is simply a function.3 What distinguishes statistical variables from other
functions is a specific purpose: statistical variables serve to characterize
objects. Therefore, in order to call X a statistical variable (and not just
a function), its domain, Ω, should be a set of objects and the set of its
possible values, X̃ , should be a set of properties that can be meaningfully
used to characterize the elements of Ω. To remind of this purpose, the set
of possible values of a statistical variable will be called its property space
[Merkmalsraum] and its elements will be called property values [Merkmals-
werte].4

3. As was mentioned in the Introduction, in the statistical literature do-
mains of statistical variables are often called populations. This is unfor-
tunate because a statistical variable can refer to any kind of object. We
therefore use the term ‘population’ only if one is actually referring to sets

1This has been stressed by many logicians, see, e.g., Frege (1990, p. 142); and already in
1903, B. Russell (1996, p. 90) wrote: “Originally, no doubt, the variable was conceived
dynamically as something which changed with the lapse of time, or, as is said, as
something which successively assumed all values of a certain class. This view cannot
be too soon dismissed.”

2Since the notion of a ‘function’ is used throughout the whole text we have added a
section in Appendix A.2 providing basic definitions.

3It follows that logical and statistical variables are completely different things. More-
over, the term ‘variable’ is misleading in both cases. For a more extensive discussion
that also shows how both notions, logical and statistical variables, can be linked by using
sentential functions, see Rohwer and Pötter (2002b, ch. 9). — When there is no danger
of confusion, we will drop the attribute ‘statistical’ and simply speak of variables.

4We generally denote statistical variables by upper case letters (A,B, C, . . . ,X, Y,Z)
and their property spaces by corresponding calligraphic letters that are marked by a
tilde (Ã, B̃, C̃, . . . , X̃ , Ỹ, Z̃).
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of people. In the general case we speak of the domain or, equivalently, of
the reference set of a statistical variable.

4. As an illustration we use the chronicle introduced in Section 3.1. Re-
ferring to the year 1960, the reference set consists of the names of all
individuals who, in 1960, were inhabitants of the island:

Ω1960 := {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, ω10}

Given this reference set, one can think of characterizing its elements by
properties. Two property spaces have been used in the example, age and
sex. The latter property space consists of two elements, ‘male’ and ‘female’,
and may be written explicitly as follows:

S̃ := {male, female}

This then allows to define a statistical variable, say S, that assigns to each
individual ω ∈ Ω a property value S(ω) ∈ S̃ . Of course, if the statistical
variable is intended to represent data, the assignment should not be made
arbitrarily but reflect actual properties of the individuals. In our example,
the assignment should be made in the following way:

ω S(ω)

ω1 male
ω2 female
ω3 female
ω4 male
ω5 female
ω6 male
ω7 female
ω8 male
ω9 female
ω10 male

This example also demonstrates that, in contrast to most functions that
are used in mathematics, statistical variables cannot be defined by referring
to some kind of rule. There is no rule that would allow to infer the sex,
or any other property, of an individual by knowing its name. In order
to make a statistical variable explicitly known one almost always needs a
tabulation of its values.

5. As the example also shows, the elements of a property space are not
numbers but properties that can be used to characterize objects. However,
it is general practice in statistics to represent properties by numbers. This
was already done in Section 3.1 where we have represented the properties
‘male’ and ‘female’ by the numbers 0 and 1, respectively. One reason for
doing so is the resulting simplification in the tabulation of statistical data.
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The main reason is, however, another one: numerical representations allow
to perform statistical calculations. As an example, we introduce the mean
value of a statistical variable, say X , denoted by M(X). The definition is

M(X) :=
1

|Ω|

∑

ω∈Ω

X(ω)

The calculation consists in summing up the values of the variable for all
elements in the reference set and then dividing by the number of elements.
Obviously, the calculation requires a numerical representation for the val-
ues of the variable, that is, for the elements of its property space. But
as soon as one has introduced a numerical representation one can do any-
thing that can be done with numbers also with the values of a variable. To
be sure, this does not guarantee a result with an immediate and sensible
interpretation. This might, or might not, be the case and can never be
guaranteed from a statistical calculation alone.5 However, in our example
we get a sensible result. Performing the calculations of a mean value for
the variable S, we get the value

M(S) =
1

10
(0 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 1) = 0.5

providing the proportion of female individuals in the set of inhabitants of
our fictitious island.

6. The chronicle also provides information about the age of the inhabitants
of the island. Referring again to the set of people who lived on the island
in 1960, denoted by Ω1960, we can define another statistical variable that
assigns to each individual ω ∈ Ω1960 its age in 1960. We will call this
variable A, and denote its property space by Ã, defined by

Ã := {0, 1, 2, 3, . . .}

In this case we do not need to explicitly introduce a numerical represen-
tation because age, given its usual meaning in terms of completed years,
already has a numerical expression. Of course, an age of 40, say, is not
identical with the number 40. It is a number which is given a specific
meaning. Consequently, Ã, while formally identical with the set of natural
numbers, has an additional meaning which is not a part of the definition of
natural numbers, namely that its elements are agreed upon to denote ages
in completed years. Many other methods to provide information about
age could equally well be used, for example, measuring age in months or
days, or simply distinguishing between children and older people. These

5One cannot rely on any general rules but needs to consider each statistical calculation
in its specific context. As an example, think of household income and rent. Subtract-
ing rent from household income provides a meaningful result, but simply to add both
quantities does not.
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are considerations that precede the definition of a property space and,
consequently, a statistical variable. Here we follow the chronicler who has
used completed years to record ages allowing to define a statistical variable

A : Ω1960 −→ Ã

that provides for each inhabitant of the island his or her age in 1960.
Of course, the definition does not suffice to record ages. As in the first
example one needs to distinguish between merely assuming the existence
of a variable and actually knowing its values. To provide such knowledge
the values of a statistical variable must be explicitly recorded in some way.
In this example we can use again a simple table as follows:

ω A(ω)

ω1 40
ω2 38
ω3 4
ω4 16
ω5 63
ω6 70
ω7 25
ω8 8
ω9 63
ω10 11

Such a table, often called a data matrix , provides the values of a variable
and can be used as a starting point for further calculations. For example,
we can calculate the mean value of A which is

M(A) =
1

10
(40 + 38 + 4 + 16 + 60 + 70 + 25 + 8 + 65 + 11) = 33.7

In contrast to the first example, this is not a proportion but the value of
the mean age of the inhabitants of the island in 1960.

7. Our second example also shows that, in general, one needs to distinguish
between a property space as it is used to define a statistical variable and
the set of property values that are actually realized in some given reference
set Ω. The former will be called a conceptual property space and the latter
a realized property space.6 In our example, the realized property space is

A(Ω) = {A(ω) |ω ∈ Ω} = {4, 8, 11, 16, 25, 38, 40, 63, 70} ⊂ Ã

and is obviously not identical with Ã.

6The realized property space of a statistical variable can also be called its range. This
term is commonly used to denote, for an arbitrary function f : B −→ C, the image
f(B) ⊆ C; see also Appendix A.2.
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8. A further point is worth attention. The same property value can have
several realizations in a reference set. In our example, there are two indi-
viduals, ω5 and ω9, having the same age in 1960 (and, of course, during
their whole lifes). Also in the first example, several people share the prop-
erties ‘male’ and ‘female’, respectively. Using terminology from Appendix
A.2, one can say that statistical variables are, in general, not injective
functions. Inverse functions must therefore be defined in terms of sets.
For example,

A−1({4}) = {ω3}, A−1({5}) = ∅, A−1({63}) = {ω5, ω9}

The interpretation is straightforward: If Ã is a subset of the property space
Ã, then A−1(Ã) is the subset of members of Ω having a property value
in Ã. The same notation is used with any other statistical variable. For
example,

S−1({1}) = {ω2, ω3, ω5, ω7, ω9}

is the set of female members of Ω1960.

9. A final consideration concerns the reference sets that are used as do-
mains to define statistical variables. In both previous examples, Ω1960 was
taken to be a set of people, the inhabitants living on our fictitious island
in 1960. In general, Ω can be any set of objects. The formal notion of a
statistical variable only requires that the elements of Ω can be identified
and distinguished, and to which values of a property space can be mean-
ingfully assigned. This generality of statistical variables should be taken
with some caution, however, depending on the purpose to be served. In
this text, statistical variables will be used as means for demographic de-
scriptions and models. The basic conceptual framework is a demographic
process that consists of a space S, a time axis T , and population sets Ωt

comprising the people who are living in S during the temporal location t.
As our examples have shown, statistical variables can be used to represent
information about the members of the sets Ωt. It also seems possible to
use the space, S, as a domain for statistical variables which then take the
form

L : S −→ L̃

Such variables will be called spatial variables . They are always statistical
variables. Examples would be the characterization of spatial locations by
their size (e.g., in square kilometers), or by the number of people who cur-
rently live in these locations. These examples show that spatial locations,
as understood in this text, are similar to objects. Both have some kind of
physical existence and can sensibly be characterized by properties. This
ontological status is not shared, however, by temporal locations. Temporal
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locations are in no way similar to objects and do not have a physical exis-
tence. So it seems not possible to sensibly characterize temporal locations
by properties, and we therefore shall avoid to use a time axis as a domain
for the definition of statistical variables in a proper sense.

4.2 Statistical Distributions

1. Statistical variables provide the starting point for all further statistical
concepts. These concepts, directly or indirectly, always relate to reference
sets of statistical variables and not to their individual members,7 more
specifically: they relate to distributions of properties in a reference set. In
order to introduce this notion explicitly, consider a statistical variable

X : Ω −→ X̃

If all values of this variable were known it would be possible to use that
knowledge to characterize all individual members of Ω. However, statistical
concepts and methods have a quite different purpose. Statistical questions
do not concern individual members of Ω but frequencies of property values
in the reference set Ω. This was stated in a Declaration of Professional
Ethics , published by the International Statistical Institute (1986, p. 238),
as follows:8

“Statistical data are unconcerned with individual identities. They are collected
to answer questions such as ‘how many?’ or ‘what proportions?’, not ‘who?’.
The identities and records of co-operating (or non-cooperating) subjects should
therefore be kept confidential, whether or not confidentiality has been explicitly
pledged.”

Accordingly, the basic idea is that statistical concepts and methods are
concerned, not with individuals, but with frequencies of properties.9

7See the quotations from Lexis and Feichtinger cited in the Introduction.

8See also Bürgin and Schnorr-Bäcker (1986).

9It should be mentioned, however, that also the complementary idea, to use statistical
data for the characterization of individuals, accompanies the history of statistics. The
following quotation from one of its founders, Francis Galton (1889, p. 35–37), provides
an example. Galton begins: “We require no more than a fairly just and comprehensive
method of expressing the way in which each measurable quality is distributed among
the members of any group, whether the group consists of brothers or of members of any
particular social, local, or other body of persons, or whether it is co-extensive with an
entire nation or race.” Then follows, however, a quite different reasoning: “A knowledge
of the distribution of any quality enables us to ascertain the Rank that each man holds
among his fellows, in respect to that quality. This is a valuable piece of knowledge
in this struggling and competitive world, where success is to the foremost, and failure
to the hindmost, irrespective of absolute efficiency. [. . .] When the distribution of any
faculty has been ascertained, we can tell from the measurement, say of our child, how
he ranks among other children in respect to that faculty, whether it be a physical gift,
or one of health, or of intellect, or of morals. As the years go by, we may learn by the

4.2 STATISTICAL DISTRIBUTIONS 45

2. Following this idea, one no longer refers to individual members of Ω
but to elements, or subsets, of a variable’s property space. So let X̃ be
any subset of X̃ ; such subsets will be called property sets . The question
concerns the proportion of members in Ω who were assigned a value in the
property set X̃ via the function X . A general answer is provided by the
frequency function of X , that is, a function

P[X ] : P(X̃ ) −→ R

In this formulation, P(X̃ ) is the power set of X̃ , that is, the set of all
subsets of X̃ . So the domain of the frequency function P[X ] consists of
all property sets that can be created from the property space X̃ . The
assignment is defined by

P[X ](X̃) :=
1

|Ω|

∣
∣{ω ∈ Ω |X(ω) ∈ X̃}

∣
∣

Thus, for every property set X̃ ∈ P(X̃ ), P[X ](X̃) is the relative frequency
of X̃ in Ω.

3. Frequency functions always refer to relative frequencies (proportions).
We therefore adopt the terminological convention that the word ‘fre-
quency’, without a qualifying attribute, also always means relative fre-
quency. Since also absolute frequencies are often used to characterize pop-
ulations, we introduce the complementary notion of an absolute frequency
function defined by

P∗[X ](X̃) :=
∣
∣{ω ∈ Ω |X(ω) ∈ X̃}

∣
∣ = P[X ](X̃) |Ω|

4. It is fairly obvious how to derive a frequency function from the values of
a statistical variable. Given a property set, say X̃, one simply counts the
number of elements of Ω having a property value in X̃ , and then divides the
resulting count by the number of elements of Ω. Less obvious is that, from
a statistical or demographic point of view, all relevant information about
a statistical variable is contained in its frequency distribution. In fact,
all proper statistical concepts are derived from frequency distributions.
To illustrate this, we refer to the first example, variable S, discussed in
the previous section. The property space is S̃ = {0, 1}, and so it suffices
to consider the property sets {0} and {1}.10 Using the data which are
tabulated on page 40, one immediately finds:

P[S]({0}) = P[S]({1}) = 0.5

same means whether he is making his way towards the front, whether he just holds his
place, or whether he is falling back towards the rear. Similarly as regards the position
of our class, or of our nation, among other classes and other nations.”

10The power set of a property space X̃ also contains X̃ and the empty set, ∅. However,
since P[X](X̃ ) = 1 and P[X](∅) = 0 for any variable X, these property sets can be
neglected.
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Now, this information also suffices to calculate the mean value of S. This
is possible because, for any statistical variable, say X , its mean value can
also be expressed by the formula

M(X) =
∑

x̃∈X̃

x̃ P[X ]({x̃})

Therefore, in our example, knowing the frequencies of {0} and {1}, one
immediately finds M(S) = 0.5.

5. The fact that all relevant information about a statistical variable is con-
tained in its distribution can be used to stress again the specific statistical
abstraction that derives from the consideration of frequency distributions.
In general, knowing the frequency distribution of a statistical variable, it
is no longer possible to infer property values for the individual members of
the reference set that was used to define the variable. In this sense, as said
by Lexis, “verschwindet das Individuum als solches” (see the quotation in
the Introduction).

6. Although the domain of the frequency function of a statistical variable,
say X , is defined as the power set of the variable’s property space, X̃ , it is
not necessary to explicitly tabulate the frequencies of all possible property
sets. This is due to the fact that frequency functions are additive: if X̃
and X̃ ′ are any two disjoint property sets, then

P[X ](X̃ ∪ X̃ ′) = P[X ](X̃) + P[X ](X̃ ′)

One can express, therefore, the frequency of any property set in the fol-
lowing way:

P[X ](X̃) =
∑

x̃∈X̃

P[X ]({x̃})

This shows that it suffices to know the frequencies of the one-element
property sets {x̃}, corresponding to the property values x̃ ∈ X̃ , in order
to have complete knowledge of the frequency distribution of X . This also
makes clear how the consideration of frequency distributions serves the
main goal of statistical methods, namely to make an often large number of
values of a statistical variable comprehensible. Instead of a separate entry
for each individual member of the reference set Ω, the representation of
a frequency distribution only requires a separate entry for each property
value in the realized property space of a statistical variable. Of course,
many further statistical concepts can then be used to describe, analyze,
and compare frequency distributions of one or more statistical variables.
We will introduce some of these concepts in later chapters when they can
help in a discussion of substantial questions.
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4.3 Remarks about Notations

1. The notations introduced in the foregoing sections are somewhat more
involved than those often found in introductory textbooks. This is done in
order to make as clear as possible the logical structure of the corresponding
concepts, in particular, two basic ideas:

• A statistical variable is not any kind of “variable quantity”, but an
assignment of properties to objects. So it is formally a function in
the mathematical sense of this term. This also implies that statistical
variables can not sensibly be thought of as “factors” which, in any
dubious sense, can “influence”, or “cause”, the behavior of objects.

• Statistical notions refer, not to individual objects, but to frequency
distributions of properties in sets of objects. These frequency distri-
butions which contain all statistically relevant information are, again,
functions in the mathematical sense of the word.

2. However, having recognized these conceptual foundations, we will re-
duce the notational burden and introduce the following abbreviations:

a) If X : Ω −→ X̃ is a statistical variable and x̃ ∈ X̃ a property value, its
frequency must correctly be written as P[X ]({x̃}) because the domain
of the frequency function, P[X ], is the power set of X̃ . However, it will
save notational overhead to omit, in this case, the curly brackets around
x̃ and simply write P[X ](x̃). For example, to refer to the proportion
of male individuals in Ω1960 we might simply write P[S](0).

b) One often refers to the frequency, not of a single property values x̃ ∈ X̃ ,
but of a set of property values, which we have called a property set,
X̃ ⊂ X̃ . The correct formulation is then P[X ](X̃), because the function
is P[X ] and its argument is X̃. While formally not correct, an often
used alternative formulation is P(X ∈ X̃). However, this alternative
formulation is sometimes practical. For example, we might want to
refer to the frequency of people being of age 65 or above. The property
set is then {ã ∈ Ã | ã ≥ 65}, and its frequency would need to be written
as P[A]({ã ∈ Ã | ã ≥ 65}). But obviously, it saves notational overhead
to simply write P(A ≥ 65).



Chapter 5

Modal Questions and Models

1. We conclude the discussion of the conceptual framework with a few re-
marks concerning the term ‘model’. This will also make clear why we do
not make a sharp distinction between population statistics and the con-
struction of demographic models. — The basic idea is not to follow a
widespread conception that thinks of models as being “simplified descrip-
tions” of some part of reality. For example:

“A scientific model is an abstract and simplified description of a given phenom-
ena.” (Olkin, Gleser, and Derman 1980, p. 2) “A model of any set of phenomena
is a formal representation thereof in which certain features are abstracted while
others are ignored with the intent of providing a simpler description of the salient
aspects of the chosen phenomena.” (Hendry and Richard 1982, p. 4)

Quite similar is the view that models are in some way “mappings” [Abbil-
dungen] of parts of reality. For example:

”
Modelle können wir uns in erster Näherung denken als begriffliche Konstrukte

zur ‘Abbildung’ realer Systeme oder zum Umgang mit solchen.“ (Balzer 1997,
p. 16)

”
Ein Modell ist wohl immer aufzufassen als eine Abbildung. Die Frage ist

nur, was abgebildet wird, und wie die Abbildungsfunktion aussieht.“ (Frey 1961,
p. 89)

The main objection is that models as used in scientific discourse almost
never serve the purpose of describing something. While descriptions cer-
tainly play an important role in scientific work, this is done by document-
ing observations. In contrast, most models serve a quite different purpose,
namely to provide a framework for thinking about modal questions. For
example, What might have caused the decline of birth rates in Germany
following the baby boom of the 1960s? or, To which extend might the
proportion of old people increase during the next 20 years?

2. This is a basic distinction: statements may relate to facts or to possibili-
ties. Descriptions are intended to provide facts, but most human reasoning
concerns possibilities. This is also true of most scientific reasoning.1 Rea-
soning concerned with possibilities will be called modal reasoning . There
is a wide variety of different forms.2 Often modal reasoning concerns

1An opposite view was expressed, e.g., by Samuelson (1952, p. 61): “All sciences have
the common task of describing and summarizing empirical reality.” However, if the task
really consists in describing something one would not need a model but could simply
report observations. Therefore, given that models do not have the task to describe
something, it would also be misleading to say that models can only provide “simplified”,
or even “distorted descriptions” (see, e.g., Baumol 1966, p. 90). After all, why should
somebody be interested in “distorted descriptions” of reality?

2For a good introduction see White (1975).
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future possibilities, for example, the future demographic development in
Germany. However, also with respect to the past one often is not able to
simply state facts. As a consequence one needs to think about a modal
question: What might have been the case? The question indicates that
one can only speculate about possible facts. Of course, how this can be
done depends on the available knowledge. For example, there are no re-
liable recordings of the number of births in Germany during World War
II. Nevertheless, some information is available and can be used to provide
reasons for the belief that birth rates declined. A researcher might then
say: for these reasons it seems highly probable that birth rates declined
during the years of war.

3. We propose to use the term ‘model’ in the following way: Models are ex-
plicitly formulated means intended to serve modal reasoning. Since modal
reasoning comes in many different forms, the same is true of models. Some
distinctions will be suggested below. However, one should also recognize
that the construction and use of models is not automatically implied by
modal reasoning. In fact, most modal reasoning goes without employing
a model. A model only comes into existence when it is explicitly formu-
lated as a means intended to provide a conceptual framework for reasoning
about specific questions. For example, using information from a weather
report to support speculations about tomorrow’s weather is not using a
model; but possibly the people preparing the forecast have used a model.
As a condition of its existence, a model needs some kind of representation
independent of its actual use. This is not to require any specific concep-
tual tools for the formulation of a model. There is again a wide variety
of possibilities. The formulation of a model can be purely verbal or, in
addition, employ symbols, graphs, figures, even physical devices. But in
whatever form a model is presented, it must be possible to think about
the model in its own right.

4. Models do not provide answers to modal questions; they serve to think
about, and evaluate, possible answers.3 The main service consists in pro-
viding a framework for explicit reasoning. One has to state explicitly the
available knowledge, additional assumptions, and how both are used to
draw inferences. This is particularly important with regard to assump-
tions because possible answers to modal questions often heavily depend
on assumptions. One might also say that assumptions are required by
the very nature of modal questions because, by definition, the available

3We therefore do not agree with Baumol (1966, p. 90 -91) who conceived of “predictive
models” in the following way: “A predictive model need require relatively little compre-
hension on the part of its users or even its designers. It is a machine which grinds out its
forecasts more or less mechanically, and for such tasks, unreasoning, purely extrapola-
tive techniques frequently still turn out the best results.” Like oracles, such machines
should not be called models because, as Baumol rightly says, they do not serve any
kind of reasoning.
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evidence is not sufficient for an answer. However, this statement needs a
qualification. Modal reasoning does not, by itself, require assumptions. For
example, being interested in tomorrow’s weather, one can ask a weather
forecast. In order to believe in the information one does not need the as-
sumption that the forecaster actually knows the weather of tomorrow. In
fact, one can simply use the information without making any assumptions
whatsoever. Assumptions are no prerequisite for reasoning, nor for the
formation of beliefs. It is easily misleading to say that assumptions are
required to allow reasoning in situations where the available evidence is
incomplete. Assumptions are only required if one is interested in making
reasoning explicit, that is, in making reasoning an object of critique and
evaluation. This also is the main task of models. Their job is to show
explicitly how one might, or might not, arrive at certain conclusions with
regard to a modal question that motivates the reasoning.

5. This also allows to explain the affinity between thinking in terms of
models and what might be called rule-based reasoning. The idea is: given
certain assumptions one can draw some inferences while others are ruled
out because they would violate established rules of reasoning. Of course,
not only possible mistakes in applying rules, but the rules themselves, can
become a matter of dispute. Furthermore, human reasoning cannot be
reduced to a mechanical application of given rules. As a limiting case, one
can think of mathematical proofs; but mathematics is not concerned with
modal questions and, consequently, not with the construction of models.
At least in the dominating understanding, mathematics is basically inter-
ested in the formal implications that can be derived from assumptions
according to given rules. This allows to make use of mathematical results
in many areas of rule-based reasoning. However, when thinking about
modal questions, the interest is not in the formal implications of assump-
tions and rules but concerns possible answers. It is, therefore, not only
important that the reasoning is formally correct, but of even greater im-
portance is that assumptions are reasonable. We therefore avoid to speak
of ‘formal models’. Irrespective of the conceptual tools used to formulate
a model, which often are borrowed from mathematics, its task is not to
allow formal inferences but to support modal reasoning.4

6. Since there is a great variety in modal questions and conceptual tools,
also many different kinds of models do exist. Thinking of models used in
the social sciences, the following aspects provide hints to introduce some
broad distinctions: the conceptual framework that provides the model’s
ontology, the kind of modal question that the model is intended to serve,

4One should notice, however, that the word ‘formal’ is often used in two different
meanings. As the word is used above, it refers to arguments which are true only because
of their form. In a different meaning, ‘formal’ is often understood as the opposite of
‘informal’. Its meaning then becomes similar to what we tried to express with the word
‘explicit’.
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and the linguistic and technical tools used to formulate the model and
derive possible implications.

7. We begin with the first aspect and broadly distinguish two types of
model:

a) statistical models which conceptually relate to distributions of statisti-
cal variables, and

b) behavioral models which explicitly refer to the behavior of individuals.

Almost all demographic models belong to the first type. Assumptions con-
cern, for example, the development of birth and death rates, or the number
and age distribution of immigrants. Despite the possibility to metaphor-
ically link such assumptions to the behavior of people, they conceptually
relate to demographic processes formulated in terms of population sets. All
further concepts used for the model formulation are derived thereof and
do not relate to individual behavior. Such models are therefore concerned,
not with individual behavior, but with the development, and relations be-
tween, quantities derived from statistical distributions. In this sense, all
models discussed in subsequent chapters are statistical models. In con-
trast, we propose to speak of behavioral models only if a model explicitly
refers to individuals and allows to reason about individual behavior.

8. The second aspect concerns the modal reasoning that a model is in-
tended to serve. We broadly distinguish three groups of models:

a) representational models whose purpose is to provide a view of some-
thing,

b) analytical models which are used to provide a conceptual framework
for reasoning about relationships and rules, and

c) technical and political models that have the purpose to support people
in the design and implementation of technical artefacts and institu-
tions.

9. There is a great variety of representational models. For example, a map
can be called a representational model as it is intended to provide a specific
view of some area. Another example would be the model of a building that
an architect plans to build. The model is then intended to provide a view
of a building that might come into existence in the future. Of course,
the model is not a description because there is no “future building” which
could be described. The model is rather used to support reasoning about
modal questions concerning the possible features of a building that might
become realized in the future. The examples discussed in the present text
mainly relate to statistical distributions. One of the techniques widely
used in statistics to construct representational models is smoothing. An
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example would be the construction of trends by smoothing a time series.
As the purpose is to provide a specific view of a process one can rightly
speak of a representational model. More involved examples concern the
construction of representational models in situations where the available
information is incomplete. One can think, e.g., of the construction of world
maps in early times when substantial parts of the earth were not known
by the map makers. A similar situation often occurs in the construction
of statistical models. Examples which will be discussed in later chapters
concern the estimation of statistical distributions when part of the available
data is incomplete. Estimation procedures are then based on assumptions
which might be wrong and cannot be tested with the available data. So
one is actually concerned with a modal question concerning an unknown
distribution. A further and somewhat more complicated example of this
type will be discussed in Chapter 9 where we deal with data from surveys
in which respondents provide information about birth and, possibly, death
dates of their parents and the question concerns whether such data can be
used to construct cohort life tables. As will be seen, this requires several
assumptions which should be considered explicitly. We therefore continue,
in Section 9.2, with the discussion of a simulation model to find out in
which way conclusions depend on alternative assumptions.

10. Since every model requires in some way a representation of its subject
matter there is no sharp distinction between representational and analyti-
cal models. The distinction is mainly a question of emphasis. Nevertheless,
there is a specific concern, not normally present in the construction of rep-
resentational models, that justifies a distinction. Analytical models, as
we propose to understand this term, are intended to support speculations
about relationships and rules. How this can be done depends on the con-
ceptual framework. In the construction of a behavioral model one would
need to think about relationships between individuals and rules of their
behavior. This will not be further discussed because, in the present text,
we only deal with statistical models. Relationships then concern statistical
distributions or quantities derived thereof. Furthermore, because statis-
tical models do not explicitly refer to individuals, it is not necessary to
speculate about “behavioral rules” for the model’s objects. Instead, rules
only concern the argumentation used to establish the model. As an ex-
ample, we discuss in Section 13.3 a rudimentary model of the baby boom
that occurred in Germany in the period 1955–1965. The modal question
motivating the model concerns “timing effects” on the development of the
number of newborn children. The model tries to add to an understand-
ing of the baby boom by showing that, without certain “timing effects”, a
quite different development might have occurred. This will not be a causal
explanation. In fact, we use a statistical model without any reference to
individuals who can bring about changes by their activities. Consequently,
also the rules used in the argumentation do not refer to the behavior of
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individuals. Instead, they solely concern logical implications of hypothet-
ical assumptions which, in turn, relate to the distribution of birth events
as represented by cumulated cohort birth rates. — More abstract versions
of analytical models will be discussed in later chapters. The model in-
troduced in Chapter 17 is not related to historical events, like the baby
boom of the 1960s, but at the beginning only provides a general conceptual
framework for reasoning about possible demographic processes. As will be
seen, this framework can nevertheless be used to gain insights into how
such processes “work”. Moreover, as we try to show in another chapter,
the model also provides a starting point for a discussion of modal questions
concerning the effects of immigration on the demographic development in
Germany.

11. A third group of models will be called technical and political mod-
els. Again, the distinction is to some extent a question of emphasis. As
an example, one can think of the model created by the architect men-
tioned above. The model can be understood as representational because
its immediate purpose is to provide a view of the building planned by
the architect. However, given that the plan becomes realized, new modal
questions arise: How can/should the work be done? As a consequence,
also the model, or variants derived thereof, has to serve reasoning about
these additional questions. It must be transformed into a technical model
that can actually be used as a guide to realize the initial idea. Of course,
depending on the kind of artefacts, or systems, in the original sense of this
word, which are planned and possibly realized, there is a great variety in
the details of corresponding models. An important distinction concerns
whether such systems also contain human individuals who can act in their
own right. If this is not the case, we propose to speak of technical models ,
otherwise of political models . However, this distinction is mainly impor-
tant only for behavioral models. Statistical models and, in particular, the
demographic models discussed in the present text are only concerned with
assumptions about statistical distributions or quantities derived thereof.
Distinctions concerning the behavior of objects, whether they should be
considered as building materials or as actors, are therefore not directly rel-
evant. Political questions only come into play when models are also used
in political discussions and decision-making. Prominent examples would
be models used for population projections.

12. Finally, models can be distinguished with regard to the linguistic tools
used in their formulation. While most models use symbolic, mainly mathe-
matical, notations, this is not an essential feature. As an example, one can
think of Keynes’ “General Theory” that was originally developed without
any usage of symbolic notation. However, the same example also shows
that using symbolic notations can help in the understanding of a model and
its potential use for reasoning about modal questions. Furthermore, using
symbolic notations often allows an easier understanding of the assump-
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tions built into a model, and supports the discussion of their implications.
In particular, almost all statistical models employ symbolic notations as
these are already available by the initial introduction of the conceptual
framework. A further distinction concerns the technical means used to
derive implications of the assumptions put into a model. The classical
way is reasoning, supported by paper and pencil and, if available, further
instruments. New methods became available by the modern computer. In
particular, the computer allows to implement so-called simulation models.
An example will be discussed in Section 9.2.1.

Part II

Data and Methods



Chapter 6

Basic Demographic Data

Based on the conceptual framework introduced in Part I, we now begin
with a description and analysis of the demographic development in Ger-
many. The present chapter provides a brief presentation of some basic
figures concerning the number of people and then discusses age and sex
distributions.

6.1 Data Sources

1. We begin with a few remarks about data sources.1 Most of the basic
data are provided by official statistics [amtliche Statistik], its central office
in Germany being the Statistisches Bundesamt .2 In this and the following
chapters we mainly rely on such data from official statistics. Supplemen-
tary data from retrospective surveys will be used in later chapters.

2. Most demographic data published by official statistics are based on two
sources, censuses and population registers, corresponding loosely to the
distinction between stock and flow quantities (see Section 3.3). A census
[Volkszählung] is intended to provide information about the number of
people who live in a certain region at a specific date, so it is a kind of stock-
taking.3 In contrast, population registers record events, in particular,
births, deaths, marriages and migrations. Official statistics uses both data
sources. Since censuses only take place at greater temporal intervals, data
from population registers are used to provide estimates of the population
size in years between censuses.

3. Like the political history of Germany, also its history of censuses is
quite irregular. A publication of the Statistisches Bundesamt that deals
with the historical development of official statistics in Germany provides
the following information:

”
Nach der territorialen Neuordnung der Nachfolgestaaten des Heiligen Römi-

schen Reichs Deutscher Nation auf dem Wiener Kongreß wurde 1816 erstmals in
Preußen innerhalb der neuen Grenzen eine Volkszählung durchgeführt. Die ande-
ren Länder des Deutschen Bundes führten in der Folgezeit Volkszählungen durch,

1For an extensive survey of sources of demographic data see the reports by Carola
Schmid (1993 and 2000).

2For references to publications see Appendix A.1.

3Most often, a census not only counts people but also records some of their properties,
like age, sex, marital status and citizenship. For information about the questionnaire
that was used in the latest census of 1987 see Würzberger, Störtzbach and Stürmer
(1986).
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deren Ergebnisse jedoch wegen der unterschiedlichen Erhebungszeitpunkte und
der unterschiedlichen Abgrenzung der Merkmale kaum untereinander vergleich-
bar sind. Erst mit der Schaffung des Norddeutschen Zollvereins 1834 wurde im
größten Teil des späteren Deutschen Reichs eine größere Einheitlichkeit des Vor-
gehens erreicht. Von da an fand bis 1867 alle drei Jahre Anfang Dezember eine
Volkszählung in den Mitgliedsländern des Zollvereins statt. Die übrigen deut-
schen Länder schlossen sich diesem Verfahren erst 1867 an, so daß am 3. Dezem-
ber dieses Jahres erstmals in allen deutschen Ländern zum gleichen Zeitpunkt
gezählt wurde. Die nächste Volkszählung erfolgte dann nach der Reichsgrün-
dung, am 1. Dezember 1871. Vom 1. Dezember 1875 an wurden Volkszählungen
im Fünf-Jahres-Turnus durchgeführt. Die letzte Zählung vor dem Ersten Welt-
krieg war am 1. Dezember 1910. Danach vergingen fast 15 Jahre, bis am 16. Juni
1925 wieder eine das gesamte damalige Reichsgebiet umfassende Volkszählung
stattfinden konnte. Eine vorher – im Oktober 1919 – durchgeführte Zählung hat-
te, da die Verhältnisse noch nicht wieder konsolidiert waren, nur behelfsmäßigen
Charakter. Der mit der Zählung 1925 wieder angestrebte Fünf-Jahres-Rhythmus
konnte infolge der Weltwirtschaftskrise nicht eingehalten werden. So fand die
nächste Zählung erst acht Jahre später am 16. Juni 1933 statt, der im Abstand
von sechs Jahren am 19. Mai 1939 die letzte Zählung vor dem Ausbruch des
Zweiten Weltkrieges folgte. Die nächste Volkszählung, die am 29. Oktober 1946
auf Anordnung der Besatzungsmächte durchgeführt wurde, konnte aus den glei-
chen Gründen wie die von 1919 die normalerweise geforderten Ansprüche nicht
erfüllen, war aber für die Bewältigung der damaligen Notsituation von großer
Bedeutung. Es war die letzte Zählung, die mit einem einheitlichen Erhebungs-
programm in den vier Besatzungszonen gleichzeitig stattfand. Ihr folgte am 13.
September 1950 die erste Volkszählung im Bundesgebiet. Weitere Volkszählun-
gen im Abstand von etwa zehn Jahren fanden am 6. Juni 1961 und am 27. Mai
1970 statt.“ (Statistisches Bundesamt 1972, p. 89)

Since then, a further census in the territory of the former FRG took place on
May 25, 1987. Censuses in the territory of the former GDR were perfomed
in 1950 (August 31), 1964 (December 31), and 1981 (December 31).4

4. A further question concerns the demarcation of people who are counted
in a census. The just cited document provides the following information:

”
Die Zählungen vor dem 3. Dezember 1867 hatten nicht immer einen einheit-

lichen Bevölkerungsbegriff. In den durch Zollverträge miteinander verbundenen
Ländern wurde zwischen 1834 und 1867 die sog. Zollabrechnungsbevölkerung fest-
gestellt. Es handelt sich hierbei im wesentlichen um die dauerhaft wohnhafte Be-
völkerung. Dieser Bevölkerungsbegriff wurde 1863 dahingehend präzisiert, daß
Personen, die länger als ein Jahr abwesend waren, nicht zur Zollabrechnungs-
bevölkerung gezählt wurden. Bei der Zählung 1867 wurde daneben erstmals
auch die ortsanwesende Bevölkerung festgestellt, d.h. alle Personen, die sich zum
Stichtag der Zählung im Zählungsgebiet aufhielten. Dieser Bevölkerungsbegriff
stand in der Folgezeit im Vordergrund. Im Kaiserreich wurde die ortsanwesende
Bevölkerung allein als maßgeblich nachgewiesen. Bei der Zählung 1925 wurde

4For additional information see Schmid (1993, pp. 55 -57).
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erstmals der Begriff der Wohnbevölkerung verwendet, der in etwa an den Bevöl-
kerungsbegriff zwischen 1834 und 1867 anschließt. Zur Wohnbevölkerung zähl-
ten alle Personen, die am Zählungsstichtag im Zählungsgebiet ihren ständigen
Wohnsitz hatten, einschl. der vorübergehend Abwesenden sowie ausschließlich
der vorübergehend Anwesenden. Personen mit mehreren Wohnsitzen wurden an
dem Ort zur Bevölkerung gezählt, an dem sie sich am Stichtag der Zählung befan-
den. Davon abweichend wurden Untermieter (einschl. Hausangestellte, Schüler
und Studierende mit zweitem Wohnsitz) stets an ihrem Arbeits- bzw. Studien-
ort zur Wohnbevölkerung gerechnet. Dieser Bevölkerungsbegriff liegt, mit nur
unwesentlichen Abweichungen, allen seitherigen Volkszählungen sowie der Be-
völkerungsentwicklung zugrunde [. . .].“ (Statistisches Bundesamt 1972, p. 89)

It might be added that the concept of population which is used by official
statistics in Germany has again slightly changed with the introduction of
a new registration law [Meldegesetz] in 1983.

5. The second main source of demographic data are population registers.
In Germany, different kinds of such registers exist. To provide basic demo-
graphic data, the Statistisches Bundesamt mainly uses information from
two such registers:

a) Registers of births, deaths, and marriages, which are kept by offices of
local authorities, called Standesamt .5

b) Registers of residences, also kept by offices of local authorities, called
Einwohnermeldeamt . In addition, there is a central register for persons
without a German citizenship, called Ausländerzentralregister . Data
from these registers are used by the Statistisches Bundesamt for its
statistics about internal and external migration.6

6.2 Number of People

1. Our first question concerns the number of people who lived in Germany
during its history. Data from official statistics begin with the first census
in Preußen in 1816. A difficulty results from the fact that the political
boundaries of Germany have often changed during its history; the latest
change occurred in October 1990 through unification with the former GDR

(Deutsche Demokratische Republik). Since we are mainly interested in the
development after World War II, it suffices to distinguish two territories:
(a) the territory of the former FRG (Bundesrepublik Deutschland),7 and

5These registers were introduced in 1875. For a history of corresponding laws and in-
stitutions see Schütz (1977). Registration forms as used by the Statistisches Bundesamt
have been published in Fachserie 1, Reihe 1, 1990 (pp. 312-323).

6Fachserie 1, Reihe 1, 1999 (pp. 13 -14).

7The Saarland became part of the former FRG only in 1957. However, many time
series from official statistics include the Saarland also for the period 1950 – 1956.
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Table 6.2-1 Number of people (in 1000) in the territory of the former FRG.
Source: Statistisches Jahrbuch 2001 (p. 44).

t nt t nt t nt t nt

1816 13720 1925 39017 1954 51180 1977 61419
1819 14150 1926 39351 1955 52382 1978 61350
1822 14580 1927 39592 1956 53008 1979 61382
1825 15130 1928 39861 1957 53656 1980 61538
1828 15270 1929 40107 1958 54292 1981 61663
1831 15860 1930 40334 1959 54876 1982 61596
1834 16170 1931 40527 1960 55433 1983 61383
1837 16570 1932 40737 1961 56175 1984 61126
1840 17010 1933 40956 1962 56837 1985 60975
1843 17440 1934 41168 1963 57389 1986 61010
1846 17780 1935 41457 1964 57971 1987 61077
1849 17970 1936 41781 1965 58619 1988 61450
1852 18230 1937 42118 1966 59148 1989 62063
1855 18230 1938 42576 1967 59286 1990 63254
1858 18600 1939 43008 1968 59500 1991 64074
1861 19050 1946 46190 1969 60067 1992 64865
1864 19600 1947 46992 1970 60651 1993 65534
1867 19950 1948 48251 1971 61280 1994 65858
1871 20410 1949 49198 1972 61697 1995 66156
1880 22820 1950 49989 1973 61987 1996 66444
1890 25433 1951 50528 1974 62071 1997 66647
1900 29838 1952 50859 1975 61847 1998 66697
1910 35590 1953 51350 1976 61574 1999 66834

(b) the territory of the former GDR (including the eastern part of Berlin).
We simply speak of Germany when referring to both territories.

2. The data in Table 6.2-1 are taken from the Statistisches Jahrbuch 2001
(p. 44) and refer to the territory of the former FRG. The yearbook provides
the following hints about sources.

a) The figures for 1961, 1970, and 1987 are based on census data and
relate to their target dates (June 6, 1961, May 27, 1970, and May 25,
1987). The remaining figures for the period since 1946 are estimates
of the midyear population size and are derived from register data in
connection with census data and data from the Wohnungsstatistik.8

8Actually, the figures result from backward projections. The Statistisches Jahrbuch
2001 (p. 41) provides the following remarks:

”
Bei den [. . .] für die Jahre 1950 bis

1970 nachgewiesenen Fortschreibungszahlen handelt es sich um rückgerechnete Ein-
wohnerzahlen aufgrund der Ergebnisse der Wohnungsstatistik vom 25.9.1956 (1950
bis 1955), der Volkszählung vom 6.6.1961 (1957 bis 1960) und der Volkszählung vom
27.5.1970 (1962 bis 1969). Die für die Jahre ab 1970 bis einschl. 1986 nachgewie-
senen Bevölkerungszahlen sind Fortschreibungsdaten, die von den Ergebnissen der
Volkszählung 1970 ausgehen. Die ab 30.6.1987 nachgewiesenen Bevölkerungszahlen be-
ruhen auf den Ergebnissen der Volkszählung 1987.“
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Fig. 6.2-1 Graphical presentation of the data from Table 6.2-1. The scale
of the ordinate is in million.
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Fig. 6.2-2 Graphical presentation of the data from Table 6.2-2. The scale
of the ordinate is in million.

b) The sources of the figures for earlier periods are not explicitly docu-
mented. It can be supposed that the primary sources for the period
since 1871 are censuses that have taken place in the years 1871, 1880,
1890, 1900, 1910, 1925, 1933, and 1939, and that the figures for years in
between are estimates, possibly also based on additional register data.

c) It might further be supposed that the figures for the period before
1871 are based on censuses that began 1816 in Preußen and were then
periodically continued in 3-year intervals, with some delay also in other
parts of the Zollverein. It is not clear, however, in which way the figures
were adjusted to the territory of the former FRG.

3. In order to get a first impression of the long-term development of the
number of people in Germany the data of Table 6.2-1 are plotted in Figure
6.2-1. Since the data are unevenly spaced, we have represented each number
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Table 6.2-2 Number of people (in 1000) on the territory of the former FRG
(na

t ) and the former GDR (nb
t). Source: Statistisches Jahrbuch 2001 (p. 44).

t na
t nb

t t na
t nb

t t na
t nb

t

1950 49989 18388 1967 59286 17082 1984 61126 16671
1951 50528 1968 59500 17084 1985 60975 16644
1952 50859 1969 60067 17076 1986 61010 16624
1953 51350 18178 1970 60651 17058 1987 61077 16641
1954 51180 18059 1971 61280 17061 1988 61450 16666
1955 52382 17944 1972 61697 17043 1989 62063 16614
1956 53008 17716 1973 61987 16980 1990 63254 16111
1957 53656 17517 1974 62071 16925 1991 64074 15910
1958 54292 17355 1975 61847 16850 1992 64865 15730
1959 54876 17298 1976 61574 16786 1993 65534 15645
1960 55433 17241 1977 61419 16765 1994 65858 15564
1961 56175 17125 1978 61350 16756 1995 66156 15505
1962 56837 17102 1979 61382 16745 1996 66444 15451
1963 57389 17155 1980 61538 16737 1997 66647 15405
1964 57971 16992 1981 61663 16736 1998 66697 15332
1965 58619 17028 1982 61596 16697 1999 66834 15253
1966 59148 17066 1983 61383 16699

from Table 6.2-1 by a separate dot. Of course, this is just a first impression
and we need to analyze more carefully the components, births, deaths,
and migrations, that contributed to the overall picture. Here we only add
some information about the development in the two parts of Germany
after World War II. Table 6.2-2 presents the basic figures taken again
from Statistisches Jahrbuch 2001 (p. 44), Figure 6.2-2 gives a graphical
presentation. nt, the number of people in both territories, is calculated
by adding na

t and nb
t . Notice that the demarcation of the two territories

has not been changed after October 1990, the eastern part of Berlin is
considered a part of the former territory of the GDR.

6.3 Births and Deaths

1. The number of people living in some territory changes with births,
deaths, and migration. We therefore should consider these components
in order to get a better understanding of the demographic development in
Germany. We begin with a consideration of births and deaths in the post-
World War II period. The basic figures as published by the Statistisches
Bundesamt are shown in Table 6.3-1. Following our general convention, we
denote the number of births and deaths that occurred during a year t by
bt and dt, respectively. Additional indices are used to distinguish between
(a) the territory of the former FRG and (b) the territory of the former
GDR. Figure 6.3-1 provides a graphical view of these data.

2. Comparing Figures 6.2-2 and 6.3-1, one observes that the turning points
in the development of the number of people roughly corresponds to peri-
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Table 6.3-1 Births (bt) and deaths (dt) in the territory of the former FRG
(first four columns) and in the territory of the former GDR (last four columns);
all counts in 1000. Source: Fachserie 1. Reihe 1, 1999 (pp. 43 -44).

t ba
t da

t ba
t − da

t t bb
t db

t bb
t − db

t

1950 812.8 528.7 284.1 1950 303.9 219.6 84.3
1951 795.6 543.9 251.7 1951 310.8 208.8 102.0
1952 799.1 546.0 253.1 1952 306.0 221.7 84.3
1953 796.1 578.0 218.1 1953 298.9 212.6 86.3
1954 816.0 555.5 260.6 1954 293.7 219.8 73.9
1955 820.1 581.9 238.3 1955 293.3 214.1 79.2
1956 855.9 599.4 256.5 1956 281.3 212.7 68.6
1957 892.2 615.0 277.2 1957 273.3 225.2 48.1
1958 904.5 597.3 307.2 1958 271.4 221.1 50.3
1959 951.9 605.5 346.4 1959 292.0 229.9 62.1
1960 968.6 643.0 325.7 1960 293.0 233.8 59.2
1961 1012.7 627.6 385.1 1961 300.8 222.7 78.1
1962 1018.6 644.8 373.7 1962 298.0 234.0 64.0
1963 1054.1 673.1 381.1 1963 301.5 222.0 79.5
1964 1065.4 644.1 421.3 1964 291.9 226.2 65.7
1965 1044.3 677.6 366.7 1965 281.1 230.3 50.8
1966 1050.3 686.3 364.0 1966 268.0 225.7 42.3
1967 1019.5 687.3 332.1 1967 252.8 227.1 25.7
1968 969.8 734.0 235.8 1968 245.1 242.5 2.7
1969 903.5 744.4 159.1 1969 238.9 243.7 -4.8
1970 810.8 734.8 76.0 1970 236.9 240.8 -3.9
1971 778.5 730.7 47.9 1971 234.9 235.0 -0.1
1972 701.2 731.3 -30.0 1972 200.4 234.4 -34.0
1973 635.6 731.0 -95.4 1973 180.3 232.0 -51.6
1974 626.4 727.5 -101.1 1974 179.1 229.1 -49.9
1975 600.5 749.3 -148.7 1975 181.8 240.4 -58.6
1976 602.9 733.1 -130.3 1976 195.5 233.7 -38.2
1977 582.3 704.9 -122.6 1977 223.2 226.2 -3.1
1978 576.5 723.2 -146.8 1978 232.2 232.3 -0.2
1979 582.0 711.7 -129.7 1979 235.2 232.7 2.5
1980 620.7 714.1 -93.5 1980 245.1 238.3 6.9
1981 624.6 722.2 -97.6 1981 237.5 232.2 5.3
1982 621.2 715.9 -94.7 1982 240.1 228.0 12.1
1983 594.2 718.3 -124.2 1983 233.8 222.7 11.1
1984 584.2 696.1 -112.0 1984 228.1 221.2 7.0
1985 586.2 704.3 -118.1 1985 227.6 225.4 2.3
1986 626.0 701.9 -75.9 1986 222.3 223.5 -1.3
1987 642.0 687.4 -45.4 1987 226.0 213.9 12.1
1988 677.3 687.5 -10.3 1988 215.7 213.1 2.6
1989 681.5 697.7 -16.2 1989 198.9 205.7 -6.8
1990 727.2 713.3 13.9 1990 178.5 208.1 -29.6
1991 722.2 708.8 13.4 1991 107.8 202.4 -94.7
1992 720.8 695.3 25.5 1992 88.3 190.2 -101.9
1993 717.9 711.6 6.3 1993 80.5 185.6 -105.1
1994 690.9 703.3 -12.4 1994 78.7 181.4 -102.7
1995 681.4 706.5 -25.1 1995 83.8 178.1 -94.2
1996 702.7 708.3 -5.6 1996 93.3 174.5 -81.2
1997 711.9 692.8 19.1 1997 100.3 167.5 -67.3
1998 682.2 688.1 -5.9 1998 102.9 164.3 -61.4
1999 664.0 685.0 -21.0 1999 106.7 161.3 -54.6
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Fig. 6.3-1 Births (solid line) and deaths (dotted line) in the territories
of the former FRG (upper part) and the former GDR (lower part). The
scale of the ordinate is in 1000. The data are taken from Table 6.3-1

ods where the number of births is above, or below, the number of deaths
(differences are due to migration). Most remarkable is the high amount of
variation in the number of births. In the territory of the former FRG the
“baby boom” of the sixties is followed by a substantial decline in number
of births. In the territory of the former GDR occurred a huge decline in
the number of births during the years following the unification in 1989.

3. A closer analysis will be given in later chapters. In fact, since simple
time series data do not take into account changes in the age distribution
of the population, possible conclusions are quite limited. For example, it
is not possible to derive any safe conclusions about changes in the length
of life and conditions of mortality from the time series shown in Figure
6.3-1. It might well be that a growing number of deaths as shown in this
figure for the first two decades is accompanied by an increase in the mean
life length. This will be further discussed in Chapter 7.

4. The development of birth and death rates in the recent German history
should also be related to a broader historical and international context.
While we are not able to provide an adequate discussion in the present text,
we only present some data that roughly indicate some long-term changes.9

9There are several studies which provide extensive discussions of the long-term de-
mographic development in Germany. For an introduction, see Marschalck (1984). A
thorough discussion of the fertility decline in the period 1871–1939 was given by Kno-
del (1974).
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Table 6.3-2 Crude birth rates (CBR) and crude death rates (CDR) in Germany.
Data for the period 1841 – 1943 refer to the territory of the Deutsches Reich

with varying boundaries (see footnote 11); data for the period 1946 – 1999
refer to the territory of the former FRG. Sources: Statistisches Bundesamt,
Bevölkerung und Wirtschaft 1872 – 1972 (pp. 101-103), and Fachserie 1, Reihe
1, 1999 (p. 50).

Year CBR CDR Year CBR CDR Year CBR CDR Year CBR CDR

1841 36.4 26.2 1881 37.0 25.5 1921 25.3 13.9 1961 18.0 11.2

1842 37.6 27.1 1882 37.2 25.7 1922 23.0 14.4 1962 17.9 11.3

1843 36.0 26.9 1883 36.6 25.9 1923 21.1 13.9 1963 18.3 11.7

1844 35.9 24.5 1884 37.2 26.0 1924 20.5 12.3 1964 18.2 11.0

1845 37.3 25.3 1885 37.0 25.7 1925 20.7 11.9 1965 17.7 11.5

1846 36.0 27.1 1886 37.1 26.2 1926 19.5 11.7 1966 17.6 11.5

1847 33.3 28.3 1887 36.9 24.2 1927 18.4 12.0 1967 17.0 11.5

1848 33.3 29.0 1888 36.6 23.7 1928 18.6 11.6 1968 16.1 12.2

1849 38.1 27.1 1889 36.4 23.7 1929 17.9 12.6 1969 14.8 12.2

1850 37.2 25.6 1890 35.7 24.4 1930 17.5 11.1 1970 13.4 12.1

1851 36.7 25.0 1891 37.0 23.4 1931 16.0 11.2 1971 12.7 11.9

1852 35.5 28.4 1892 35.7 24.1 1932 15.1 10.8 1972 11.3 11.8

1853 34.6 27.2 1893 36.8 24.6 1933 14.7 11.2 1973 10.3 11.8

1854 34.0 27.0 1894 35.9 22.3 1934 18.0 10.9 1974 10.1 11.7

1855 32.2 28.1 1895 36.1 22.1 1935 18.9 11.8 1975 9.7 12.1

1856 33.3 25.2 1896 36.3 20.8 1936 19.0 11.8 1976 9.8 11.9

1857 36.0 27.2 1897 36.1 21.3 1937 18.8 11.7 1977 9.5 11.5

1858 36.8 26.8 1898 36.1 20.5 1938 19.6 11.6 1978 9.4 11.8

1859 37.5 25.7 1899 35.9 21.5 1939 20.4 12.3 1979 9.5 11.6

1860 36.3 23.2 1900 35.6 22.1 1940 20.0 12.7 1980 10.1 11.6

1861 35.7 25.6 1901 35.7 20.7 1941 18.6 12.0 1981 10.1 11.7

1862 35.4 24.6 1902 35.1 19.4 1942 14.9 12.0 1982 10.1 11.6

1863 37.5 25.7 1903 33.8 20.0 1943 16.0 12.1 1983 9.7 11.7

1864 37.8 26.2 1904 34.0 19.6 1944 1984 9.5 11.4

1865 37.6 27.6 1905 33.0 19.8 1945 1985 9.6 11.6

1866 37.8 30.6 1906 33.1 18.2 1946 16.1 13.0 1986 10.3 11.5

1867 36.8 26.1 1907 32.3 18.0 1947 16.4 12.1 1987 10.5 11.3

1868 36.8 27.6 1908 32.1 18.1 1948 16.5 10.5 1988 11.0 11.2

1869 37.8 26.9 1909 31.0 17.2 1949 16.8 10.4 1989 11.0 11.2

1870 38.5 27.4 1910 29.8 16.2 1950 16.2 10.5 1990 11.5 11.3

1871 34.5 24.6 1911 28.6 17.3 1951 15.7 10.8 1991 11.3 11.1

1872 39.5 29.0 1912 28.3 15.6 1952 15.7 10.7 1992 11.1 10.7

1873 39.7 28.3 1913 27.5 15.0 1953 15.5 11.3 1993 11.0 10.9

1874 40.1 26.7 1914 26.8 19.0 1954 15.7 10.7 1994 10.5 10.7

1875 40.6 27.6 1915 20.4 21.4 1955 15.7 11.1 1995 10.3 10.7

1876 40.9 26.3 1916 15.2 19.2 1956 16.1 11.3 1996 10.5 10.6

1877 40.0 26.4 1917 13.9 20.6 1957 16.6 11.5 1997 10.7 10.4

1878 38.9 26.2 1918 14.3 24.8 1958 16.7 11.0 1998 10.2 10.3

1879 38.9 25.6 1919 20.0 15.6 1959 17.3 11.0 1999 9.9 10.3

1880 37.6 26.0 1920 25.9 15.1 1960 17.4 11.6
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Fig. 6.3-2 Crude birth rates (solid line) and crude death rates (dotted
line) for the period 1841–1999 in Germany, based on the data shown in
Table 6.3-2

We simply use crude birth and death rates which have been published
by the Statistisches Bundesamt for most years since 1841.10 Table 6.3-2
shows the data.11 The crude birth rates and the crude death rates are
calculated per 1000 of the midyear population. Figure 6.3-2 provides a
visual impression. The plot impressively shows the long-term decline of
both, the crude birth rates and the crude death rates. The plot also shows
that, until about 1970, birth rates were most often quite higher than death
rates (a dramatic exception is only during the years of World War I).

6.4 Accounting Equations

1. Changes in the size of a population are a result of births, deaths, and
migration. The basic relationships can be expressed by accounting equa-
tions. As was discussed in Section 3.3, there are two variants. Since the
Statistisches Bundesamt has also published population size data which

10The crude birth and death rates are defined, respectively, as bt/nt and dt/nt, multi-
plied by 1000.

11For the period 1841 – 1943, the source uses the term ‘Reichsgebiet’ and, for the years
1938 to 1943, provides the remark: “Gebietsstand 31.12.1937.” (Statistisches Bundesamt
1972, p. 103) For the years 1871–1918 (and presumably also for previous years, see
Statistisches Jahrbuch für das Deutsche Reich 1919, p. 2), the data refer to the territory
of the Deutsches Reich. Notice that, for the years before 1871, other sources sometimes
provide different figures which refer to the territory of the Deutscher Zollverein.
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Fig. 6.4-1 Balance of migration in the territory of the former FRG (solid
line) and the territory of the former GDR (dotted line). The scale of the
ordinate is in 1000. Data are taken from Tables 6.4-1 and 6.4-2.

refer to the end of each year, we can use the second variant:

n`

t+1 = na

t = n`

t + bt − dt + mi
t − mo

t (6.4.1)

In this equation, t refers to calendar years, and n`

t and na

t denote, respec-
tively, the population size at the beginning and end of the year t. These
are the stock quantities. The other symbols represent flow quantities, that
is, number of events which occurred during the year: births (bt), deaths
(dt), in-migration (mi

t), and out-migration (mo
t ).

2. Values for n`

t are shown in the second column of Tables 6.4-1 and 6.4-1;
the first table refers to the territory of the former FRG, the second table
to the territory of the former GDR.12 Both tables also show the number of
births (bt) and deaths (dt) which are identical with the entries in Table 6.3-
1. These data are already sufficient to calculate the balance of migration.
As implied by the accounting equation (6.4.1), one gets

(mi
t − mo

t ) = (na

t − n`

t ) − (bt − dt) (6.4.2)

This equation has been used to calculate the entries in the last column of
Tables 6.4-1 and 6.4-2.

3. Figure 6.4-1 shows the development of the balance of migration as gi-
ven in the last column of Tables 6.4-1 and 6.4-2, respectively. For the
territory of the former FRG, the in-migration exceeded the out-migration
for most years. Until 1961 when the GDR closed its borders, the excess

12These data are published in Fachserie 1, Reihe 1, 1999 (p. 30).
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Table 6.4-1 Population changes in the territory of the former FRG. All counts
in 1000. Source: Fachserie 1, Reihe 1, 1999 (p. 30 and p. 43).

t n`
t bt dt bt − dt mi

t − mo
t

1951 50336.1 795.6 543.9 251.7 138.2
1952 50726.0 799.1 546.0 253.1 72.8
1953 51051.9 796.1 578.0 218.1 369.6
1954 51639.6 816.0 555.5 260.6 226.6
1955 52126.8 820.1 581.9 238.3 333.2
1956 52698.3 855.9 599.4 256.5 364.0
1957 53318.8 892.2 615.0 277.2 397.8
1958 53993.8 904.5 597.3 307.2 305.0
1959 54606.0 951.9 605.5 346.4 171.0
1960 55123.4 968.6 643.0 325.7 335.7
1961 55784.8 1012.7 627.6 385.1 419.2
1962 56589.1 1018.6 644.8 373.7 284.4
1963 57247.2 1054.1 673.1 381.1 236.2
1964 57864.5 1065.4 644.1 421.3 301.7
1965 58587.5 1044.3 677.6 366.7 342.4
1966 59296.6 1050.3 686.3 364.0 132.3
1967 59792.9 1019.5 687.3 332.1 -176.5
1968 59948.5 969.8 734.0 235.8 278.7
1969 60463.0 903.5 744.4 159.1 572.5
1970 61194.6 810.8 734.8 76.0 -269.4
1971 61001.2 778.5 730.7 47.9 453.4
1972 61502.5 701.2 731.3 -30.0 336.9
1973 61809.4 635.6 731.0 -95.4 387.4
1974 62101.4 626.4 727.5 -101.1 -8.8
1975 61991.5 600.5 749.3 -148.7 -198.2
1976 61644.6 602.9 733.1 -130.3 -72.3
1977 61442.0 582.3 704.9 -122.6 33.3
1978 61352.7 576.5 723.2 -146.8 115.8
1979 61321.7 582.0 711.7 -129.7 247.3
1980 61439.3 620.7 714.1 -93.5 312.1
1981 61657.9 624.6 722.2 -97.6 152.4
1982 61712.7 621.2 715.9 -94.7 -71.9
1983 61546.1 594.2 718.3 -124.2 -115.2
1984 61306.7 584.2 696.1 -112.0 -145.4
1985 61049.3 586.2 704.3 -118.1 89.3
1986 61020.5 626.0 701.9 -75.9 195.9
1987 61140.5 642.0 687.4 -45.4 143.0
1988 61238.1 677.3 687.5 -10.3 487.3
1989 61715.1 681.5 697.7 -16.2 980.1
1990 62679.0 727.2 713.3 13.9 1032.8
1991 63725.7 722.2 708.8 13.4 745.7
1992 64484.8 720.8 695.3 25.5 778.9
1993 65289.2 717.9 711.6 6.3 444.2
1994 65739.7 690.9 703.3 -12.4 279.9
1995 66007.2 681.4 706.5 -25.1 359.9
1996 66342.0 702.7 708.3 -5.6 247.0
1997 66583.4 711.9 692.8 19.1 85.5
1998 66688.0 682.2 688.1 -5.9 65.2
1999 66747.3 664.0 685.0 -21.0 219.9
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Table 6.4-2 Population changes in the territory of the former GDR. All counts
in 1000. Source: Fachserie 1, Reihe 1, 1999 (p. 30 and p. 44).

t n`
t bt dt bt − dt mi

t − mo
t

1951 18388.2 310.8 208.8 102.0 -140.1
1952 18350.1 306.0 221.7 84.3 -134.3
1953 18300.1 298.9 212.6 86.3 -274.3
1954 18112.1 293.7 219.8 73.9 -184.5
1955 18001.5 293.3 214.1 79.2 -248.5
1956 17832.2 281.3 212.7 68.6 -297.2
1957 17603.6 273.3 225.2 48.1 -241.0
1958 17410.7 271.4 221.1 50.3 -149.3
1959 17311.7 292.0 229.9 62.1 -87.9
1960 17285.9 293.0 233.8 59.2 -156.6
1961 17188.5 300.8 222.7 78.1 -187.3
1962 17079.3 298.0 234.0 64.0 -7.4
1963 17135.9 301.5 222.0 79.5 -34.3
1964 17181.1 291.9 226.2 65.7 -243.2
1965 17003.6 281.1 230.3 50.8 -14.7
1966 17039.7 268.0 225.7 42.3 -10.6
1967 17071.4 252.8 227.1 25.7 -7.2
1968 17089.9 245.1 242.5 2.7 -5.4
1969 17087.2 238.9 243.7 -4.8 -7.9
1970 17074.5 236.9 240.8 -3.9 -2.3
1971 17068.3 234.9 235.0 -0.1 -14.5
1972 17053.7 200.4 234.4 -34.0 -8.4
1973 17011.3 180.3 232.0 -51.6 -8.4
1974 16951.3 179.1 229.1 -49.9 -10.6
1975 16890.8 181.8 240.4 -58.6 -12.0
1976 16820.2 195.5 233.7 -38.2 -14.9
1977 16767.0 223.2 226.2 -3.1 -6.0
1978 16757.9 232.2 232.3 -0.2 -6.3
1979 16751.4 235.2 232.7 2.5 -13.6
1980 16740.3 245.1 238.3 6.9 -7.7
1981 16739.5 237.5 232.2 5.3 -39.2
1982 16705.6 240.1 228.0 12.1 -15.4
1983 16702.3 233.8 222.7 11.1 -11.9
1984 16701.5 228.1 221.2 7.0 -48.5
1985 16660.0 227.6 225.4 2.3 -22.2
1986 16640.1 222.3 223.5 -1.3 1.1
1987 16639.9 226.0 213.9 12.1 9.4
1988 16661.4 215.7 213.1 2.6 10.6
1989 16674.6 198.9 205.7 -6.8 -234.0
1990 16433.8 178.5 208.1 -29.6 -376.6
1991 16027.6 107.8 202.4 -94.7 -143.1
1992 15789.8 88.3 190.2 -101.9 -2.5
1993 15685.4 80.5 185.6 -105.1 18.1
1994 15598.4 78.7 181.4 -102.7 35.7
1995 15531.4 83.8 178.1 -94.2 38.3
1996 15475.5 93.3 174.5 -81.2 34.4
1997 15428.7 100.3 167.5 -67.3 8.0
1998 15369.4 102.9 164.3 -61.4 -18.3
1999 15289.7 106.7 161.3 -54.6 -17.8
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of in-migration mainly resulted from people who came from the GDR into
the FRG. A similar movement has taken place in the years immediately
following the unification in 1989. One should note that our data refer se-
parately to the territories of the former FRG and GDR and also after 1989
include migrations between both territories.

4. Table 6.4-1 shows that, beginning in 1972, in most of the following years
the number of deaths exceeded the number of births. Thus, without an ex-
cess of in-migration, the population size would have declined in this period.
It is difficult, however, to answer the modal question, Which development
of population sizes would have taken place in the absence of migration?
Simply subtracting (mi

t −mo
t ) from nt+1 will not give a convincing answer

because, in the absence of migration, the development of births and deaths
would also have been different. So we will postpone a discussion of such
modal questions to a later chapter.

6.5 Age and Sex Distributions

From a demographic point of view, the two most important characteristics
of people are their age and their sex. We therefore discuss in the remai-
ning sections of this chapter how to construct, and graphically present,
statistical distributions of these characteristics in a population.

6.5.1 Age Distributions

1. Both, age and sex, can be represented by statistical variables. We begin
with age. Referring to a population Ωt, one can define a statistical variable

At : Ωt −→ Ã := {0, 1, 2, 3, . . .}

that provides, for each person ω ∈ Ωt, a value At(ω) which is the age of the
person in the temporal location t. We will assume that age is measured in
completed years, so the elements of the property space Ã are to be inter-
preted as completed years. Given this conceptual approach, corresponding
data could be provided in a table as follows:

ω At(ω)

ω1 At(ω1)
...

...
ωnt

At(ωnt
)

(6.5.1)

where nt denotes the number of persons in Ωt. Each person is identified
by a (fictitious) name, often some arbitrary identification number, given
in the first column. The second column contains the corresponding value
of the variable At, in this example, the person’s age.

6.5 AGE AND SEX DISTRIBUTIONS 71

2. Since the number of persons is often very large it would be senseless
to print the full table. So the next step is to extract relevant information.
The statistical approach, as discussed in Section 4.2, always begins with
a calculation of frequencies. The first step is to find the realized property
space

Ã∗
t := At(Ωt) = {At(ω) |ω ∈ Ωt}

that is, the set of all elements of Ã which occur at least once in the po-
pulation Ωt. This already provides a first piece of information about the
range of the variable. In a second step, one can calculate for each element
of Ã∗

t the frequency of its occurrence in the population Ωt. Since we are
concerned here with ages, we will refer to the elements of Ã∗

t by the letter
τ , corresponding to our convention to generally denote ages by τ . For the
calculation of frequencies one needs to distinguish between absolute and
relative frequencies. The absolute frequency of some age value τ ∈ Ã∗

t is
simply the number of persons in Ωt of age τ . Using the notation introduced
in Section 4.2, they can be written as

P∗[At](τ) = | {ω ∈ Ωt |At(ω) = τ} |

The corresponding relative frequencies are

P[At](τ) =
P∗[At](τ)

nt

Of course, it will always be true by definition that

∑

τ∈Ã∗
t

P∗[At](τ) = nt and
∑

τ∈Ã∗
t

P[At](τ) = 1

Having performed the calculations for all values in Ã∗
t , one gets a statistical

distribution, in this example, an age distribution for the population Ωt.
This distribution provides the required statistical information and can be
tabulated or graphically presented.

3. Actually, most data from official statistics are already in the form of
statistical distributions. To continue with our example, the latest data
currently available for the age distribution in Germany are published by
the Statistisches Bundesamt in Fachserie 1, Reihe 1, 1999 (pp. 64-65).13

These data refer to the midyear population size in the year 1999 and

13After having written this section, an update was published in the STATIS database
of the Statistisches Bundesamt . Some of these data will be used in a later chapter for
the construction of life tables.
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Table 6.5-1 Midyear population size (in 1000) in the year 1999 in Germany
by age and sex; age in completed years. Source: Fachserie 1, Reihe 1, 1999
(pp. 64-65).

τ nt,τ nm
t,τ nf

t,τ τ nt,τ nm
t,τ nf

t,τ

0 777.9 399.6 378.3 46 1132.0 570.3 561.7

1 800.2 410.8 389.4 47 1124.4 566.1 558.4

2 805.7 413.8 391.9 48 1120.0 563.9 556.0

3 785.1 403.1 382.0 49 1107.1 558.6 548.5

4 776.6 398.8 377.7 50 1047.1 529.9 517.2

5 797.6 409.8 387.9 51 977.2 494.2 483.0

6 823.0 422.1 400.9 52 892.9 450.6 442.2

7 848.6 435.2 413.4 53 790.2 397.3 393.0

8 908.6 466.4 442.1 54 867.9 434.9 433.0

9 947.0 486.0 461.0 55 1000.4 502.2 498.2

10 954.9 490.1 464.8 56 997.3 500.9 496.4

11 957.9 492.5 465.4 57 1089.7 545.7 544.1

12 939.3 482.6 456.7 58 1228.5 612.5 616.0

13 915.4 469.6 445.8 59 1252.0 621.7 630.3

14 898.5 461.2 437.3 60 1199.8 593.3 606.6

15 901.6 463.2 438.4 61 1121.1 551.2 569.9

16 919.5 472.8 446.7 62 1069.6 522.7 546.9

17 933.2 479.9 453.2 63 1037.5 502.8 534.7

18 938.6 481.4 457.2 64 983.4 472.3 511.1

19 924.6 473.3 451.3 65 854.9 409.8 445.1

20 903.8 462.2 441.6 66 760.9 361.2 399.7

21 902.7 461.0 441.7 67 764.5 359.3 405.2

22 902.2 460.3 442.0 68 789.4 365.7 423.6

23 893.1 456.3 436.7 69 793.7 362.4 431.2

24 897.5 458.8 438.6 70 773.4 348.0 425.4

25 918.5 469.2 449.3 71 736.0 319.3 416.7

26 977.7 500.6 477.1 72 694.2 283.8 410.4

27 1085.3 557.1 528.2 73 674.7 258.7 416.0

28 1172.2 603.4 568.8 74 635.6 228.3 407.4

29 1248.5 644.1 604.4 75 593.0 202.3 390.7

30 1328.6 686.0 642.6 76 583.6 196.3 387.4

31 1380.5 712.4 668.1 77 588.2 193.2 395.0

32 1419.5 732.7 686.8 78 571.0 180.1 391.0

33 1445.6 748.1 697.5 79 472.7 144.3 328.4

34 1464.1 758.2 705.9 80 317.8 96.6 221.2

35 1473.5 761.7 711.7 81 230.7 69.0 161.8

36 1447.0 746.6 700.4 82 221.5 65.1 156.4

37 1414.9 727.4 687.5 83 247.9 70.4 177.5

38 1386.3 711.2 675.1 84 292.7 79.5 213.2

39 1347.1 690.9 656.2 85 297.7 78.1 219.6

40 1293.6 663.6 630.1 86 265.3 67.9 197.4

41 1250.0 641.1 608.9 87 224.2 55.5 168.7

42 1225.0 627.2 597.8 88 186.3 44.3 142.0

43 1194.7 610.0 584.7 89 155.8 35.8 120.0

44 1170.0 594.4 575.7 90∗ 481.4 106.6 374.8

45 1145.7 578.8 566.9 Total 82086.6 40048.0 42038.6
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record age in completed years. We will use the following abbreviations:

nt,τ := number of persons in t being of age τ

nm
t,τ := number of men in t being of age τ

nf
t,τ := number of women in t being of age τ

We also define

nm
t :=

∞∑

τ=0

nm
t,τ and nf

t :=
∞∑

τ=0

nf
t,τ

to denote the total number of men and women, respectively. The total
population size is then given by nt = nm

t + nf
t .

4. Table 6.5-1 shows values (in 1000) for the year t = 1999. This table
is actually a cross-tabulation with respect to age and sex, but for the
moment we are only interested in a simple classification by age, that is, in
the values of nt,τ . These are absolute frequencies, and the relationship with
our previous notation is therefore given by nt,τ = P∗[At](τ). Of course,
one immediately also gets relative frequencies:

P[At](τ) =
nt,τ

nt

The last age category in Table 6.5-1, denoted by 90∗, comprises age 90
and all higher ages. The frequency for this age category is therefore not
directly comparable with the other frequencies. However, one can safely
assume that

nt,90∗ =
∞∑

τ=90

nt,τ

since this equation directly follows from the additivity of frequencies.

5. Summing up the values for nt,τ shows that nt = 82086600 which is
the midyear number of people living in Germany in 1999. Compared with
an original raw data file, Table 6.5-1 is obviously much smaller. However,
even the condensed frequency table is difficult to survey. How can one ex-
tract the information in the table in a more comprehensible form? One
possibility is to aggregate the property space; this will be discussed in Sec-
tion 6.5.4. Here we use a graphical display, called frequency curves , which
does not require aggregation. The basic idea is simple: One employs a two-
dimensional coordinate system and uses the horizontal axis (abscissa) to
represent the elements of the property space and the vertical axis (ordi-
nate) to represent the (absolute or relative) frequencies. As an example,
Figure 6.5-1 shows the age distribution, in terms of absolute frequencies
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Fig. 6.5-1 Plot of a frequency curve that represents the age distribution
in Germany in the year 1999. Data are taken from Table 6.5-1, omitting
category 90∗. The scale of the ordinate is in 1000.

nt,τ , in the form of a frequency curve. This plot may then be used as a
starting point for further interpretation.

6. Note that the age distribution in a given year is the result of demogra-
phic events which occurred over a long period of time, beginning about
100 years ago when the oldest persons still living were born. In this sense
an age distribution is to be viewed as a transitory result of a long-term
demographic process. In general, the number of people being of age τ in
year t results from the number born τ years before t and having survived
until age τ .14 This relates the age categories to historically earlier periods.
For example, the low frequency of people of age 53 can be traced back to
the year 1946 and related to the low number of births in that year.

6.5.2 Decomposition by Sex

1. Instead of age, one can use any other property space to construct a
statistical distribution. As a second example, and in order to explain the
idea of a two-dimensional distribution, we refer to people’s sex. So we set
up another statistical variable

St : Ωt −→ S̃ := {0, 1}

which assigns to each member ω ∈ Ωt a value St(ω) ∈ S̃ which is 0 for
men and 1 for women. Assuming that data are given in the form of a data

14Of course, people may have been born anywhere and become members of a population
set Ωt by immigration.
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matrix

ω St(ω)

ω1 St(ω1)
...

...
ωnt

St(ωnt
)

(6.5.2)

one can calculate absolute and relative frequencies. Using the data from
Table 6.5-1, and the abbreviations introduced in the previous section, one
finds for t = 1999 the values

P∗[St](0) = nm
t = 40048.0 P[St](0) =

nm
t

nt
= 0.488

P∗[St](1) = nf
t = 42038.6 P[St](1) =

nf
t

nt
= 0.512

which show that there are somewhat more female than male persons who
are currently living in Germany.

2. We now have two frequency distributions, one for age and another one
for sex, but this will not allow, for example, to compare the age distribution
of men and women. Also knowing the data in the form of (6.5.1) and (6.5.2)
will not suffice because one cannot know whether the individual members
of Ωt have been given the same names (identification numbers) in both
tables. So one needs a different starting point, namely a statistical variable
that provides, for each person in Ωt, simultaneously both an age and a sex.
This is formally expressed by a two-dimensional variable

(A, S)t : Ωt −→ Ã × S̃

This variable is called two-dimensional because it consists of two com-
ponents and correspondingly has a two-dimensional property space being
the cartesian product of Ã and S̃ . Written explicitly:

Ã × S̃ = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), . . .}

Each element of the property space is now a pair of values where the
first value indicates the age and the second value indicates the sex. For
example, (A, S)t(ω) = (27, 1) would mean that ω is a male individual of
age 27. Of course, given a two-dimensional variable one can derive two one-
dimensional variables, in our example, one variable for age and another one
for sex. The important point, however, is that given two one-dimensional
variables, it will normally not be possible to reconstruct a two-dimensional
variable.

3. This also means that the values of a two-dimensional variable must be
tabulated simultaneously. Instead of two separate forms, like (6.5.1) and
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(6.5.2), one needs a table that provides, for each individual ω ∈ Ωt, a value
of the two-dimensional variable (A, S)t. Of course, the organization of the
table is not important as long as one can identify for each person both its
age and sex. So we might formally identify the two-dimensional variable
(A, S)t with a pair of two one-dimensional variables, (At, St), and organize
the table as follows:

ω At(ω) St(ω)

ω1 At(ω1) St(ω1)
...

...
...

ωnt
At(ωnt

) St(ωnt
)

(6.5.3)

This is often called a cross-tabulation of the variables At and St. However,
the table should not be viewed as providing values for two variables sepa-
rately. The important point is that we want to construct a two-dimensional
distribution which provides a frequency for each element in the combined
property space Ã × S̃. Given any element (τ, s) ∈ Ã × S̃ , we want to cal-
culate the number of individuals in Ωt who are of age τ and sex s, that is,
the frequency

P∗[At, St](τ, s) :=
∣
∣{ω ∈ Ωt | (A, S)t(ω) = (τ, s)}

∣
∣

The corresponding relative frequencies are then given by

P[At, St](τ, s) :=
P∗[At, St](τ, s)

nt

These frequencies can finally be documented in a frequency table. For our
example, such a table might be organized as follows:

τ s P∗[At, St](τ, s) P[At, St](τ, s)

0 0 P∗[At, St](0, 0) P[At, St](0, 0)

0 1 P∗[At, St](0, 1) P[At, St](0, 1)

1 0 P∗[At, St](1, 0) P[At, St](1, 0)

1 1 P∗[At, St](1, 1) P[At, St](1, 1)
...

...
...

...

(6.5.4)

Each row shows the absolute and relative frequencies for one specific ele-
ment in the combined property space Ã × S̃ . Notice that this way of or-
ganizing a frequency table can also be used for distributions having three
or more dimensions. For two-dimensional distributions, another possibility
would be to associate the elements of the two components of the property
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space with, respectively, the rows and columns of a frequency table. In our
example, the table would then look as follows:

τ s = 0 s = 1

0 P∗[At, St](0, 0) P∗[At, St](0, 1)

1 P∗[At, St](1, 0) P∗[At, St](1, 1)

2 P∗[At, St](2, 0) P∗[At, St](2, 1)
...

...
...

(6.5.5)

In this example we have used absolute frequencies; it should be obvious,
however, that the same kind of table can also be used to represent relative
frequencies.

4. It is now easily seen that Table 6.5-1 that was used in Section 6.5.1 to
report the data as published by the Statistisches Bundesamt is actually a
combination of two frequency tables. The first one, already discussed in
the previous section, consists of the first two columns. This part of the
table refers to a one-dimensional age distribution, that is, tabulates the
values of a function

τ −→ nt,τ = P∗[At](τ)

In addition, the first, third, and fourth columns document a two-
dimensional frequency distribution which refers simultaneously to age
and sex. Obviously, this part of the table is organized in the same way as
shown schematically in (6.5.5) and may be explicitly written as a function
in the following way:

(τ, s) −→ P∗[At, St](τ, s) =

{
nm

t,τ if s = 0

nf
t,τ if s = 1

5. Again, the question arises how to represent the data in a more accessible
way. A general approach is to consider conditional distributions . For a
two-dimensional distribution, the distribution of one of its components
in sub-populations defined by specific values of the other component are
considered. To illustrate, in our example one can use the elements of S̃ to
define two sub-populations

Ωm
t := {ω ∈ Ωt |St(ω) = 0} and Ωf

t := {ω ∈ Ωt |St(ω) = 1}

the first one comprising all male individuals and the second one all female
individuals in Ωt. This then allows to define separate distributions of At

for the two sub-populations:

P[At|St = s](τ) :=
P[At, St](τ, s)

P[St](s)
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Fig. 6.5-2 Plot of two frequency curves that represent the age distributi-
on in Germany at the end of 1999 for men (solid line) and women (dotted
line). Data are taken from Table 6.5-1, omitting category 90∗. The scale
of the ordinate is in 1000.

Specifically, in our example, P[At|St = 0](τ) = nm
t,τ/nm

t is the age distri-

bution in sub-population Ωm
t , and P[At|St = 1](τ) = nf

t,τ/nf
t is the age

distribution in sub-population Ωf
t .

6. Conditional distributions are most often expressed in terms of relative
frequencies. It is easy, however, to derive corresponding absolute frequen-
cies. One simply has to multiply P[At|St = y](τ) by the number of people
in the sub-population defined by St = y, explicitly written:

P∗[At|St = y](τ) := P[At|St = y](τ) P∗[St](y)

The third column of 6.5-1 provides values for P∗[At|St = 0](τ) = nm
t,τ and

the fourth column provides values for P∗[At|St = 1](τ) = nf
t,τ .

7. In the same way as was done in the previous section, one can use fre-
quency curves to get a visual impression of the distributions. In order to
allow for a comparison, one can plot both curves in the same coordinate
system as shown by Figure 6.5-2.15 There are obviously some remarkable
differences in the age distribution of men and women, especially in the
older ages.

15In much of the demographic literature, one often finds a slightly different graphical
presentation, called a population pyramid , which results from drawing the age distri-
butions of men and women in opposite directions. To allow for an easy comparison, we
prefer to plot the frequency curves in the same coordinate system.
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Fig. 6.5-3 Dependency of sex ratios, and male-female proportions (in
percent), on age in Germany, 1999; calculated from Table 6.5-1.

6.5.3 Male-Female Proportions

1. Figure 6.5-2 shows that the proportion of male and female individuals
in a society depends on age. As a natural starting point one can consider
the number of male births per 100 female births. This is called the sex
ratio at birth. For an arbitrary age the definition is:

Sex ratio at age τ :=
number of men at age τ

number of women at age τ
(multiplied by 100)

It has often been found that the sex ratio at birth is about 105 or 106.
For example, in 1999 in Germany the number of male births was 396296
and the number of female births was 374448,16 so one finds a sex ratio of
105.8.

2. Another possibility is to use proportions. We will use the notations

σt,m := proportion of male birth in year t

σt,f := proportion of female birth in year t

Referring again to the births in Germany in 1999, one finds σ1999,m = 0.514
and σ1999,f = 0.486. Given the sex ratio, one can calculate the male propor-
tion by the sex ratio divided by 100 plus the sex ratio, and correspondingly
for females.

3. Male and female proportions also depend on age. This can be seen
by comparing age distributions for men and women as in Figure 6.5-2.

16Fachserie 1, Reihe 1, 1999 (p. 42).
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Alternatively, one can calculate sex ratios, or, equivalently, proportions as
functions of age. Based on the data in Table 6.5-1, this is shown in Figure
6.5-3. The changes in higher ages mainly result from different mortality
rates of men and women; this will be further discussed in the next chapter.
In Germany, an additional source of variation is due to in-migration.

6.5.4 Aggregating Age Values

1. A statistical distribution shows, for each value in a property space, its
frequency in a population. The problem of comprehensible representation
of statistical distributions will therefore depend on the number of elements
of a property space. If the number is small, as in the case of sex, one can
simply report the frequencies in the form of a small table. If, on the other
hand, the number of values is large as, for example, in the case of age,
frequency tables are not easily surveyed and one needs some additional
means for the presentation of a distribution. In the foregoing sections we
have used frequency curves to provide graphical displays. In this section
we discuss an approach that relies on the aggregation of the elements in a
property space.

2. The problems which arise from a large number of different elements
of a property space are solved by merging several of them into classes of
properties. Formally, this means that a property space is partitioned into
classes and these classes are then considered as elements of a new property
space. To illustrate, we use the property space Ã for age in completed years
as introduced in Section 6.5.1. Its values can be partitioned into classes,
for example:

ã∗
1 := {0, . . . , 5} ã∗

4 := {31, . . . , 64}

ã∗
2 := {6, . . . , 18} ã∗

5 := {65, . . . , 79}

ã∗
3 := {19, . . . , 30} ã∗

6 := {80, . . .}

These age classes can then be considered as elements of a new property
space

Ã∗ := {ã∗
1, ã

∗
2, ã

∗
3, ã

∗
4, ã

∗
5, ã

∗
6}

which, in turn, can be used to define a new variable A∗
t : Ωt −→ Ã∗. It

should be obvious how its values are derived from the values of the original
variable At. For any ω ∈ Ωt, if At(ω) = τ and τ ∈ ã∗

j , then A∗
t (ω) = ã∗

j .
Less formally, if an individual is of age τ , it is assigned the age class that
contains τ .

3. The distribution of A∗
t is easily derived from the distribution of At

because frequencies are additive. For each ã∗
j ∈ Ã∗, its absolute and relative
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frequencies are given by

P∗[A∗
t ](ã

∗
j ) =

∑

τ∈ã∗
j

P∗[At](τ) and P[A∗
t ](ã

∗
j ) =

∑

τ∈ã∗
j

P[At](τ)

respectively. To illustrate, using the data from Table 6.5-1, we find the
following frequencies:

ã∗ P∗[A∗
t ](ã

∗) P[A∗
t ](ã

∗)

ã∗
1 {0, . . . , 5} 4743.1 0.0578

ã∗
2 {6, . . . , 18} 11886.1 0.1448

ã∗
3 {19, . . . , 30} 12154.7 0.1481

ã∗
4 {31, . . . , 64} 40095.6 0.4885

ã∗
5 {65, . . . , 79} 10285.8 0.1253

ã∗
6 {80, . . .} 2921.3 0.0356

(6.5.6)

This will be called an aggregated frequency table. Of course, the expression
‘aggregated’ is to be understood as referring to the original frequency table
from which the aggregated table is derived.

6.5.5 Age Distributions since 1952

1. Any age distribution refers to a certain historical time t. How do age
distributions change with time? We base our description of the German
development through the last 50 years on data available from the STATIS

data base of the Statistisches Bundesamt (see Appendix A.1). The data
set refers to the territory of the former FRG and covers the years 1952 to
1998.17 For each of these years, there is an age distribution (in completed
years) both for men and women. Using previously introduced notations,

the absolute frequencies are given as values for nm
t,τ and nf

t,τ . In order to

simplify the presentation, we disregard sex and use nt,τ = nm
t,τ + nf

t,τ .
Schematically, the data file then looks as follows:

τ 1952 · · · 1998

0 n1952,0 · · · n1998,0

1 n1952,1 · · · n1998,1

2 n1952,2 · · · n1998,2

...
...

...

90∗ n1952,90∗ · · · n1998,90∗

17Segment 36, as updated in June 2000.
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Fig. 6.5-4 Age distribution in the territory of the former FRG in 1998
(solid line) and 1952 (dotted line). In the upper plot, the frequency curves
refer to absolute frequencies (in 1000), in the lower plot they refer to relative
frequencies.

The property space for age is the same as in Table 6.5-1; the last value,
90∗, represents an open-ended class that comprises ages of 90 and above.

2. To begin with, we compare the age distribution in the years 1952 and
1998 with the help of frequency curves. The result is shown in Figure 6.5-4.
Since population size has changed during this period,18 the figure provi-
des curves both for absolute frequencies (in the upper plot) and relative
frequencies (in the lower plot). Obviously, there is a remarkable increase
in the number of people in higher ages, both in terms of absolute and
relative frequencies. The comparison also shows that the marked irregu-
larities in the age distributions are mainly due to the development of the
demographic process since World War I.

3. It remains the question of how to get an impression of the year-to-year
changes in the age distribution for the whole period from 1952 to 1998. It

18Based on this data file, the population size (in 1000) is 51620 in 1952 and 66697 in
1998.
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Fig. 6.5-5 Development of the age distribution in the territory of the
former FRG, from 1952 to 1998. Shown are proportions in six age classes
as indicated on the right-hand side of the graphic.

is obviously not sensible to provide frequency curves separately for each
of these years. The general question is how to describe a time series of
frequency distributions. A simple approach would be to characterize each
distribution by its mean value and then to plot the development of these
means. This would show how the mean age of the population has changed
over the period. In our application we find that this mean age continuously
increased from 38 years in 1952 to 44 years in 1998.19

4. However, just to report the development of mean ages provides only
limited information. To provide additional information, we use the method
of aggregation discussed in the previous section. To illustrate, the same
partition into 6 age classes is used. Calculating relative frequencies for
these age classes, results in proportions

P[A∗
t ](ã

∗
1), . . . , P[A∗

t ](ã
∗
6) (t = 1952, . . . , 1998)

19For these calculations we have assumed an age of 90 for all people in the age class
90∗. Other assumptions would result in slightly higher mean age values.
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For each year, these proportions sum to unity and can be displayed in a
plot of proportions as shown in Figure 6.5-5. The plot impressively shows
the rise of the proportion of elderly people during the period from 1952 to
1998.

Chapter 7

Mortality and Life Tables

The development of a demographic process primarily depends on birth and
death events. In this chapter, we discuss methods that have been proposed
to quantify mortality and illustrate these methods with data from German
official statistics. We begin with death events because birth events require
more complicated methods. The reason is simply that each person must
eventually die, and will only die once, while a women can give birth to
several children.

7.1 Mortality Rates

1. A simple way to quantify mortality is to count the number of deaths
which occur in a year and relate this to the midyear size of the population
in that year. This is called a crude death rate or crude mortality rate.1

Using previously introduced notations, the definition is

Crude death rate :=
dt

nt
(multiplied by 1000)

where the temporal index t most often refers to calendar years. How these
crude death rates have developed in Germany has already been shown in
Section 6.3.

2. An obvious problem with crude death rates is that they do not take
into account changes in the age distribution of a population, or differences
between the age distributions of two or more populations that are to be
compared with respect to mortality. Since mortality is highly dependent
on age, a better starting point is to calculate age-specific death rates which
will be denoted by

δt,τ :=
dt,τ

nt,τ

In this definition, dt,τ denotes the number of people who died in year t
at the age of τ , and nt,τ is the midyear estimate of the number of people
in year t being of age τ . Furthermore, since mortality is also different for
men and women, we use the notations

δm
t,τ :=

dm
t,τ

nm
t,τ

and δf
t,τ :=

df
t,τ

nf
t,τ

1In publications of the Statistisches Bundesamt this is called allgemeine Sterbeziffer .
Some authors also use the term ‘rohe Sterblichkeitsrate’, or ‘rohe Mortalitätsrate’.
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Table 7.1-1 Midyear population and number of deaths in Germany 1999,
subdivided by age (τ ); 95∗ comprises all ages τ ≥ 95. Source: Segments 685
and 1124-26 of the STATIS data base of the Statistisches Bundesamt.

τ nm
t,τ dm

t,τ nf
t,τ df

t,τ τ nm
t,τ dm

t,τ nf
t,τ df

t,τ

0 399633 1979 378251 1517 48 563942 2422 556038 1222
1 410782 173 389437 137 49 558611 2555 548502 1320
2 413836 126 391872 83 50 529900 2745 517217 1354
3 403107 90 381972 63 51 494176 2691 482985 1414
4 398813 79 377741 54 52 450618 2873 442241 1421
5 409761 52 387869 41 53 397251 2432 392979 1287
6 422128 70 400905 43 54 434885 3182 432973 1618
7 435168 66 413392 52 55 502194 4012 498201 2023
8 466447 76 442107 44 56 500889 4244 496426 2010
9 485976 56 461036 54 57 545671 5189 544075 2493

10 490076 67 464833 42 58 612495 5906 615985 2831
11 492537 71 465361 42 59 621650 6970 630333 3345
12 482637 76 456705 54 60 593275 7303 606556 3514
13 469636 79 445784 50 61 551237 7359 569910 3497
14 461216 114 437317 65 62 522738 7819 546881 3692
15 463159 145 438441 84 63 502833 8422 534670 3985
16 472798 194 446710 108 64 472336 8835 511058 4451
17 479914 314 453245 148 65 409837 8207 445060 4173
18 481413 487 457174 159 66 361225 7990 399667 4074
19 473334 454 451301 168 67 359314 8984 405178 4766
20 462189 435 441633 137 68 365748 10288 423645 5572
21 460967 468 441747 156 69 362427 11122 431229 6279
22 460272 412 441953 125 70 347956 11690 425406 6858
23 456346 401 436715 118 71 319299 11439 416670 7489
24 458828 441 438622 135 72 283797 10934 410392 8366
25 469223 377 449325 155 73 258704 11017 416006 9404
26 500605 443 477112 143 74 228253 10847 407353 10147
27 557051 473 528212 169 75 202335 10404 390714 11172
28 603444 533 568797 200 76 196282 11027 387353 12516
29 644108 528 604417 214 77 193182 12292 395011 14616
30 686013 614 642576 235 78 180053 12610 390951 16287
31 712393 627 668147 263 79 144258 12452 328396 17041
32 732651 666 686810 308 80 96563 7484 221190 10678
33 748125 740 697478 345 81 68960 6478 161774 9951
34 758218 809 705906 365 82 65068 6763 156443 11125
35 761731 872 711736 431 83 70399 7840 177521 13397
36 746559 1066 700436 433 84 79463 10704 213228 20226
37 727433 1076 687469 539 85 78125 11001 219593 22124
38 711239 1126 675052 559 86 67852 10565 197433 22470
39 690941 1300 656171 629 87 55469 9517 168730 21892
40 663561 1334 630073 667 88 44330 8191 141995 20816
41 641087 1418 608883 717 89 35770 7471 120032 19758
42 627205 1572 597762 786 90 27775 6466 97204 18053
43 610005 1719 584657 858 91 20817 5174 75582 15700
44 594357 1788 575662 892 92 15772 4072 58386 13384
45 578806 1983 566937 980 93 11724 3170 42726 10696
46 570259 2055 561714 1097 94 8658 2446 30973 8332
47 566062 2223 558353 1136 95∗ 21807 4871 69931 20949
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Fig. 7.1-1 Age-specific death rates (per 1000) for men (solid line) and
women (dotted line) in Germany 1999, calculated from Table 7.1-1. The
plot is restricted to ages less than 95.

to refer to age-specific death rates for men and women, respectively. Like
crude death rates, also age-specific death rates are often multiplied by
1000, this is marked by adding a tilde:

δ̃m
t,τ := 1000 δm

t,τ , δ̃f
t,τ := 1000 δf

t,τ , δ̃t,τ := 1000 δt,τ

3. To illustrate the calculations, we use data for the year 1999 shown in
Table 7.1-1.2 For an age of 60, one finds

δ̃m
1999,60 =

7303

593.275
= 12.31 and δ̃f

1999,60 =
3514

606.556
= 5.79

Performing these calculations for all ages, the resulting death rates can be
visualized as shown in Figure 7.1-1. The figure clearly shows how mortality
varies with age, and also shows that, in older ages, death rates of men are
higher than death rates of women. So the figure also confirms that, when
investigating mortality, one should take into account age and sex.

4. The higher mortality of male individuals already begins in an early age.
This is hidden in Figure 7.1-1 because death rates are generally very low
until an age of about 50. The rates for the range of ages from 0 to 50 are
shown in Figure 7.1-2. The figure shows that significant differences in the
death rates already begin at an age of about 15. It seems plausible that
at least some part of the higher mortality of male individuals is also due
to different behavior and/or socio-economic conditions.

2Values for the midyear population correspond to those given in Table 6.5-1; of course,
the seemingly exact values in Table 7.1-1 result from population projections and should
be understood as estimates.
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Fig. 7.1-2 Age-specific death rates (per 1000) for men (solid line) and
women (dotted line) in Germany 1999, restricted to ages from 0 to 50.
Calculated from Table 7.1-1.

5. A consideration of age-specific death rates also shows why crude death
rates may suggest misleading conclusions. While the crude death rates,
as shown in Figure 6.3-1, have increased until about 1970, the age-specific
death rates actually declined during this period. This is shown by the
figures in Table 7.1-2. For example, for men, the crude death rate was
12.0 in 1952 and 13.1 in 1970, but in almost all age groups the age-specific
death rates were lower in 1970 than in 1952.

6. The crude death rate can be written as a weighted mean of age-specific
death rates. Denoting by at,τ := nt,τ/nt the proportion of persons of age
τ , in year t, the relationship is as follows:

dt

nt
=

∑

τdt,τ

nt
=

∑

τ

dt,τ

nt
=

∑

τ

dt,τ

nt,τ

nt,τ

nt
=

∑

τ
δt,τ at,τ

The equation shows that the crude death rate depends on both, the age-
specific death rates δt,τ , and the age distribution given by at,τ . This
suggests that, in order to compare death rates for different years, or among
different territories, one can use standardized death rates which refer to a
common age distribution. As an example, Table 7.1-3 shows crude and
standardized death rates for Germany, as calculated by the Statistisches
Bundesamt . The standardization is based on the age distribution in 1995;
the standardized death rates shown in this table are therefore calculated
with the following formula:

Standardized death rate for year t =
∑

τ
δt,τ a1995,τ

In contrast to the crude death rates, the standardized death rates declined
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Table 7.1-2 Death rates for specified age groups in Germany. For all years,
the figures refer to the territories of both the former FRG and the former GDR.
Source: Fachserie 1, Reihe 1, 1999 (p. 230).

Age 1952 1970 1990 1999

Men 0 59.661 25.242 8.223 4.952

1 – 4 2.242 1.058 0.469 0.288
5 – 9 0.818 0.600 0.243 0.144

10 – 14 0.686 0.493 0.243 0.170
15 – 19 1.266 1.395 0.819 0.672
20 – 24 1.883 1.731 1.097 0.938
25 – 29 1.862 1.616 1.133 0.848
30 – 34 2.062 1.814 1.467 0.950

35 – 39 2.701 2.443 2.026 1.495
40 – 44 3.785 3.725 2.816 2.497
45 – 49 5.951 5.736 4.797 3.960
50 – 54 10.068 9.155 7.539 6.036
55 – 59 15.428 15.240 12.526 9.458
60 – 64 23.805 26.353 19.486 15.038
65 – 69 36.701 44.226 30.838 25.068

70 – 74 58.846 69.332 47.465 38.892
75 – 79 96.879 102.786 80.038 64.168
80 – 84 158.387 153.799 129.312 103.216
85 – 89 242.165 232.039 197.655 166.030
90 – 352.626 341.384 309.298 245.878

Age 1952 1970 1990 1999

Women 0 47.075 19.089 6.209 4.011
1 – 4 1.773 0.836 0.377 0.219
5 – 9 0.533 0.389 0.196 0.111

10 – 14 0.398 0.299 0.165 0.111
15 – 19 0.720 0.561 0.325 0.297
20 – 24 1.095 0.616 0.405 0.305
25 – 29 1.282 0.703 0.434 0.335
30 – 34 1.550 0.903 0.626 0.446
35 – 39 2.153 1.425 1.035 0.755
40 – 44 2.864 2.237 1.515 1.308

45 – 49 4.225 3.606 2.440 2.062
50 – 54 6.311 5.328 3.497 3.127
55 – 59 9.494 7.869 5.697 4.561
60 – 64 15.436 13.050 9.196 6.912
65 – 69 27.302 23.033 15.301 11.813
70 – 74 48.909 41.437 25.386 20.360

75 – 79 86.029 73.536 48.149 37.852
80 – 84 142.401 126.783 87.257 70.286
85 – 89 220.005 204.513 152.491 126.282
90 – 328.131 317.971 268.712 232.427
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Table 7.1-3 Crude and standardized death rates in Germany. The standard-
ized death rates are based on the age distribution in 1995. Source: Fachserie 1,
Reihe 1, 1999 (p. 55).

Crude death rates Standardized death rates

Year Male Female Both Male Female Both

1952 12.0 10.1 11.1 14.8 20.9 17.9
1960 13.2 11.0 12.0 15.2 20.0 17.6
1970 13.1 12.0 12.6 14.9 18.2 16.6
1980 12.2 12.1 12.1 13.3 15.1 14.2
1990 11.1 12.1 11.6 11.5 12.7 12.1
1999 9.8 10.8 10.3 9.2 10.3 9.8

over the whole period from 1952 to 1999.3 These rates, therefore, summa-
rize the development of the age-specific death rates.

7.2 Mean Age at Death

1. Another approach to summarize information about mortality uses either
mean life length or mean age at death. In order to define these concepts
one needs to refer to a population. Mean age at death refers to all people
who died in a specific year, while mean life length refers to birth cohorts,
that is, to sets of people born in the same year. Actually, many calculations
of “life expectations” neither follow the first nor the second of these two
approaches. In fact, they do not refer to any population at all but construct
a fictitious distribution for the length of life with the help of a period life
table. This will be discussed in Section 7.3. In the present section we
briefly discuss the calculation of mean age at death. The discussion of
mean life length will be postponed because most often one then needs to
take into account incomplete observations.

2. We will denote the set of people who died in year t by Ω†
t . Implied by

the general framework introduced in Chapter 3, this is a subset of Ωt. We
can then formally define a variable

A†
t : Ω†

t −→ Ã := {0, 1, 2, . . .}

which provides, for each person ω ∈ Ω†
t , an age at death, A†

t(ω). This then

implies a statistical distribution for the variable A†
t , and its mean value,

M(A†
t ) =

∑

ω∈Ω†
t

A†
t (ω) / |Ω†

t |

3One exception is male mortality in the period following World War II.
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Fig. 7.2-1 Frequency curves showing the distribution of age at death for
men (solid line) and women (dotted line) who died in Germany in 1999;
curves are restricted to ages less than 95. Calculated from Table 7.1-1.

is the mean life length of the people in Ω†
t . In the following, we use

this conceptual framework but additionally distinguish men and women:
Ω†

t = Ω†,m
t ∪ Ω†,f

t . The corresponding variables will be denoted by A†,m
t

and A†,f
t , respectively.

3. Table 7.1-1 provides information on Ω†,m
1999 and Ω†,f

1999, the sets of, re-
spectively, men and women who died in Germany in 1999. Absolute fre-
quencies for the variables A†,m

t and A†,f
t are given by the entries dm

t,τ and

df
t,τ . Summing up these values, one finds

dm
t := |Ω†,m

t | = 390742 and df
t := |Ω†,f

t | = 455588

and, by dividing the entries by these numbers, one immediately also finds
the relative frequencies:

P[A†,m
t ](τ) =

dm
t,τ

dm
t

and P[A†,f
t ](τ) =

df
t,τ

df
t

4. In a next step, one can visualize the distributions of A†,m
t and A†,f

t

by frequency curves. Using absolute frequencies, the curves are shown in
Figure 7.2-1. It is seen that the curves are remarkably different for men
and women and also depend on the age distribution in 1999.4 Since age is

4This is true, in particular, for ages around 80; see the age distributions in Figure
6.5-2.
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recorded in completed years, it seems sensible to use the formula

∞∑

τ=0

(τ + 0.5) P[A†
t ](τ) = M(A†

t ) + 0.5

suitably modified for men and women, to calculate the mean age at death.
However, an obvious problem concerns the open-ended age class beginning
at age 95 in Table 7.1-1. One needs some estimate, say a, for the mean
age of the people who died at an age equal to, or greater than, 95. This
would then allow to rewrite the formula as

94∑

τ=0

(τ + 0.5) P[A†
t ](τ) + a P[A†

t ](95∗)

Using a = 95.5 would result in a minimal mean life length. It might be
more reasonable to use a somewhat higher estimate. To see the dependency
on a, we calculate the first term which is 69.46 for men and 74.48 for
women. Using the proportions of men and women in the 95∗ age class,
one gets the formulas

69.46 + a 0.0125 and 74.48 + a 0.0460

Assuming a = 95.5, the mean age at death would be 70.7 for men and 78.9
for women. However, also a much higher value of a would only slightly
increase the estimates. Thus it seems safe to believe that the mean age
at death in Germany in 1999 is about 71 years for men and 80 years for
women.

5. We briefly mention another possibility to report some kind of mean
value for a distribution which is called its median and refers to the distri-
bution function of a statistical variable. We first introduce the notion of a
distribution function. If X : Ω −→ X̃ is any statistical variable, its distri-
bution function is defined as a function F [X ] : R −→ R which associates
with each number x ∈ R the proportion of elements of Ω having a value
of the variable X which is less than, or equal to, x. In a formal notation:

F [X ](x) :=

∣
∣{ω ∈ Ω |X(ω) ≤ x}

∣
∣

|Ω |

which also shows that the values of a distribution function are always
between 0 and 1. If the number of elements in the property space X̃ is finite
(which is always the case in the examples of this text), there is a simple
relationship between a distribution function and relative frequencies:

F [X ](x) =
∑

x̃≤x

P[X ](x̃)
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Fig. 7.2-2 Distribution functions for the variables A†,m
t and A†,f

t which
record the age at death in Germany 1999. The upper curve refers to men,
the lower curve to women, both curves are restricted to ages less than 95.
Calculated from Table 7.1-1.
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Fig. 7.2-3 Distribution functions for the variables A†,m
t (solid line)

and A†,f
t (dotted line) which record the age at death in Germany 1999;

both curves are restricted to ages less than 95. Calculated from Table 7.1-1.

Therefore, a distribution function is sometimes also called a cumulated
frequency function.

6. Using the data from Table 7.1-1, distribution functions of the variables
A†,m

t and A†,f
t are plotted in Figure 7.2-2. As seen from this figure, dis-

tribution functions are step functions with jumps at the elements of a
variable’s realized property space.5 Of course, if the realized property
space contains many values which are near together, it might be sensible,
for better visibility, to connect the function values by linear line segments.

5The figure shows the distribution function only for age values less than 95 since, from
the data in Table 7.1-1, we do not know where the function approaches unity. By the
definition of a distribution function, one only knows that F (∞) = 1.
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For our example, this is shown in Figure 7.2-3. This figure also illustrates
the notion of median: If F [X ] denotes the distribution function of a sta-
tistical variable X , its median is defined as a number, say mx, such that
F [X ](mx) ≈ 0.5.6 Using this definition, one finds from Figure 7.2-3 that
the median life length is about 72 years for men and 82 years for women.
These are somewhat higher than the mean values calculated above since
most of the frequencies occur in the upper right part of the distribution.

7. The median of a distribution can be interpreted in the following way:
about half of the population has property values below and another half
has property values above that number. In our example, about half of the
men who died in 1999 died at ages below 72 years. One might notice that
the calculation of a median does not require complete knowledge about a
distribution. Contrary to the calculation of mean values discussed above,
the median life length is quite independent of the form of the distribution
function below and above its median. In particular, in our example, one
does not need any assumptions about the mean age of the people who died
in ages higher than 90 years.

7.3 Life Tables

Mean age at death refers to people who died in a specific year. Another
approach is to think in terms of life length of people born in the same year
or period. This leads to the idea of life tables. As will be discussed later
one has to distinguish cohort and period life tables. In order to prepare
this discussion we first introduce the notion of duration variables.

7.3.1 Duration Variables

1. Life length is just one example of duration data. In general, duration
data can refer to almost any kind of duration, for example, job durations
and marriage durations. In this section, before continuing with a discussion
of mortality, we introduce definitions and notations which are helpful to
deal not only with life length but with other kinds of duration data as well.
The starting point is a general duration variable

T : Ω −→ T̃ := {0, 1, 2, 3, . . .}

which is defined for some population Ω. For each individual ω ∈ Ω, the
variable T records a duration T (ω) ∈ T̃ . As mentioned, T̃ can refer to life
length, job duration, marriage duration, or any other kind of duration. In

6Since distribution functions are step functions, there normally is no unique number
mx such that F [X](mx) exactly equals 0.5. For practical computations, an often used
approach is to sort the values of a variable in ascending order and then to choose the
mid-value, if the number of data is uneven, or otherwise the mean of two neighboring
mid-values.
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any case, T̃ will be considered as a discrete time axis representing temporal
locations 0, 1, 2, . . . which might be days, months, or years. Therefore,
if T (ω) = t, this means that the event terminating ω’s duration occurs
somewhere in the temporal location t, and the duration amounts to t
completed time units.

2. Since T is a statistical variable, it has a statistical distribution defined
by a frequency function

P[T ](t) =

∣
∣{ω ∈ Ω |T (ω) = t}

∣
∣

|Ω |

For each t ∈ T̃ , P[T ](t) is the proportion of individuals in Ω for whom the
variable T has the value t. For example, if T̃ refers to life length, P[T ](t)
would be the proportion of individuals whose life length is t.

3. As already discussed in Section 7.2, the distribution of a statistical
variable can also be described by a distribution function. Applied to the
duration variable T , values of the distribution function are given by

F [T ](t) =

∣
∣{ω ∈ Ω |T (ω) ≤ t}

∣
∣

|Ω |

where now t ∈ R is any real number. One may notice that both functions,
P[T ] and F [T ], provide the same information because one can be derived
from the other. If the frequency function is given, then

F [T ](t) =
∑

t′≤t

P[T ](t′)

On the other hand, if t is any value in T̃ , then

P[T ](t) = F [T ](t) − F [T ](t − 1)

if t > 0, and P[T ](0) = F [T ](0).

4. A further concept often used in a discussion of duration variables is
called a survivor function and denoted by G[T ]. We will use the following
definition:

G[T ](t) :=

∣
∣{ω ∈ Ω |T (ω) ≥ t}

∣
∣

|Ω |

where t can be any real number.7 Again, F [T ] and G[T ] provide the same

7In the literature one also finds a slightly different definition:

G[T ](t) :=

˛

˛{ω ∈ Ω |T (ω) > t}
˛

˛

|Ω |
= 1 − F [T ](t)

This definition was used, for example, by Rohwer and Pötter (2001, p. 198). The def-
inition given above is preferred for the present text because it better suits a discrete
time axis.
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information. F [T ](t) is the proportion of individuals whose duration is
less than, or equal to, t; and G[T ](t) is the proportion of individuals whose
duration is greater than, or equal to, t. For example, if T̃ refers to life
length, G[T ](70) would be the proportion of people still alive at age 70.

5. Finally, one can characterize the distribution of a duration variable by
a rate function. A rate function

r[T ] : X̃ −→ R

associates to each duration t ∈ X̃ a number

r[T ](t) :=

∣
∣{ω ∈ Ω |T (ω) = t}

∣
∣

∣
∣{ω ∈ Ω |T (ω) ≥ t}

∣
∣

The numerator is the number of individuals in Ω whose duration is t, and
the denominator is the number of individuals with a duration not less
than t. For example, assuming that T refers to life length, if the number
of individuals still alive at age 90 is 1000 and, of these people, 100 die at
age 90, then the rate for t = 90 would be

r[T ](90) = 100/1000 = 0.1

6. Another way to interprete rates is in terms of events, in this example,
in terms of death events. One can define a risk set

R(t) := {ω ∈ Ω |T (ω) ≥ t}

containing all individuals who still might experience the event (which, in
turn, defines the duration) in t; and also an event set

E(t) := {ω ∈ Ω |T (ω) = t}

containing the members of R(t) who actually experienced the event in t.
The definition of a rate as given above is then equivalent to

r[T ](t) =
| E(t) |

| R(t) |

7. We mention that a rate function provides the same information about
the distribution of T as the frequency function P[T ], the distribution func-
tion F [T ], and the survivor function G[T ]. First, since

| E(t) | = P[T ](t) |Ω| and | R(t) | = G[T ](t) |Ω|

one directly finds that

r[T ](t) =
P[T ](t)

G[T ](t)
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On the other hand, assume that the rate function is given. Since always
G[T ](0) = 1, the survivor function may be written in the form

G[T ](t) =
G[T ](t)

G[T ](t − 1)

G[T ](t − 1)

G[T ](t − 2)
· · ·

G[T ](1)

G[T ](0)

However, since the factors can also be written as

G[T ](t)

G[T ](t − 1)
=

G[T ](t − 1) − P[T ](t− 1)

G[T ](t − 1)
= 1 − r[T ](t − 1)

it follows that

G[T ](t) = (1 − r[T ](t − 1)) (1 − r[T ](t − 2)) · · · (1 − r[T ](0))

=

t−1∏

j=0

(1 − r[T ](j)) (7.3.1)

Therefore, given the rate function, one can derive the survivor function,
and consequently also the frequency and distribution functions.

7.3.2 Cohort and Period Life Tables

1. An often used method to record mortality data is the construction of a
life table [Sterbetafel]. There are two variants:

a) A cohort life table records the mortality of a birth cohort and refers to
the historical period during which members of the birth cohort lived.

b) A period life table is derived from the age-specific mortality rates of
one or more consecutive years and, consequently, reflects the mortality
conditions of these years.

2. The construction of a cohort life table refers to a birth cohort, say Ct0 ,
whose members are born in the year t0. One can think, then, of a duration
variable

Tt0 : Ct0 −→ T̃ = {0, 1, 2, 3, . . .}

that records, for each individual ω ∈ Ct0 , its life length Tt0(ω). A life table
is then simply a table that describes the distribution of Tt0 , most often in
terms of a survivor function or a rate function.

3. Actually, most life tables, and in particular life tables published by
official statistics, are period life tables. One reason is that period life
tables are better suited to keep track of mortality conditions as they are
changing from year to year. In contrast, a cohort life table would refer
to a relatively long historical period. For example, a life table for persons



98 7 MORTALITY AND LIFE TABLES

born in 1900 would be the result of all changes in mortality conditions
that occurred during the whole last century. A second reason is that it is
more difficult to find suitable data for cohort life tables. In the remainder
of the present section we therefore concentrate on period life tables. Some
approaches to construct cohort life tables will be discussed in Chapter 8.

4. A period life table refers to a population of people who live during a
period t. For the moment, we will assume that t refers to a specific year
and denote the population by Ωt. Most of the members of Ωt will be still
alive in the next year, t + 1, but some will die during the year t. This can
be represented by a two-dimensional statistical variable

(At, Dt) : Ωt −→ Ã × D̃

Ã is a property space for age in completed years, so At(ω) is the age of ω
in the year t, measured in completed years; and D̃ := {0, 1} is the property
space for variable Dt which is used to record whether a person dies during
the year t or survives to the next year:

Dt(ω) :=

{
1 if ω dies during the year t

0 otherwise

For example, (At, Dt)(ω) = (50, 1) would mean that ω died at age 50 dur-
ing the year t; and (At, Dt)(ω) = (50, 0) would mean that ω is of age 50 in
year t but survived to the following year. Given this two-dimensional vari-
able, one can define age-specific death rates. If nt,τ = |{ω ∈ Ωt |Xt(ω) =
τ}| is the number of persons in Ωt who are of age τ in the year t, and
dt,τ = |{ω ∈ Ωt |Xt(ω) = τ, Dt(ω) = 1}| is the number of persons in Ωt

who died during the year t at the age τ , the age-specific death rates are
given by

δt,τ =
dt,τ

nt,τ

Obviously, this is identical with the definition of age-specific death rates
given in Section 7.1.8

5. These age-specific mortality rates can now be used to construct a kind
of fictitious distribution. To motivate the construction, authors often refer
to a fictitious cohort in the following way: Think of a set of lt,0 people,
all born at the same time, day 0. Then assume that, for each year τ ,

8These age-specific death rates are often called “death probabilities” [Sterbe-
wahrscheinlichkeiten]. This is misleading because these rates refer to frequencies, not
to probabilities. Unfortunately, there is a general tendency in the statistical literature
to confuse probabilities and frequencies. For a discussion, and critique, see Rohwer and
Pötter (2002b).
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beginning in day 0, the proportion of people dying during the year τ is
given by δt,τ . This implies:

lt,1 = lt,0 (1 − δt,0)

lt,2 = lt,1 (1 − δt,1)

lt,3 = lt,2 (1 − δt,2)

and, in general,

lt,τ = lt,τ−1 (1 − δt,τ−1) = lt,0

τ−1∏

j=0

(1 − δt,j)

until, eventually, all members of the fictitious cohort are dead.9 The con-
struction of a period life table basically consists in performing these cal-
culations and presenting the results in a table where the essential columns
are: the age τ , the age-specific death rates δt,τ , and the number of people
still alive at age τ .

6. Alternatively, one can think in terms of a fictitious duration variable,
Tt, that has a distribution defined by the rate function

r[Tt](τ) := δt,τ

This rate function implies a survivor function

G[Tt](τ) =

τ−1∏

j=0

(1 − r[Tt](j)) =

τ−1∏

j=0

(1 − δt,j)

and it follows that G[Tt](τ) = lt,τ/lt,0. The sequence lt,0, lt,1, lt,2, . . . can
therefore be interpreted as the values of a survivor function for the fictitious
duration variable Tt.

7. To illustrate the calculations, we use data for Germany in 1999 as shown
in Table 7.1-1. The result of the calculations, separately for men and
women, is shown in Table 7.3-1. The initial size of the fictitious cohorts is
lmt,0 = 100000 and lft,0 = 100000. Further values of lmt,τ and lft,τ can then
be calculated recursively as described above. For example,

lmt,1 = lmt,0 (1 − δm
t,0) = 100000 ·

(

1 −
4.95

1000

)

= 99505

From the 100000 men assumed to be alive at the beginning, 99505 survive
their first birth day. Figure 7.3-1 shows the corresponding survivor func-
tions for men and women. These functions are only shown up to an age

9Obviously, in order to provide sensible results, it is required that all death rates are
strictly less than 1 until, at the maximal age (or open-ended age class) the death rate
gets the value 1.
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Table 7.3-1 Period life table for Germany in 1999, calculated from the data
in Table 7.1-1.

τ δ̃m
t,τ lmt,τ δ̃f

t,τ lft,τ τ δ̃m
t,τ lmt,τ δ̃f

t,τ lft,τ

0 4.95 100000 4.01 100000 48 4.29 94574 2.20 97143

1 0.42 99505 0.35 99599 49 4.57 94168 2.41 96929
2 0.30 99463 0.21 99564 50 5.18 93737 2.62 96696

3 0.22 99433 0.16 99543 51 5.45 93252 2.93 96443

4 0.20 99410 0.14 99526 52 6.38 92744 3.21 96160
5 0.13 99391 0.11 99512 53 6.12 92153 3.27 95851

6 0.17 99378 0.11 99502 54 7.32 91588 3.74 95537
7 0.15 99362 0.13 99491 55 7.99 90918 4.06 95180

8 0.16 99347 0.10 99478 56 8.47 90192 4.05 94794

9 0.12 99330 0.12 99469 57 9.51 89428 4.58 94410
10 0.14 99319 0.09 99457 58 9.64 88577 4.60 93978

11 0.14 99305 0.09 99448 59 11.21 87723 5.31 93546
12 0.16 99291 0.12 99439 60 12.31 86740 5.79 93049

13 0.17 99275 0.11 99427 61 13.35 85672 6.14 92510

14 0.25 99259 0.15 99416 62 14.96 84528 6.75 91942
15 0.31 99234 0.19 99401 63 16.75 83264 7.45 91322

16 0.41 99203 0.24 99382 64 18.70 81869 8.71 90641
17 0.65 99162 0.33 99358 65 20.03 80338 9.38 89852

18 1.01 99098 0.35 99326 66 22.12 78729 10.19 89009

19 0.96 98997 0.37 99291 67 25.00 76988 11.76 88102
20 0.94 98902 0.31 99254 68 28.13 75063 13.15 87066

21 1.02 98809 0.35 99223 69 30.69 72951 14.56 85920

22 0.90 98709 0.28 99188 70 33.60 70713 16.12 84669
23 0.88 98621 0.27 99160 71 35.83 68337 17.97 83304

24 0.96 98534 0.31 99134 72 38.53 65889 20.39 81807
25 0.80 98439 0.34 99103 73 42.59 63350 22.61 80139

26 0.88 98360 0.30 99069 74 47.52 60652 24.91 78328

27 0.85 98273 0.32 99039 75 51.42 57770 28.59 76377
28 0.88 98190 0.35 99008 76 56.18 54800 32.31 74193

29 0.82 98103 0.35 98973 77 63.63 51721 37.00 71796
30 0.90 98022 0.37 98938 78 70.03 48430 41.66 69139

31 0.88 97935 0.39 98901 79 86.32 45038 51.89 66259

32 0.91 97849 0.45 98863 80 77.50 41151 48.28 62820
33 0.99 97760 0.49 98818 81 93.94 37961 61.51 59788

34 1.07 97663 0.52 98769 82 103.94 34395 71.11 56110
35 1.14 97559 0.61 98718 83 111.37 30820 75.47 52120

36 1.43 97447 0.62 98658 84 134.70 27388 94.86 48187

37 1.48 97308 0.78 98597 85 140.81 23699 100.75 43616
38 1.58 97164 0.83 98520 86 155.71 20362 113.81 39222

39 1.88 97010 0.96 98439 87 171.57 17191 129.75 34758
40 2.01 96828 1.06 98344 88 184.77 14242 146.60 30248

41 2.21 96633 1.18 98240 89 208.86 11610 164.61 25814

42 2.51 96419 1.31 98124 90 232.80 9185 185.72 21565
43 2.82 96178 1.47 97995 91 248.55 7047 207.72 17560

44 3.01 95906 1.55 97852 92 258.18 5295 229.23 13912
45 3.43 95618 1.73 97700 93 270.39 3928 250.34 10723

46 3.60 95290 1.95 97531 94 282.51 2866 269.01 8039

47 3.93 94947 2.03 97341 95 2056 5876
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Fig. 7.3-1 Plot of the survivor functions calculated in Table 7.3-1. For
men: lmt,τ/100000 (solid line), for women: lft,τ/100000 (dotted line).

of 94 because our data group all higher ages into a single age class (95∗).
For the same reason, Table 7.3-1 does not provide death rates for τ = 95.
If one would refer to the age class 95∗, the death rate would simply be 1
since any person in this age class must eventually die.

8. We mention that the survivor functions shown in Figure 7.3-1 are differ-
ent from the survivor functions that correspond to the distribution func-
tions shown in Figure 7.2-2. While these distribution functions, and the
corresponding survivor functions, refer to a definite population, namely
all people who died in Germany in 1999, the survivor functions shown in
Figure 7.3-1 do not refer to any identifiable population but are conceptual
constructions derived from the age-specific death rates in 1999. The differ-
ence also becomes visible when calculating median life lengths. Based on
Figure 7.3-1, one finds about 77.5 years for men and 83.5 years for women.
This is significantly higher than the median life length of those men and
women who actually died in 1999, as calculated in Section 7.2, namely
72 years for men and 82 years for women. Of course, these values are
lower because they reflect the mortality conditions during the life courses
of these people, and not just in 1999.

7.3.3 Conditional Life Length

1. A period life table can be thought of as the representation of the distri-
bution of a fictitious duration variable Tt. The corresponding mean value
of Tt, M(Tt), might be interpreted as the mean life length corresponding
to the mortality conditions in t. In a further step, one can condition the
calculation on the assumption that people have already reached a certain
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age, say τ0. One might then ask for the mean life length of these people.

2. The formal framework is provided by the notion of conditional mean
value. We first introduce this notion for a general duration variable T :
Ω −→ T̃ . Given any value t0 ∈ T̃ , the risk set

R(t0) := {ω ∈ Ω |T (ω) ≥ t0}

consists of those people in Ω whose values of T are not less than t0. The
conditional mean value of T , given T ≥ t0, is then simply the mean value
of T in the subpopulation R(t0). We use the following notation:

M[T |T ≥ t0] :=

∑

ω∈R(t0)
T (ω)

|R(t0)|

Since T can only assume non-negative values, the unconditional mean value
is a special case: M(T ) = M[T |T ≥ 0]. It is also easy to see that

if t0 ≤ t1, then M[T |T ≥ t0] ≤ M[T |T ≥ t1]

In any case, the calculation of conditional mean values only requires a
knowledge of the distribution of T beginning at t0, as shown by the fol-
lowing equation:

M[T |T ≥ t0] =

∑∞
t=t0

t P[T ](t)
∑∞

t=t0
P[T ](t)

=

∑∞
t=t0

t P∗[T ](t)
∑∞

t=t0
P∗[T ](t)

3. The notion of a conditional mean can also be applied to a fictitious
duration variable Tt defined by a period life table for the period t. Using
notations from the previous section, and omitting indices which distinguish
male and female quantities, one may write:

P[Tt](τ) =
lt,τ − lt,τ+1

100000
=

lt,τ δt,τ

100000

This then allows, for any age τ0, to calculate a conditional mean value by

M[Tt|Tt ≥ τ0] =

∑∞
τ=τ0

τ lt,τ δt,τ
∑∞

τ=τ0
lt,τ δt,τ

(7.3.2)

4. To illustrate the calculations we use the data from Table 7.3-1. The
only difficulty concerns the age class 95∗. As was already discussed in
Section 7.2, one needs an assumption about the mean age at death in this
age class, that is, about the conditional life length for τ0 = 95. Assuming
without further justification

M(T m
t |T m

t ≥ 90] = 97 and M(T f
t |T

f
t ≥ 90] = 99
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Fig. 7.3-2 Conditional life length in Germany, 1999, derived from the
data in Table 7.3-1.

one can use (7.3.2) to calculate conditional life lengths for all τ0 ≥ 0. The
result is shown in Figure 7.3-2 where the abscissa refers to age values τ0

and the ordinate records the conditional life length. The unconditional
mean values, corresponding to τ0 = 0, are about 74.5 years for men and
80.5 years for women. Obviously, if τ0 increases, also the conditional life
length increases. One can also derive a mean residual life function [fernere
Lebenserwartung] defined by

M(Tt|Tt ≥ τ0] − τ0

For example, given that people have already reached an age of 70, our
period life table would estimate a mean residual life length of about 11.5
years for men and 14.5 years for women.

7.4 Official Life Tables in Germany

In the present section we discuss life tables by official statistics in Germany.
We begin with a brief overview and then consider changes in mortality as
reflected by a series of period life tables beginning in the 1871–81 period.

7.4.1 Introductory Remarks

1. In Section 7.3 we used age-specific death rates of the year 1999 in order
to construct a life table for that year. This rather straightforward method
is often modified.10 Differences mainly concern the following points:

10Much of the discussion of different methods to construct life tables occurred already
during the 19th century. For a fairly complete report see v. Bortkiewicz (1911).
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a) How to calculate age-specific death rates? While the numerator simply
counts the number of deaths that occurred in a given age and year,
there are several possible choices for the definition of the denominator.
Instead of using the midyear population, nt,τ , as we have done in
Section 7.3, one might want to take into account also the temporal
distribution of death events during the year.11

b) Another point concerns the calculation of age-specific death rates for
very old ages. In the example presented in Section 7.3 this was not
done because the data did not provide any information about ages
greater than, or equal to, 90. If further data would be available one
might be able to estimate age-specific death rates also for these higher
ages. Alternatively, one might apply some interpolation procedure.12

c) A further point concerns the use of data for a single year. An alterna-
tive would be to combine the data of several years. The latter approach
is often used as a kind of smoothing procedure. For the same reason,
one might apply analytical smoothing procedures to single-year data.

We will not here discuss the many different methods that have been pro-
posed for the construction of life tables. Instead, we describe the methods
used by the Statistisches Bundesamt .

2. Official statistics in Germany distinguishes between general life ta-
bles [Allgemeine Sterbetafeln] and abridged life tables [abgekürzte Ster-
betafeln]. General life tables refer to periods which are centered around
the year of a census. The most recent general life table is based on the
census in 1987 and refers to the three-year period 1986– 88. The methods
to calculate general life tables changed several times.13 For the last two
tables (1970– 72 and 1986– 88), calculations begin with age-specific death
rates which, in our standard notation, are defined as

δt,τ =
dt,τ

nt,τ

11A discussion of alternative methods can be found, e.g., in Namboodiri and Suchindran
(1987, pp. 12 -19), or Flaskämper (1962, pp. 351-366).

12Namboodiri and Suchindran (1987, p. 19 -20) write: “Population and death data at
the very old ages, when they are available, are generally disregarded in computing a life
table, mainly because they are considered inaccurate. It has therefore been a common
practice to use arbitrary methods for computing qx [the death rate for age x] at the
very old ages (usually 85 and above). For practical purposes, any reasonable method
is satisfactory, since the arbitrariness involved in the method has only a small effect on
the life table as a whole. The major requirement that is usually kept in mind when
choosing a procedure in this connection is that the procedure should produce a smooth
junction with the qx values already computed and a smooth upward progression of qx

with advancing age.” The authors then briefly describe four different methods.

13Detailed explanations are available in Fachserie 1, Reihe 1 S.2, Allgemeine Sterbetafel
für die Bundesrepublik Deutschland 1986/88.
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where τ refers to age in completed years and t refers to a calendar year.
These rates are then modified to

qt,τ :=
dt,τ

nt,τ +
dt,τ

2

The reason behind this modification is that about half of the people who
die at age τ during the year t are not counted in nt,τ . Therefore, in order
to get an estimate of the number of people who are actually at risk of dying
in year t, dt,τ/2 is added to nt,τ .14 These modified age-specific death rates
are then calculated for a three-year period as follows:

q(t),τ :=
dt−1,τ + dt,τ + dt+1,τ

nt−1,τ + nt,τ + nt+1,τ +
dt−1,τ +dt,τ +dt+1,τ

2

where t = 1987 for the life table which refers to the period 1986– 88.

3. Abridged life tables, like general life tables, are based on three-year
intervals and use the same method of calculating modified age-specific
death rates.15 The main differences are as follows:

a) For the construction of general life tables, additional calculations are
performed to provide more detailed information about death rates dur-
ing the first year after birth. The abridged life tables simply use q(t),0

without further subdivisions.

b) While the calculation of abridged life tables is directly derived from
the death rates q(t),τ , these rates are smoothed before they are used in
the calculation of general life tables.16

14In the literature, these modified rates, qt,τ , are often called “age-specific death prob-
abilities”. However, for reasons already mentioned, we avoid the term ‘probability’ and
simply speak of modified age-specific death rates.

15Abridged life tables have been calculated regularly for each year since 1957; results
are published in Fachserie 1, Reihe 1.

16Fachserie 1, Reihe 1, S.2 (p. 13) provides the following reasons:
”
Um einen möglichst

wirklichkeitsgetreuen Verlauf der Sterbewahrscheinlichkeiten in Abhängigkeit vom Alter
x zu erreichen, ist es notwendig, die rohen Sterbewahrscheinlichkeiten q̄x auszugleichen,
das heißt, von zufallsbedingten Schwankungen und solchen systematischen Sprüngen zu
bereinigen, die an bestimmte Geburtsjahrgänge gebunden sind. An das Ausgleichungs-
verfahren sind damit die folgenden Anforderungen zu stellen:
– Der Verlauf der ausgeglichenen Sterbewahrscheinlichkeiten qx in Abhängigkeit vom
Alter x soll möglichst

”
glatt“ sein, das heißt hier, möglichst kleine Krümmungen haben

und keine Sprungstellen und keine Knicke aufweisen.
– Zufallsbedingte Schwankungen sollen ausgeglichen werden.
– Typische altersspezifische Besonderheiten im Sterblichkeitsverlauf sollen bewahrt blei-
ben, zum Beispiel das relative Maximum bei den 20jährigen.
– Besonderheiten im Sterblichkeitsverlauf, die an bestimmte Geburtsjahrgänge gebun-
den sind (Kohorteneffekte), zum Beispiel die relative hohe Sterbewahrscheinlichkeit bei
den

”
Kriegsjahrgängen“ des Ersten Weltkriegs, müssen eliminiert werden.“
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One should notice that the term ‘abridged life table’ is used differently
in the demographic literature. In contrast to ‘abgekürzte Sterbetafel’, an
abridge life table most often refers to a calculation based on 5-year or
10-year age intervals.17

7.4.2 General Life Tables 1871 – 1988

1. In Germany, general life tables have been constructed by official statis-
tics for the following periods:

Period Publication

1871 – 1880 Statistik des Deutschen Reichs, Vol. 246 (pp. 14∗-17∗).

1881 – 1890 Statistik des Deutschen Reichs, Vol. 246 (pp. 14∗-17∗).

1891 – 1900 Statistik des Deutschen Reichs, Vol. 246 (pp. 14∗-17∗).

1901 – 1910 Statistik des Deutschen Reichs, Vol. 246 (pp. 14∗-17∗).

1910 – 1911 Statistik des Deutschen Reichs, Vol. 275. Statistisches
Jahrbuch für das Deutsche Reich 1919 (pp. 50-51).

1924 – 1926 Statistik des Deutschen Reichs, Vol. 360 and 401. Statis-
tisches Jahrbuch für das Deutsche Reich 1928 (pp. 38-39).

1932 – 1934 Statistik des Deutschen Reichs, Vol. 495 (pp. 86-87). Sta-
tistisches Jahrbuch für das Deutsche Reich 1936 (pp. 45-
46).

1949 – 1951 Statistik der Bundesrepublik Deutschland, Vol. 75 and
173. Statistisches Jahrbuch für die Bundesrepublik
Deutschland 1954 (pp. 62-63).

1960 – 1962 Statistisches Jahrbuch für die Bundesrepublik Deutsch-
land 1965 (pp. 67-68). See also: Schwarz (1964).

1970 – 1972 Fachserie 1, Reihe 2, Sonderheft 1. Allgemeine Sterbetafel
für die Bundesrepublik Deutschland 1970/72. See also:
Meyer and Rückert (1974).

1986 – 1988 Fachserie 1, Reihe 1, Sonderheft 2. Allgemeine Sterbetafel
für die Bundesrepublik Deutschland 1986/88. See also:
Meyer and Paul (1991).

All tables are period life tables. Until 1932– 34, they refer to the territory
of the former Deutsches Reich; all other tables refer to the territory of the
former FRG. As has been mentioned in Section 7.4.1, methods of table
construction have slightly changed throughout the years.

2. Separately for men and women, the survivor functions of all life tables
are reproduced in Tables 7.4-1- 4. Following general conventions in the pre-
sentation of life tables, beginning with initial values lm0 = 100000 men and

17See, e.g., Namboodiri and Suchindran (1987, pp. 21-26).
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Table 7.4-1 Male survivor functions in German life tables from official
statistics. Source: see text.

1871/ 1881/ 1891/ 1901/ 1910/ 1924/ 1932/ 1949/ 1960/ 1970/ 1986/
1881 1890 1900 1910 1911 1926 1934 1951 1962 1972 1988

τ lmτ lmτ lmτ lmτ lmτ lmτ lmτ lmτ lmτ lmτ lmτ

0 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000
1 74727 75831 76614 79766 81855 88462 91465 93823 96467 97400 99075
2 69876 70998 72631 76585 79211 87030 90618 93433 96244 97249 99005
3 67557 68729 70999 75442 78255 86477 90211 93203 96109 97152 98956
4 65997 67212 69945 74727 77662 86127 89901 93022 96013 97067 98921
5 64871 66127 69194 74211 77213 85855 89654 92880 95929 96989 98891
6 64028 65330 68641 73820 76873 85647 89446 92768 95852 96918 98862
7 63369 64711 68214 73506 76596 85477 89255 92673 95782 96854 98835
8 62849 64221 67874 73244 76361 85330 89081 92586 95721 96795 98809
9 62431 63836 67599 73023 76161 85197 88927 92513 95667 96741 98786

10 62089 63526 67369 72827 75984 85070 88793 92444 95620 96692 98764
11 61800 63265 67167 72650 75818 84950 88675 92379 95577 96647 98744
12 61547 63036 66983 72487 75662 84837 88567 92315 95536 96604 98724
13 61320 62830 66811 72334 75517 84726 88464 92250 95493 96561 98704
14 61108 62636 66641 72179 75365 84607 88360 92178 95445 96515 98681
15 60892 62441 66462 72007 75189 84469 88244 92097 95388 96459 98652
16 60657 62226 66259 71808 74986 84306 88105 92001 95316 96383 98612
17 60383 61972 66017 71573 74746 84110 87939 91892 95225 96273 98557
18 60063 61675 65731 71300 74470 83874 87746 91767 95112 96118 98483
19 59696 61340 65405 70989 74165 83592 87531 91625 94973 95927 98389
20 59287 60970 65049 70647 73832 83268 87298 91466 94812 95732 98284
21 58843 60572 64674 70291 73488 82912 87051 91294 94637 95541 98175
22 58369 60156 64292 69935 73143 82539 86795 91113 94457 95357 98068
23 57871 59734 63912 69582 72800 82162 86539 90924 94280 95182 97964
24 57378 59315 63539 69232 72466 81792 86285 90730 94110 95016 97862
25 56892 58897 63168 68881 72130 81429 86032 90531 93948 94858 97763
26 56410 58474 62796 68528 71789 81072 85777 90329 93789 94705 97664
27 55927 58047 62420 68173 71446 80721 85516 90125 93633 94555 97567
28 55442 57613 62043 67817 71105 80380 85251 89922 93478 94405 97468
29 54951 57169 61663 67458 70768 80049 84984 89720 93323 94253 97367
30 54454 56713 61274 67092 70425 79726 84715 89518 93166 94097 97262
31 53949 56243 60873 66719 70070 79404 84440 89314 93008 93937 97153
32 53434 55755 60459 66338 69705 79080 84157 89104 92846 93773 97039
33 52908 55245 60030 65946 69332 78758 83863 88887 92679 93604 96920
34 52369 54715 59581 65536 68948 78436 83555 88662 92505 93429 96794
35 51815 54168 59111 65104 68545 78111 83234 88428 92322 93245 96661
36 51244 53599 58618 64650 68125 77779 82905 88184 92129 93049 96519
37 50656 53009 58099 64175 67693 77433 82571 87930 91924 92838 96367
38 50049 52406 57557 63676 67233 77073 82224 87666 91705 92610 96203
39 49422 51788 56992 63149 66741 76701 81860 87391 91470 92361 96026
40 48775 51148 56402 62598 66227 76313 81481 87102 91218 92089 95834
41 48110 50486 55785 62021 65682 75905 81088 86795 90949 91794 95624
42 47428 49806 55142 61413 65113 75473 80676 86468 90662 91475 95394
43 46729 49112 54470 60773 64518 75016 80240 86120 90354 91131 95141
44 46010 48402 53768 60105 63894 74536 79776 85746 90021 90761 94863
45 45272 47668 53037 59405 63238 74032 79285 85342 89659 90363 94555
46 44511 46910 52282 58666 62542 73496 78763 84902 89262 89934 94216
47 43728 46135 51507 57892 61810 72927 78207 84417 88825 89468 93841
48 42919 45347 50708 57084 61036 72326 77617 83883 88344 88958 93428
49 42086 44534 49875 56233 60215 71688 76990 83294 87814 88398 92973
50 41228 43684 49002 55340 59349 71006 76322 82648 87230 87781 92471
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Table 7.4-2 Male survivor functions in German life tables from official
statistics. Source: see text.

1871/ 1881/ 1891/ 1901/ 1910/ 1924/ 1932/ 1949/ 1960/ 1970/ 1986/
1881 1890 1900 1910 1911 1926 1934 1951 1962 1972 1988

τ lmτ lmτ lmτ lmτ lmτ lmτ lmτ lmτ lmτ lmτ lmτ

51 40343 42800 48092 54403 58435 70274 75605 81945 86585 87104 91917
52 39433 41890 47150 53419 57473 69497 74834 81186 85871 86369 91305
53 38497 40956 46179 52388 56457 68670 74004 80371 85078 85574 90630
54 37534 39990 45176 51312 55395 67780 73109 79497 84197 84717 89887
55 36544 38989 44133 50186 54290 66818 72147 78562 83221 83789 89071
56 35524 37949 43047 49003 53114 65784 71124 77560 82142 82779 88177
57 34474 36872 41922 47772 51869 64678 70043 76490 80952 81673 87204
58 33392 35774 40760 46500 50563 63495 68889 75352 79644 80460 86146
59 32276 34643 39558 45180 49177 62232 67640 74141 78212 79130 85002
60 31124 33456 38308 43807 47736 60883 66293 72852 76652 77675 83767
61 29935 32221 37008 42379 46246 59444 64853 71474 74963 76087 82439
62 28708 30954 35657 40892 44663 57914 63321 70003 73144 74357 81014
63 27442 29658 34255 39343 43013 56285 61695 68437 71198 72477 79486
64 26139 28322 32799 37737 41312 54553 59962 66772 69128 70440 77851
65 24802 26940 31294 36079 39527 52715 58106 64999 66941 68242 76106
66 23433 25520 29743 34381 37695 50769 56128 63110 64643 65882 74245
67 22037 24076 28155 32637 35842 48705 54033 61104 62240 63361 72262
68 20620 22622 26531 30838 33933 46527 51822 58985 59739 60685 70150
69 19189 21154 24877 28998 31946 44256 49495 56751 57145 57864 67901
70 17750 19665 23195 27136 29905 41906 47059 54394 54461 54909 65508
71 16310 18160 21494 25254 27850 39472 44517 51903 51691 51838 62966
72 14880 16649 19784 23345 25741 36948 41872 49278 48835 48673 60270
73 13468 15145 18080 21416 23587 34348 39138 46529 45894 45438 57419
74 12085 13655 16391 19490 21450 31697 36341 43666 42873 42161 54417
75 10743 12188 14730 17586 19328 28998 33479 40700 39784 38872 51273
76 9454 10761 13109 15715 17216 26275 30553 37644 36647 35601 48000
77 8228 9404 11543 13902 15184 23589 27609 34524 33487 32373 44620
78 7077 8130 10049 12169 13278 20989 24703 31372 30334 29212 41157
79 6010 6934 8640 10525 11440 18479 21863 28222 27215 26137 37645
80 5035 5833 7330 8987 9711 16066 19122 25106 24156 23167 34119
81 4156 4837 6129 7568 8152 13785 16509 22059 21186 20321 30618
82 3378 3944 5044 6275 6708 11664 14038 19118 18337 17619 27183
83 2700 3158 4075 5116 5396 9712 11725 16324 15644 15083 23856
84 2120 2481 3225 4094 4253 7941 9607 13715 13142 12735 20678
85 1635 1909 2497 3212 3297 6371 7732 11321 10861 10595 17687
86 1236 1437 1893 2468 2519 5015 6126 9168 8819 8678 14914
87 917 1057 1405 1856 1882 3872 4765 7274 7026 6990 12385
88 666 758 1018 1364 1374 2930 3623 5655 5479 5529 10119
89 474 530 718 978 982 2182 2698 4294 4171 4287 8126
90 330 360 492 683 679 1599 1966 3175 3092 3251 6406
91 225 238 327 464 457 1144 1400 2278 2229 2407 4952
92 150 152 211 307 299 801 974 1589 1565 1735 3750
93 97 94 132 197 190 549 662 1082 1070 1215 2778
94 61 57 80 123 117 368 438 719 713 824 2011
95 38 33 46 74 70 241 283 466 463 539 1421
96 23 18 27 44 40 154 178 294 293 339 979
97 13 10 14 25 23 97 109 181 181 204 656
98 7 5 7 14 12 59 65 108 110 117 428
99 4 3 4 7 6 35 37 63 65 64 271

100 2 1 2 4 3 20 21 36 38 33 167
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Table 7.4-3 Female survivor functions in German life tables from official
statistics. Source: see text.

1871/ 1881/ 1891/ 1901/ 1910/ 1924/ 1932/ 1949/ 1960/ 1970/ 1986/
1881 1890 1900 1910 1911 1926 1934 1951 1962 1972 1988

τ lfτ lfτ lfτ lfτ lfτ lfτ lfτ lfτ lfτ lfτ lfτ

0 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000
1 78260 79311 80138 82952 84695 90608 93161 95091 97222 98016 99298
2 73280 74404 76137 79761 82070 89255 92394 94749 97027 97888 99241
3 70892 72073 74482 78594 81126 88743 92026 94545 96922 97810 99201
4 69295 70514 73406 77867 80523 88422 91761 94390 96845 97745 99174
5 68126 69377 72623 77334 80077 88169 91535 94270 96782 97690 99153
6 67249 68537 72038 76924 79730 87975 91338 94177 96728 97641 99136
7 66572 67881 71577 76587 79445 87817 91160 94100 96682 97597 99119
8 66035 67358 71206 76301 79206 87683 91003 94041 96643 97558 99103
9 65599 66942 70903 76058 79001 87563 90870 93986 96609 97523 99088

10 65237 66601 70646 75845 78816 87452 90753 93937 96579 97492 99073
11 64926 66309 70420 75651 78642 87347 90650 93893 96552 97465 99058
12 64649 66049 70210 75467 78476 87243 90557 93850 96525 97439 99044
13 64390 65801 70003 75285 78311 87134 90467 93805 96498 97413 99029
14 64136 65555 69789 75094 78131 87013 90373 93756 96468 97384 99013
15 63878 65306 69562 74887 77930 86877 90270 93701 96434 97349 98995
16 63609 65045 69319 74661 77710 86719 90152 93637 96395 97305 98974
17 63322 64764 69060 74411 77470 86534 90016 93564 96351 97251 98947
18 63013 64468 68787 74143 77216 86319 89858 93484 96301 97189 98916
19 62681 64160 68500 73861 76945 86075 89680 93394 96246 97124 98881
20 62324 63838 68201 73564 76659 85808 89490 93295 96188 97059 98843
21 61941 63500 67888 73254 76362 85523 89287 93188 96128 96996 98806
22 61534 63142 67559 72929 76052 85226 89072 93073 96068 96934 98768
23 61102 62762 67212 72586 75730 84920 88849 92955 96008 96874 98731
24 60648 62360 66848 72225 75397 84602 88622 92834 95948 96815 98694
25 60174 61937 66467 71849 75043 84275 88390 92711 95884 96755 98657
26 59680 61497 66072 71463 74668 83943 88151 92586 95814 96694 98619
27 59170 61042 65666 71070 74283 83610 87904 92457 95739 96632 98579
28 58647 60570 65249 70669 73896 83274 87653 92324 95660 96567 98538
29 58111 60082 64822 70261 73513 82937 87397 92185 95575 96499 98493
30 57566 59584 64385 69848 73115 82597 87139 92039 95485 96429 98446
31 57010 59076 63937 69432 72703 82254 86876 91887 95390 96355 98395
32 56445 58554 63479 69008 72291 81909 86607 91729 95290 96276 98340
33 55869 58018 63010 68575 71876 81559 86329 91565 95184 96190 98280
34 55282 57473 62533 68132 71457 81205 86044 91396 95071 96098 98216
35 54685 56921 62047 67679 71020 80847 85754 91221 94949 95997 98146
36 54078 56360 61549 67215 70554 80482 85455 91039 94818 95886 98071
37 53462 55789 61041 66744 70080 80105 85145 90850 94676 95764 97988
38 52837 55215 60524 66266 69610 79720 84819 90651 94524 95632 97896
39 52207 54638 59998 65779 69139 79324 84481 90443 94360 95488 97796
40 51576 54054 59467 65283 68659 78917 84135 90225 94184 95331 97685
41 50946 53467 58931 64779 68172 78498 83779 89995 93995 95161 97564
42 50320 52880 58391 64269 67689 78068 83410 89749 93792 94975 97431
43 49701 52297 57848 63754 67194 77627 83027 89486 93573 94773 97286
44 49090 51720 57302 63238 66692 77175 82630 89204 93337 94551 97127
45 48481 51146 56751 62717 66187 76704 82211 88901 93081 94308 96954
46 47870 50569 56195 62181 65661 76210 81763 88574 92803 94042 96766
47 47248 49983 55628 61628 65105 75688 81282 88221 92500 93750 96562
48 46605 49385 55040 61053 64510 75136 80767 87841 92173 93427 96341
49 45939 48765 54423 60449 63883 74557 80213 87432 91821 93072 96102
50 45245 48110 53768 59812 63231 73943 79620 86991 91442 92683 95842
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Table 7.4-4 Female survivor functions in German life tables from official
statistics. Source: see text.

1871/ 1881/ 1891/ 1901/ 1910/ 1924/ 1932/ 1949/ 1960/ 1970/ 1986/
1881 1890 1900 1910 1911 1926 1934 1951 1962 1972 1988

τ lfτ lfτ lfτ lfτ lfτ lfτ lfτ lfτ lfτ lfτ lfτ

51 44521 47418 53078 59138 62547 73289 78990 86516 91035 92260 95559
52 43767 46692 52354 58418 61827 72592 78322 86003 90597 91806 95252
53 42981 45934 51594 57648 61048 71854 77613 85451 90125 91323 94918
54 42162 45136 50791 56837 60219 71071 76855 84860 89615 90813 94553
55 41308 44293 49938 55984 59350 70236 76038 84225 89063 90272 94156
56 40414 43396 49032 55077 58441 69342 75162 83540 88464 89696 93723
57 39472 42448 48072 54106 57468 68383 74225 82796 87814 89078 93252
58 38476 41462 47054 53067 56398 67357 73221 81989 87105 88411 92738
59 37418 40415 45971 51959 55245 66257 72142 81115 86331 87689 92179
60 36293 39287 44814 50780 54016 65076 70984 80166 85484 86903 91569
61 35101 38087 43582 49524 52713 63809 69745 79131 84556 86044 90903
62 33843 36823 42272 48176 51320 62448 68409 77994 83538 85101 90178
63 32521 35497 40880 46725 49816 60973 66960 76744 82420 84062 89387
64 31140 34102 39398 45178 48199 59377 65396 75374 81191 82915 88526
65 29703 32628 37828 43540 46484 57671 63712 73875 79839 81647 87587
66 28217 31088 36179 41816 44693 55852 61895 72232 78352 80250 86565
67 26686 29506 34460 40007 42782 53901 59933 70428 76720 78713 85451
68 25118 27897 32675 38111 40773 51813 57822 68455 74932 77027 84236
69 23521 26252 30826 36129 38663 49597 55568 66312 72976 75179 82909
70 21901 24546 28917 34078 36448 47255 53184 63994 70840 73157 81459
71 20265 22786 26956 31963 34191 44799 50652 61491 68513 70948 79869
72 18617 21000 24957 29777 31830 42248 47951 58794 65981 68539 78124
73 16960 19204 22938 27535 29379 39609 45118 55905 63235 65920 76206
74 15307 17416 20914 25273 26933 36869 42182 52837 60267 63084 74096
75 13677 15645 18900 23006 24517 34024 39132 49605 57076 60033 71775
76 12090 13892 16919 20745 22106 31126 35989 46226 53674 56774 69230
77 10569 12219 15000 18526 19673 28217 32820 42721 50082 53323 66447
78 9131 10661 13163 16372 17336 25335 29670 39118 46331 49702 63419
79 7795 9192 11417 14299 15112 22487 26559 35457 42458 45934 60148
80 6570 7815 9773 12348 12981 19711 23500 31787 38507 42046 56640
81 5464 6550 8252 10539 11016 17075 20527 28163 34529 38076 52912
82 4479 5408 6869 8864 9184 14624 17691 24642 30579 34071 48992
83 3614 4394 5626 7329 7499 12353 15026 21282 26717 30091 44916
84 2867 3511 4524 5955 6030 10262 12561 18132 23004 26204 40734
85 2232 2756 3568 4752 4794 8372 10323 15225 19500 22478 36501
86 1705 2124 2764 3719 3746 6712 8324 12582 16258 18974 32282
87 1276 1605 2104 2850 2856 5290 6567 10213 13319 15744 28146
88 935 1189 1571 2138 2140 4101 5075 8132 10705 12826 24160
89 671 862 1149 1571 1574 3128 3857 6335 8147 10245 20393
90 471 612 821 1131 1126 2356 2868 4815 6480 8016 16903
91 323 424 573 797 786 1736 2083 3567 4872 6139 13738
92 217 288 390 549 534 1256 1476 2571 3580 4597 10935
93 142 191 260 370 354 891 1019 1814 2571 3362 8511
94 90 123 169 244 228 620 683 1253 1805 2409 6468
95 56 78 107 157 142 423 445 846 1240 1671 4792
96 34 48 66 99 87 283 281 559 834 1134 3457
97 20 29 40 61 51 185 172 361 550 750 2425
98 11 17 24 38 29 119 101 227 356 483 1651
99 6 10 14 22 16 74 58 140 227 303 1090

100 3 6 8 13 9 45 31 84 142 185 697
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lf0 = 100000 women, subsequent values show how many of these men and
women have survived until an age τ (completed age in years). Therefore,

lmτ /100000 and lfτ /100000

directly provide values of the life table survivor functions. All further
quantities commonly presented in publications of life tables can be derived:

a) Omitting the superscript indicating sex, the number of individuals (per
100000) who died at age τ is

dτ := lτ − lτ+1

For example, referring to the life table for 1910– 11, dm
10 = 166 and

df
10 = 174. Of course, calculating these quantities for the last age

class, τ = 100, requires additional assumptions.

b) Conditional death frequencies18 can be calculated by

qτ :=
dτ

lτ
=

lτ − lτ+1

lτ

For example, referring again to the life table for 1910– 11, one can
calculate qm

10 = 0.00218 and qf
10 = 0.00221.

c) Calculation of conditional mean life lengths requires an assumption
about mortality in the last age class, τ = 100. Assuming that 100 is
the oldest possible age, calculation can be done with the formula

eτ :=

∑100
j=τ (j + 0.5) dj

∑100
j=τ dj

This is the mean life duration of individuals who reached age τ . For
example, referring again to the life table for 1910– 11, one finds em

10 =

62.08 and ef
10 = 63.99. We mention that, in the presentation of life

tables, one also finds figures for eτ − τ , often called mean residual life
length [fernere Lebenserwartung].

7.4.3 Increases in Mean Life Length

1. The data in Tables 7.4-1-4 can be used to investigate changes in (fic-
titious) mean life length.19 We begin with directly plotting the survivor
functions as given in the tables. This is shown in Figure 7.4-1. For women

18Often called “death probabilities” [Sterbewahrscheinlichkeiten]. However, since the
quantities refer to frequencies, we avoid to speak of “probabilities”.

19See also Proebsting (1984) who has discussed all these data sets, except the one for
1986 – 88.
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and also for younger men, the functions follow the chronological order from
bottom to top. For example, in the period 1871– 81, about 41% of the
men and about 38% of the women died before age 20, while in the period
1986– 88 these proportions have declined to about 1–2%. A substantial
decline in mortality occurred, in particular, for newborn children. This
can also be calculated directly from Tables 7.4-1 and 7.4-3. The following
table shows the proportion (in %) of male and female babies who died
during their first year of life:

Period Male Female

1871 − 1881 25.3 21.7
1881 − 1890 24.2 20.7
1891 − 1900 23.4 19.9
1901 − 1910 20.2 17.0
1910 − 1911 18.1 15.3
1924 − 1926 11.5 9.4
1932 − 1934 8.5 6.8
1949 − 1951 6.2 4.9
1960 − 1962 3.5 2.8
1970 − 1972 2.6 2.0
1986 − 1988 0.9 0.7

2. Instead of directly comparing survivor functions, one can compare age-
dependent mean life lengths, eτ , as defined in the previous section. They
are shown in Figure 7.4-2. Again, the graphs follow the chronological
order from bottom to top. It is seen that the greatest increases in mean
life length occurred in young ages. To keep the plot easy to survey, the
graphs begin at age 1. However, changes in the mean life length of newborn
children can be calculated directly from the data. Comparing the periods
1871– 81 and 1986– 88, these mean life lengths have increased from about
36 to 72 years for male, and from about 38 to 79 years for female children.

3. These changes can also be visualized in historical time by locating the
values roughly at the center years of the life table periods. This is done in
Figure 7.4-3. Shown are the historical changes in values of eτ for a selected
number of ages (τ = 0, 10, 20, 30, 40, 50, 60, 70). One sees, again, that the
most significant increases in the mean life length occurred in younger ages,
in particular for newborn children.

7.4.4 Life Table Age Distributions

1. In general, changes in the age distribution of a population not only
depend on death rates but also on the development of births and migra-
tion. So it is difficult to isolate the contribution of changes in mortality.
Nevertheless, some ideas can be gained from a hypothetical consideration.
Assume that for a longer period, say 100 years, each year the same number
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Fig. 7.4-1 Male and female survivor functions in Germany, 1871 – 1988.
At an age of 10 years the functions are in chronological order.
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Fig. 7.4-2 Male and female mean life durations eτ in Germany, 1871 –
1988, conditional on age τ as specified on the abscissa.
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Fig. 7.4-3 Changes in male and female mean life durations eτ in
Germany, 1871 – 1988, conditional on ages τ = 0, 10, 20, 30, 40, 50, 60, 70.
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Fig. 7.4-4 Hypothetical male (solid line) and female (dotted line) age
frequencies calculated from period life tables 1871 – 81 and 1986 – 88.

of children is born and that they survive according to a given period life
table. This then implies a stable age distribution completely determined
by the given life table. In fact, this age distribution is simply proportional
to the life table’s survivor function. Of course, since death rates are dif-
ferent for men and women, also the corresponding age distributions are
different. In our hypothetical population generated by a constant number
of 100000 births per year and constant mortality conditions given by some
period life table, the number of women of age τ in a given year is just lfτ .
Thus, the total number of women alive in that year is

∑

τ lfτ . The relative
frequency of women of age τ is therefore

lmτ /
100∑

j=1

lmj

and analoguously for men. Figure 7.4-4 directly compares the sex-specific
age frequency curves implied by the 1871– 81 and 1986– 88 period life
tables.

2. Another possibility is to aggregate ages into age classes and then to
calculate frequencies for each age class. This allows to visualize how the
hypothetical age distributions that can be associated with each period life
table have changed in historical time. Using 10-year age classes, this is
shown, separately for men and women, in Figure 7.4-5.
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Fig. 7.4-5 Development of hypothetical age distributions of men and
women, calculated from the period life tables from 1871 – 81 to 1986 – 88.
The ordinate is in percent for specified age classes.



Chapter 8

Mortality of Cohorts

While period life tables reflect the mortality conditions of a given period,
cohort life tables try to reconstruct mortality conditions as they developed
during the life time of birth cohorts. The latter are much more difficult
to produce, mainly due to insufficient data. There are basically two ap-
proaches: one can either try to reconstruct cohort life tables from period
data, or one can try to actually follow the members of a birth cohort
through their life.1 In the present chapter, we begin with a discussion
of the first approach, an attempted reconstruction from period data from
official statistics.2 The second approach is more difficult. Assuming that
one wants to construct a cohort life table for a birth cohort Ct0 , one would
need to actually follow all of its members beginning in the year t0. Such
historical data are very scarce. One example will be discussed in Section
8.3. An alternative is to follow the members of Ct0 only through part of
their life histories, say, beginning in some year t > t0. This is possible
with surveys organized as panels, that is, surveys repeated year by year
and targeted at the same people. Such data will allow to construct incom-
plete life tables which condition on survivorship until an age of τ = t− t0.
Based on data from the German Socio-economic Panel, this approach will
be discussed in Section 8.4.

8.1 Cohort Death Rates

1. We begin with a few definitions. As already introduced in Section 3.4,
the symbol Ct0 will be used to denote a birth cohort, that is, a set of

people all born during the year t0. Correspondingly, Cm
t0 and Cf

t0 denote,
respectively, the male and female members of Ct0 . Furthermore, Ct0,τ is
the set of members of Ct0 being of age τ , that is, who survived at least

until age τ . Again, we use Cm
t0,τ and Cf

t0,τ to distinguish male and female
members.

2. A cohort view of mortality can be depicted in the following way:

Ct0 = Ct0,0 ⊇ Ct0,1 ⊇ Ct0,2 ⊇ · · ·

In general, Ct0,τ \ Ct0,τ+1 is the set of members of Ct0 who died at age τ

1A further possibility is based on data from surveys in which respondents are asked
to provide information about dates of birth and, possibly, also dates of death of their
parents. Such data will be discussed in Chapter 9.

2Historically, this was the main approach to the construction of cohort life tables, see
the historical survey by Young (1978). For an early example see Merrell (1947).
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(equivalently, in the year t0 + τ). So we can introduce age-specific cohort
death rates referring to the proportion of members of Ct0,τ who died at age
τ . We will use the notation

ηt0,τ :=
| Ct0,τ \ Ct0,τ+1 |

| Ct0,τ |

The numerator refers to the number of members of Ct0 who died at age τ ,
and the denominator refers to the number of members of Ct0 who survived
age τ − 1 and might die at age τ . In order to distinguish male and female
mortality we also use the notations

ηm
t0,τ :=

| Cm
t0,τ \ Cm

t0,τ+1 |

| Cm
t0,τ |

and ηf
t0,τ :=

| Cf
t0,τ \ Cf

t0,τ+1 |

| Cf
t0,τ |

3. One also can think in terms of a duration variable

Tt0 : Ct0 −→ T̃ := {0, 1, 2, 3, . . .}

that records the life length of the members of Ct0 . As was introduced in
Section 7.3, a cohort life table is simply a description of the distribution of
Tt0 . This can be done in terms of a frequency function P[Tt0 ], a distribution
function F [Tt0 ], a survivor function G[Tt0 ], or a rate function r[Tt0 ]. All
descriptions are equivalent in that each one can be derived from any other
one. Particularly useful is the rate function that records the age-specific
cohort death rates:

τ −→ r[Tt0 ](τ) = ηt0,τ

8.2 Reconstruction from Period Data

1. The idea is to reconstruct cohort life tables from age-specific death
rates of consecutive years. As an example we consider the birth cohort
t0 = 1910. When referring to the territory of the former Deutsches Reich
in 1910, this birth cohort has 1924778 members.3 Of course, nobody knows
the true age-specific cohort death rates

η1910,τ =
members of C1910 who died at age τ

members of C1910 who survived age τ − 1

Data from official statistics can be used, however, to calculate age-specific
period death rates:

δ1910,0, δ1911,1, δ1912,2, δ1913,3, . . .

3Statistisches Jahrbuch für das Deutsche Reich 1919 (p. 41).
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If we ignore in- and out-migration, and if we also ignore changing political
borders, we might assume that these death rates provide sensible estimates
for the cohort death rates η1910,τ . The reconstruction of a cohort life table
then simply consists of using the death rates δ1910+τ,τ instead of the rates
η1910,τ .4

2. Unfortunately, the data available in the STATIS data base of the Statis-
tisches Bundesamt only allow to calculate the death rates beginning at
age 42, corresponding to the year 1952. We therefore calculate a condi-
tional survivor function. Let T denote the statistical variable that would
record the life length as implied by a complete knowledge of the death
rates δ1910+τ,τ . We can then define, for each age τ0, a conditional survivor
function

G[T |T ≥ τ0](τ) :=

τ−1∏

j=τ0

(1 − δ1910+j,j)

defined for all τ > τ0. As a convention, we also define G[T |T ≥ τ0](τ0) = 1.
If τ0 = 0, one gets the unconditional survivor function G[T |T ≥ 0](τ) =
G[T ](τ). In general, the relationship is

G[T ](τ) = G[T ](τ0) G[T |T ≥ τ0](τ)

As a special case, if τ0 = 42, we get the formulation

G[T ](τ) = G[T ](42) G[T |T ≥ 42](τ) (for τ ≥ 42) (8.2.1)

Given our data, we can only calculate the second term on the right-hand
side. But, since the first term on the right-hand side is a constant, the
second term provides a function proportional to the survivor function for
all ages τ ≥ 42.

3. Table 8.2-1 provides the respective data which refer to the territory
of Germany since 1990: values for the midyear population size, nm

t,τ and

nf
t,τ , are taken from Segment 685 of the STATIS data base; values of the

number of deaths, dm
t,τ and df

t,τ , are taken from Fachserie 1, Reihe 1.S.3
(Gestorbene nach Alters- und Geburtsjahren sowie Familienstand, 1948 –
1989) and from Segments 1124 -26 of the same data base.5 Death rates
(per 1000) are calculated as

δ̃m
t,τ =

1000 dm
t,τ

nm
t,τ

and δ̃f
t,τ =

1000 df
t,τ

nf
t,τ

4There are several proposals that do not start with age-specific death rates but try to
concatenate information from period life tables; see Höhn (1984), Dinkel (1984). Dinkel
(1992) has also suggested to combine both methods. For further discussion see also the
contributions in Dinkel, Höhn and Scholz (1996).

5For the year 1990, we have used additional data from Fachserie 1, Reihe 1, 1990
(p. 136).
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Table 8.2-1 Age-specific midyear population (in 1000), number of deaths, and
age-specific death rates in Germany, 1952 –1999. Source: STATIS data base
and Fachserie 1, Reihe 1 (see text).

t τ nm
t,τ dm

t,τ δ̃m
t,τ nf

t,τ df
t,τ δ̃f

t,τ

1952 42 477.7 1775 3.72 633.5 1776 2.80
1953 43 476.7 1797 3.77 632.2 1806 2.86
1954 44 486.9 1896 3.89 636.3 1830 2.88
1955 45 473.9 2189 4.62 629.3 2024 3.22
1956 46 465.2 2390 5.14 622.7 2117 3.40
1957 47 467.6 2650 5.67 623.9 2275 3.65
1958 48 465.8 2671 5.73 622.6 2407 3.87
1959 49 463.8 3036 6.55 621.1 2552 4.11
1960 50 461.0 3577 7.76 618.6 2771 4.48
1961 51 456.2 3640 7.98 613.9 2955 4.81
1962 52 453.2 3974 8.77 612.6 3239 5.29
1963 53 449.9 4518 10.04 609.8 3517 5.77
1964 54 444.8 4918 11.06 604.8 3575 5.91
1965 55 440.4 5522 12.54 601.4 3948 6.57
1966 56 435.2 5907 13.57 597.9 4281 7.16
1967 57 428.2 6302 14.72 593.6 4507 7.59
1968 58 420.9 7154 17.00 589.0 5175 8.79
1969 59 414.0 8013 19.36 584.1 5549 9.50
1970 60 404.9 8497 20.99 574.9 5889 10.24
1971 61 396.5 8999 22.69 570.2 6428 11.27
1972 62 387.3 9622 24.85 564.1 6983 12.38
1973 63 377.7 10048 26.60 557.3 7391 13.26
1974 64 367.2 10792 29.39 549.9 8031 14.60
1975 65 355.9 11663 32.77 541.8 8674 16.01
1976 66 343.8 12042 35.03 532.7 9453 17.75
1977 67 331.7 12254 36.95 523.4 9758 18.64
1978 68 319.0 13266 41.59 513.7 10458 20.36
1979 69 305.6 13727 44.92 502.8 11507 22.88
1980 70 291.9 14433 49.44 491.3 12510 25.46
1981 71 277.3 14920 53.81 478.6 13443 28.09
1982 72 262.2 15171 57.87 464.9 14252 30.66
1983 73 247.0 15460 62.60 450.1 15460 34.35
1984 74 231.4 15237 65.84 434.3 16296 37.52
1985 75 215.6 16083 74.58 417.5 17400 41.68
1986 76 199.7 15833 79.29 399.6 18398 46.04
1987 77 185.4 15433 83.23 378.3 18922 50.01
1988 78 170.0 15488 91.09 360.2 19881 55.19
1989 79 154.6 14997 97.00 339.9 20881 61.44
1990 80 139.7 15290 109.47 318.9 22230 69.71
1991 81 125.1 14452 115.49 297.2 22433 75.49
1992 82 111.0 13570 122.21 274.9 22154 80.59
1993 83 97.9 13152 134.34 252.6 22977 90.96
1994 84 85.2 12123 142.35 229.8 22895 99.63
1995 85 73.5 11248 153.12 206.8 23085 111.63
1996 86 62.5 10489 167.71 184.1 22810 123.92
1997 87 52.7 9183 174.40 162.0 21713 134.03
1998 88 43.7 8371 191.35 140.6 20896 148.59
1999 89 35.8 7471 208.69 120.0 19758 164.65
2000 90 28.4 6406 225.56 100.7 18054 179.29
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Fig. 8.2-1 Conditional survivor functions (τ ≥ 42) for the members of
the birth cohort 1910 (solid line), compared with conditional survivor
functions from period life tables (dotted lines).

Death rates for the reconstruction of a cohort life table can be derived by
defining δm

τ := δ̃m
t,τ/1000 and δf

τ := δ̃f
t,τ/1000. So one can finally calculate

conditional survivor functions

G[T m|T m ≥ 42](τ) =

τ−1∏

j=42

(1 − δm
τ )

G[T f |T f ≥ 42](τ) =

τ−1∏

j=42

(1 − δf
τ )

4. Results of this calculation are shown as solid lines in Figure 8.2-1. In
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order to provide a context for an interpretation we have added conditional
survivor functions from period life tables.6 It is seen how period life ta-
bles systematically underestimate reductions in death rates that occurred
in historical time. An remarkable exception is the 1949-51 life table for
men. The conditional survivor function from this table seems to be mainly
identical with the conditional survivor function of the 1910 quasi-cohort.7

6The data are taken from Tables 7.4-1-4 in Section 7.4.2.

7It is known, however, that the 1949-51 period life table, in particular for men, is based
on underestimated death rates, see Dinkel and Meinl (1991, p. 117).
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8.3 Historical Data

As an alternative to the reconstruction of cohort life tables from period
data, one can try to actually follow the life courses of people born in the
past. As an example, we discuss a data set that was made available by
Arthur E. Imhof and his co-workers (see Imhof et al. 1990).

8.3.1 Data Description

1. The data set is available from the Zentralarchiv für empirische Sozial-
forschung (Köln). A basic description can be found in Imhof et al. (1990).
The data result from so-called “Ortssippenbücher” (see Imhof et al. 1990,
pp. 57-66, also Knodel 1975) and refer to several different local areas. Here
we only use the data file from Ostfriesland (a region between Aurich and
Leer). This data file file contains information about 24971 persons be-
longing to 3882 families. All families consist of a married women, in 3756
cases also information about the husband is available; the remaining 17333
persons are children. The following tables shows the distribution of family
sizes.

Number of Number of
children families children families

0 321 8 280
1 472 9 173
2 374 10 114
3 422 11 61
4 429 12 17
5 434 13 6
6 411 14 3
7 364 15 1

For 584 persons no valid information about the birth year is available,
we therefore consider only the remaining 24387 persons, 7145 parents and
17242 children. The birth years of parents range from 1616 until 1835,8

birth years of children range from 1636 to 1871. Figure 8.3-1 shows the
frequency distributions on a historical time axis.

2. In many cases additional information about death years is available.
In order to use this information for the estimation of survivor functions
it is important to distinguish between parents and children. For parents
we need to take into account that they have already survived until the

8This is due to the selection of families:
”
Es wurden nur Daten von Kindern aus solchen

Ehen erhoben, bei denen das Todesdatum beider Elternteile (bei unehelichen Kindern
das der Mutter) bekannt war und der Todesfall im Untersuchungsgebiet eintrat. Zudem
mußte die Ehe vor 1850 geschlossen oder die erste uneheliche Geburt vor 1860 erfolgt
sein.“ (Imhof et al. 1990, pp. 62-63)
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Fig. 8.3-1 Absolute frequencies of birth years of 7145 parents and
17242 children in the Ostfriesland data set.

age of marriage and/or giving birth to children. We therefore proceed
in two steps: We begin with calculating survivor functions for parents,
this is easy because there is complete information about their death dates;
we then try to estimate survivor functions for the children. Finally we
compare parent’s and children’s life length.

8.3.2 Parent’s Survivor Functions

1. Since the birth years range over a very long period (Fig. 8.3-1), we
distinguish four broad birth cohorts (all parents are born before 1850):

Birth years Mothers Fathers

1616 − 1699 260 322
1700 − 1749 1111 1176
1750 − 1799 1524 1455
1800 − 1849 729 567

The total number of mothers is 3624 and the total number of fathers is
3520. These are the cases where the birth year is known. Fortunately, for
all these cases also the death year is known.9 So one can directly calculate
all life lengths as shown in Table 8.3-1.

2. The data in Table 8.3-1 provide values of statistical variables T̂ f1
c and

T̂ m1
c that record, respectively, the life length of mothers and fathers belong-

ing to birth cohort c.10 The only problem concerns the fact that mothers

9As already mentioned, this is implied by the selection of families for the data set.

10The superscripts are meant to indicate female (f1) and male (m1) persons of the first
generation.



126 8 MORTALITY OF COHORTS

Table 8.3-1 Number of mothers and fathers in the Ostfriesland data set who
died in the specified age.

Mothers Fathers

1616/ 1700/ 1750/ 1800/ 1616/ 1700/ 1750/ 1800/
Age 1699 1749 1799 1849 1699 1749 1799 1849

17 2
18
19 1
20 4 1
21 2 1 3
22 2 1 2
23 1 3 3 4 2
24 1 4 8 3
25 10 11 4 1 2 4
26 1 8 10 3 1
27 1 5 11 5 1 1 4 1
28 1 13 3 8 1 3 2 4
29 2 5 5 5 5 3 2
30 2 3 14 10 1 6 5 3
31 5 9 5 2 6 2
32 4 11 12 11 2 6 9 4
33 2 9 9 12 2 12 10 3
34 4 7 14 5 2 8 8 2
35 1 8 8 10 3 5 9 6
36 7 7 24 7 1 8 15 5
37 3 11 9 8 3 14 8
38 6 5 12 6 1 7 11 5
39 2 11 20 6 2 9 7 2
40 2 11 16 9 2 16 13 3
41 5 8 18 7 2 11 17 6
42 6 15 11 6 1 10 17 5
43 2 20 10 10 3 12 20 8
44 2 14 8 16 9 11 4
45 2 12 27 13 2 11 11 10
46 1 3 13 7 4 10 9 4
47 1 9 16 7 5 12 17 5
48 2 10 30 8 2 10 19 6
49 4 7 10 7 2 14 12 7
50 4 17 17 4 5 16 15 6
51 3 10 17 5 6 8 14 7
52 5 11 18 4 7 15 23 9
53 4 9 12 7 3 14 26 9
54 3 11 23 6 3 20 25 9
55 3 15 14 8 7 16 26 12
56 3 16 23 8 6 26 26 10
57 4 18 22 8 3 16 26 9
58 6 17 18 14 5 19 26 10
59 3 20 21 7 5 21 31 10
60 2 29 19 11 5 26 30 12
61 2 18 23 13 1 15 39 10
62 1 18 30 17 6 26 30 10
63 8 24 30 8 3 21 30 9
64 4 25 30 16 5 20 43 7
65 2 27 25 14 18 26 30 14
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Table 8.3-1 (continued) Number of mothers and fathers in the Ostfriesland
data set who died in the specified age.

Mothers Fathers

1616/ 1700/ 1750/ 1800/ 1616/ 1700/ 1750/ 1800/
Age 1699 1749 1799 1849 1699 1749 1799 1849

66 8 21 28 16 10 21 32 9
67 4 23 25 15 11 37 32 11

68 7 21 31 21 13 34 32 7
69 7 23 35 13 6 19 37 14

70 7 35 39 8 13 36 56 14

71 5 24 41 19 12 32 36 11
72 6 46 41 17 9 37 35 14

73 11 36 45 21 12 38 40 18
74 6 22 42 18 4 41 51 9

75 9 33 45 27 5 39 44 19

76 5 25 29 19 7 25 55 17
77 8 25 38 19 10 35 38 19

78 10 22 46 15 8 28 33 5
79 5 22 58 16 8 24 39 12

80 5 31 49 14 15 46 23 18

81 1 22 39 20 4 26 22 19
82 2 26 30 15 7 35 23 11

83 5 20 40 18 3 21 27 17
84 5 18 31 15 8 20 26 18

85 7 15 16 10 4 15 22 13

86 2 18 15 10 5 16 15 7
87 4 14 16 7 3 15 9 4

88 1 9 18 4 5 7 15 5
89 1 5 10 3 5 4 5 3

90 1 12 10 3 1 9 5 4

91 1 3 6 3 1 2 5 2
92 6 1 1 1 5 2 2

93 2 3 8 3 1 3 1 3
94 1 2 2 2 1

95 1 1 2 1 1

96 1 1 1
97 1 2 1

98 1 1 1
99

100 1 1 1

Total 260 1111 1524 729 322 1176 1455 567

and fathers already survived until some age. We therefore calculate condi-
tional survivor functions. For mothers we begin at age 25, and for fathers
at age 30. So we use the formula

G[T̂ f1

c |T̂ f1

c ≥ 25](τ) =

∑∞
k=τ df1

c,τ
∑∞

k=25 df1
c,τ
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Fig. 8.3-2 Conditional survivor functions G[T̂ f
c |T̂ f

c ≥ 25] for mothers
in the Ostfriesland data set.
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Fig. 8.3-3 Conditional survivor functions G[T̂ m
c |T̂ m

c ≥ 30] for fathers
in the Ostfriesland data set.
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Fig. 8.3-4 Comparison of conditional survivor functions G[T̂ f
c |T̂ f

c ≥ 30]
and G[T̂ m

c |T̂ m
c ≥ 30] for birth cohort 1750 – 1799.
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for mothers, and the formula

G[T̂ m1

c |T̂ m1

c ≥ 25](τ) =

∑∞
k=τ dm1

c,τ
∑∞

k=30 dm1
c,τ

for fathers; df1
c,τ and dm+1

c,τ are, respectively, the number of mothers and fa-
thers belonging to birth cohort c who died at the age of τ (see Table 8.3-1).
Figures 8.3-2 and 8.3-3 show these conditional survivor functions. Inter-
estingly, there are only small variations across the different birth cohorts.
As seen in Figure 8.3-4, these survivor functions are also very similar for
mothers and fathers. Of course, one needs to recognize that we have used
conditional survivor functions which only refer to parents.

8.3.3 Children’s Survivor Functions

1. The calculation of survivor functions for children is more complicated
because the observations are incomplete. In about 2 % of all cases we
do not know the child’s sex, and in order to distinguish female and male
children, these cases cannot be used. Furthermore, the data set does not
provide a valid birth year for all the remaining 8295 female and 8723 male
children. However, as shown in the following table, this only concerns the
first birth cohort.

Female Male
Birth years children (a) (b) (c) children (a) (b) (c)

1616 − 1699 154 46 108 59 141 36 105 68
1700 − 1749 1382 0 1382 946 1588 0 1588 1141
1750 − 1799 2932 0 2932 2029 3117 0 3117 2304
1800 − 1849 3362 0 3362 1939 3421 0 3421 2174
1850 − 1881 465 0 465 245 456 0 456 242

Total 8295 46 8249 5218 8723 36 8687 5929

Columns labeled (a) show the number of cases without a valid birth year,
columns (b) and (c) show, respectively, the number of cases with a valid
birth year and a valid death year. So the question is how to use this
incomplete information in order to estimate survivor functions.

2. As an example we consider male children born in the years 1750 – 1799.
A first possibility would be to use only the 2304 complete observations. It
would be possible then to immediately calculate a survivor function in the
same way as was done in the previous section for parents. However, would
the result be trustworthy? Assuming that we do not have any idea about
the selection process that created the incomplete observations, no answer
can be given. Nevertheless, we can at least calculate lower and upper
bounds for a range of possible survivor functions. In order to calculate
a lower bound we can simply assume that all children with an unknown
death year died at age τ = 0, and in order to calculate an upper bound we
can assume that all these children survived the highest observed age which
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Fig. 8.3-5 Lower and upper bounds for the survivor function of male
children born between 1750 and 1799 in the Ostfriesland data set. The
dotted line shows a survivor function calculated from only the complete
observations.
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Fig. 8.3-6 Lower and upper bounds for the survivor function of male
children born between 1750 and 1799 in the Ostfriesland data set
calculated by using additional information about latest observation.
The dotted line shows a survivor function calculated from only the
complete observations.

is 99 in this example. Figure 8.3-5 shows these bounds and also a survivor
function calculated from only the complete observations. Obviously, there
is a broad range for possible survivor functions.

3. The question therefore arises whether one can find additional informa-
tion that can be used to get more narrow bounds. For this purpose any
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kind of information can be used that allows to conclude that a person has
survived some known age. For example, there might be information about
a date of marriage or child-bearing (see the discussion in Imhof et al. 1990,
p. 68 and p. 71). For some of those persons without a valid death year such
information about a latest observation is provided in the data set, in most
cases this is the marriage year. The following table shows the availability
of this information.

Female children Male children
Birth years (a) (b) (a) (b)

1616 − 1699 49 11 37 7
1700 − 1749 436 142 447 119
1750 − 1799 903 393 813 246
1800 − 1849 1423 1021 1247 696
1850 − 1881 220 124 214 80

In our example, there are 813 male children without a valid death year, but
in 246 cases we know a date of latest observation and can use this additional
information to get better bounds for the survivor function. This is shown
in Figure 8.3-6. Obviously, compared with Figure 8.3-5, the bounds are
somewhat narrower.

4. Without the introduction of additional assumptions, the calculation
of bounds to include the unknown survivor function is the best one can
do. Of course, depending on the proportion of incomplete observations
and the possibilities to use additional information, the range of possible
survivor functions might become very broad and then looses almost all
informational content. An alternative approach which is often followed in
statistical practice would be to make assumptions about the process that
leads to incomplete observations. The simplest assumption would be that
the durations which are incompletely observed “randomly” result from the
same distribution as the completely observed durations. Of course, this as-
sumption might be wrong and there are almost no possibilities for checking
the assumption with the given data set. The most often used estimation
method for survivor functions which is based on this assumption is the
Kaplan-Meier procedure (Kaplan and Meier 1958) and will be discussed in
the next section.

8.3.4 The Kaplan-Meier Procedure

1. In order to explain the Kaplan-Meier procedure we refer to a general
duration variable

T̂ : Ω −→ T̃ := {0, 1, 2, 3, . . .}

which is defined for some population Ω. For each individual ω ∈ Ω, the
variable T̂ records a duration T̂ (ω) ∈ T̃ (see Section 7.3.1). This is the vari-
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able of theoretical interest. Observations are given by a two-dimensional
variable

(T, D) : Ω −→ T̃ × {0, 1}

If D(ω) = 1 the observation is complete and we can conclude that T̂ (ω) =
T (ω). On the other hand, if D(ω) = 0 the observation is right censored
and we can only conclude that T̂ (ω) ≥ T (ω).11 The question then is how
to estimate the distribution of T̂ by using the information provided by
(T, D).

2. The Kaplan-Meier procedure is intended to provide one kind of answer.
One possibility to explain this method is by referring to rates. Let r[T̂ ]
denote the rate function corresponding the distribution of T̂ . As was
shown in Section 7.3.1, the survivor function of T̂ can then be calculated
as follows:

G[T̂ ](t) =

t−1∏

j=0

(1 − r[T̂ ](j))

Of course, with partially censored data we do not know the rate function
r[T̂ ], but we can use the observations provided by (T, D) to get estimates
and then use the above formula to calculate an estimate of the survivor
function. Estimates of values of the rate function can be calculated in the
following way:

r[T̂ ](t) ≈e r∗(t) :=
|{ω ∈ Ω |T (ω) = t, D(ω) = 1}|

|{ω ∈ Ω |T (ω) ≥ t}|

r∗(t) might be called the observed rate at t, as derived from the observa-
tions which might, and actually have, ended their duration in this temporal
location.12 Of course, whether this observed rate is approximately equal
to the value of the rate function r[T̂ ] at t is not known and, as already
remarked at the end of the previous section, can also not be checked with
incomplete data. We therefore use the notation ‘≈e’ to indicate that the
right-hand side is assumed to be a reasonable estimate of the left-hand
quantity. Given this assumption one immediately derives an estimate of
the survivor function, namely

G[T̂ ](t) ≈e G∗(t) :=

t−1∏

j=0

(1 − r∗(j))

11Also a strict inequality sign might here be used. However, with broadly defined units
of the time axis, it is often plausible that an episode might end in the same temporal
location where the observation ends.

12The set referred to in the denominator is sometimes called the observed risk set , and
the set referred to in the numerator is called the observed event set .
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G∗ is then called the Kaplan-Meier estimate of the unknown survivor
function G[T̂ ].

3. As an illustration we continue with the example from the previous sec-
tion and consider the male children born in the years 1750 to 1799. The
variable (T, D) will be defined as follows:

a) If ω refers to a male child in this birth cohort and we know the death
year, then D(ω) = 1 and T (ω) records the life length of ω.

b) If we do not know the death year but have information about a latest
observation, then D(ω) = 0 and T (ω) is the age at latest observation.

c) If we know neither a death year nor a year of latest observation, then
D(ω) = 0 and T (ω) = 0, that is, the observation is right censored
already at the beginning.

Table 8.3-2 shows the data for male and female children born between
1750 and 1799. The numbers of male and female children who died at age
τ are denoted, respectively, by dm2

τ and df2
τ , and the number of censored

observations are denoted by cm2
τ and cf2

τ .

4. Table 8.3-3 illustrates the calculations. The column labeled nm2
τ shows

the number of cases in the “risk set”, that is, the number of persons who are
still at risk to die at age τ . Then follow the number of persons who actually
died (dm2

τ ) and the number of censored observations (cm2
τ ) at the current

age. This then allows to calculate the observed rate r∗(τ) and to update
the survivor function G∗(τ). The resulting survivor function is shown in
Figure 8.3-7. Also shown is a survivor function calculated from only the
complete observations which is located below the Kaplan-Meier survivor
function. This follows from the fact that, in the calculation of observed
rates, the Kaplan-Meier procedure takes into account also the censored
observations. However, this does not make the Kaplan-Meier estimate
always superior to the other one that only uses complete observations.
As shown in the figure, both survivor functions are in the range that is
indicated by the lower and upper bounds.

5. Using the data from Table 8.3-2, one can compare survivor functions for
male and female children born between 1750 and 1799. The Kaplan-Meier
estimates shown in Figure 8.3-8 suggest somewhat higher death rates for
male children.

6. Survivor functions of parents and children cannot be compared directly
because parents already survived until some age. But we can compare
conditional survivor functions. As was done in Figure 8.3-4, we condition
on having survived age 30. Conditional survivor functions for children can
directly be derived from the Kaplan-Meier estimates: if G∗ is an estimate



134 8 MORTALITY OF COHORTS

Table 8.3-2 Information about male and female children belonging to birth
cohort 1750 – 1799 in the Ostfriesland data set.

τ dm2
τ cm2

τ df2
τ cf2

τ τ dm2
τ cm2

τ df2
τ cf2

τ

0 431 567 403 510 51 17 2 12 5
1 161 134 52 24 4 13
2 110 95 53 20 2 8 2
3 70 54 54 19 2 13 3
4 52 46 55 21 1 11
5 41 42 56 17 4 15
6 38 32 57 17 2 16
7 28 23 58 20 1 13 1
8 19 9 59 23 1 18
9 16 13 60 19 12

10 12 9 61 22 2 13 1
11 12 5 62 10 19 1
12 6 8 63 24 22
13 12 8 64 30 2 24
14 10 7 65 22 20
15 5 4 66 27 17 1
16 8 7 67 24 18
17 11 11 68 26 1 22
18 12 7 2 69 27 1 20
19 5 1 10 4 70 29 23
20 11 1 4 6 71 38 30
21 13 3 8 9 72 28 36
22 12 1 10 12 73 30 1 35
23 16 1 15 23 74 28 28
24 11 6 12 21 75 30 28 1
25 22 8 8 19 76 34 23
26 8 10 13 30 77 28 31
27 9 9 13 20 78 23 28
28 7 12 6 19 79 25 1 26
29 14 9 8 20 80 16 31
30 6 14 13 11 81 15 28 2
31 16 11 11 12 82 19 19
32 16 5 7 8 83 24 22
33 12 4 11 21 84 19 13
34 17 10 12 13 85 14 8
35 11 8 7 10 86 11 10
36 17 9 17 15 87 8 16
37 11 2 9 15 88 11 9
38 13 10 15 12 89 8 3
39 9 11 11 12 90 3 5
40 10 10 16 11 91 6 5
41 13 8 12 9 92 2
42 10 9 7 14 93 5
43 19 8 6 6 94 1
44 10 8 9 12 95 1
45 10 6 16 4 96 1 1
46 9 4 14 4 97
47 12 6 6 98
48 18 5 15 1 99 1
49 14 7 6 1 100 1
50 9 3 13
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Table 8.3-3 Application of the Kaplan-Meier procedure to the data for male
children in Table 8.3-2.

τ nm2
τ dm2

τ cm2
τ r∗(τ) G∗(τ) τ nm2

τ dm2
τ cm2

τ r∗(τ) G∗(τ)

0 3117 431 567 0.1383 1.0000 50 899 9 3 0.0100 0.4404
1 2119 161 0 0.0760 0.8617 51 887 17 2 0.0192 0.4360
2 1958 110 0 0.0562 0.7963 52 868 24 4 0.0276 0.4276
3 1848 70 0 0.0379 0.7515 53 840 20 2 0.0238 0.4158
4 1778 52 0 0.0292 0.7231 54 818 19 2 0.0232 0.4059
5 1726 41 0 0.0238 0.7019 55 797 21 1 0.0263 0.3965
6 1685 38 0 0.0226 0.6852 56 775 17 4 0.0219 0.3860
7 1647 28 0 0.0170 0.6698 57 754 17 2 0.0225 0.3776
8 1619 19 0 0.0117 0.6584 58 735 20 1 0.0272 0.3691
9 1600 16 0 0.0100 0.6507 59 714 23 1 0.0322 0.3590

10 1584 12 0 0.0076 0.6442 60 690 19 0 0.0275 0.3475
11 1572 12 0 0.0076 0.6393 61 671 22 2 0.0328 0.3379
12 1560 6 0 0.0038 0.6344 62 647 10 0 0.0155 0.3268
13 1554 12 0 0.0077 0.6320 63 637 24 0 0.0377 0.3218
14 1542 10 0 0.0065 0.6271 64 613 30 2 0.0489 0.3096
15 1532 5 0 0.0033 0.6230 65 581 22 0 0.0379 0.2945
16 1527 8 0 0.0052 0.6210 66 559 27 0 0.0483 0.2833
17 1519 11 0 0.0072 0.6177 67 532 24 0 0.0451 0.2696
18 1508 12 0 0.0080 0.6133 68 508 26 1 0.0512 0.2575
19 1496 5 1 0.0033 0.6084 69 481 27 1 0.0561 0.2443
20 1490 11 1 0.0074 0.6063 70 453 29 0 0.0640 0.2306
21 1478 13 3 0.0088 0.6019 71 424 38 0 0.0896 0.2158
22 1462 12 1 0.0082 0.5966 72 386 28 0 0.0725 0.1965
23 1449 16 1 0.0110 0.5917 73 358 30 1 0.0838 0.1822
24 1432 11 6 0.0077 0.5851 74 327 28 0 0.0856 0.1670
25 1415 22 8 0.0155 0.5806 75 299 30 0 0.1003 0.1527
26 1385 8 10 0.0058 0.5716 76 269 34 0 0.1264 0.1373
27 1367 9 9 0.0066 0.5683 77 235 28 0 0.1191 0.1200
28 1349 7 12 0.0052 0.5646 78 207 23 0 0.1111 0.1057
29 1330 14 9 0.0105 0.5616 79 184 25 1 0.1359 0.0939
30 1307 6 14 0.0046 0.5557 80 158 16 0 0.1013 0.0812
31 1287 16 11 0.0124 0.5532 81 142 15 0 0.1056 0.0730
32 1260 16 5 0.0127 0.5463 82 127 19 0 0.1496 0.0653
33 1239 12 4 0.0097 0.5394 83 108 24 0 0.2222 0.0555
34 1223 17 10 0.0139 0.5341 84 84 19 0 0.2262 0.0432
35 1196 11 8 0.0092 0.5267 85 65 14 0 0.2154 0.0334
36 1177 17 9 0.0144 0.5219 86 51 11 0 0.2157 0.0262
37 1151 11 2 0.0096 0.5143 87 40 8 0 0.2000 0.0206
38 1138 13 10 0.0114 0.5094 88 32 11 0 0.3438 0.0164
39 1115 9 11 0.0081 0.5036 89 21 8 0 0.3810 0.0108
40 1095 10 10 0.0091 0.4995 90 13 3 0 0.2308 0.0067
41 1075 13 8 0.0121 0.4950 91 10 6 0 0.6000 0.0051
42 1054 10 9 0.0095 0.4890 92 4 2 0 0.5000 0.0021
43 1035 19 8 0.0184 0.4843 93 2 0 0 0.0000 0.0010
44 1008 10 8 0.0099 0.4755 94 2 0 0 0.0000 0.0010
45 990 10 6 0.0101 0.4707 95 2 0 0 0.0000 0.0010
46 974 9 4 0.0092 0.4660 96 2 1 0 0.5000 0.0010
47 961 12 6 0.0125 0.4617 97 1 0 0 0.0000 0.0005
48 943 18 5 0.0191 0.4559 98 1 0 0 0.0000 0.0005
49 920 14 7 0.0152 0.4472 99 1 1 0 1.0000 0.0005
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Fig. 8.3-7 Kaplan-Meier survivor function for male children born
between 1750 and 1799 in the Ostfriesland data set calculated in Table
8.3-3 (solid line). The dotted line and the grey-scaled bounds are taken
from Figure 8.3-6.
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Fig. 8.3-8 Kaplan-Meier survivor functions for female and male
children born between 1750 and 1799 in the Ostfriesland data set (Table
8.3-2).

of G[T̂ ], then

G[T̂ |T̂ ≥ t0] ≈e
G∗(t)

G∗(t0)
=

t−1∏

j=t0

(1 − r∗(j))

Figure 8.3-9 compares mothers and female children, both born between
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Fig. 8.3-9 Kaplan-Meier survivor function for mothers and female
children born between 1750 and 1799 in the Ostfriesland data set.
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Fig. 8.3-10 Kaplan-Meier survivor function for fathers and male
children born between 1750 and 1799 in the Ostfriesland data set.

1750 and 1799, Figure 8.3-11 provides the corresponding curves for fathers
and male children. In both cases, the conditional survivor functions are
more or less similar, providing some confidence into the Kaplan-Meier
estimates of the survivor functions for children, at least for higher ages.

8.4 Mortality Data from Panel Studies

This section is not finished.



Chapter 9

Parent’s Length of Life

Additional information about the survival of people in historical time is
available from the German Life History Study (GLHS) and the Socio-
economic Panel (SOEP). In both surveys respondents were asked to pro-
vide information about their parents, in particular about their parent’s
birth years, whether they were still alive at the interview date, and, if not,
about their respective years of death. We can try to use this information to
enlarge the knowledge about mortality conditions in earlier periods.1 How-
ever, we need first to consider the specific features of the data generating
process because, in this case, the information about the parents results
from a sample of their children. Information is therefore only available for
persons who became a parent of at least one child, and this information
also depends on the child’s survival to the interview dates. We first intro-
duce the notion of left truncated data, and then use a simulation model to
study possible complications. The insights gained by this study will finally
be used to draw some inferences from the GLHS and SOEP data.

9.1 Left Truncated Data

1. The first problem obviously concerns the fact that the available data
contain information only about those persons who became mother or father
of at least one child. One possibility would be to restrict any inferences to
those persons. This would allow to directly apply the standard Kaplan-
Meier procedure to estimate survivor functions with partially censored
data (see Section 8.3.4). On the other hand, one may also assume that
mortality is independent of whether or not persons became parents of a
child. This assumption would open the possibility to draw at least some
inferences about the whole population. Of course, it will not be possible to
estimate complete survivor functions because no information is available
about death events occurring at early ages. But given the independence
assumption, it might be possible to estimate survivor functions conditional
on having survived to the age at which children are born.

2. In order to discuss this question we consider a simple model where we
are given a population set Ω and a two-dimensional variable:

(T, C) : Ω −→ T̃ × T̃ ∪ {−1}

T̃ := {0, 1, 2, . . .} is a property space for age. For each ω ∈ Ω, T (ω) is ω’s

1For previous analyzes of the SOEP data about the life lengths of parents see Schepers
and Wagner (1989), and Klein (1993).
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life length, and C(ω) records the age at which ω became, for the first time,
mother of a child, or is -1 if this did not happen during ω’s lifetime.2 The
problem can now be stated as follows: The available data only refer to a
subset of Ω, namely

Ω∗ := {ω ∈ Ω |C(ω) ≥ 0}

consisting of women who became a mother of at least one child. We
start from the assumption that information from all children is available,
ignoring their mortality up to the interview date. The question then is,
how, and to what extent, can these data be used to assess the distribution
of T in Ω ?

3. We follow the basic idea of the Kaplan-Meier procedure to assess the
distribution of T via rates (see Section 8.3.4). Assume complete observa-
tions. It would be possible, then, to create a risk set

Ωτ := {ω ∈ Ω |T (ω) ≥ τ}

containing all members of Ω who might die at age τ , and an event set

{ω ∈ Ωτ |T (ω) = τ}

containing those members of Ωτ who actually died at age τ . From these
sets one can calculate rates

r(τ) :=
|{ω ∈ Ωτ |T (ω) = τ}|

|Ωτ |

which can be used to find the survivor function

G[T ](τ) =

τ−1∏

j=0

(1 − r(j))

Now, since our data only refer to Ω∗, we cannot create these sets and
consequently cannot calculate the rates r(τ). One can only try to estimate
these rates, but this will then require an assumption. Our assumption will
be that mortality does not depend on whether, and when, people became
mothers and fathers. In terms of the model, the assumption is3

r(τ) ≈e r̃∗(τ) :=
|{ω ∈ Ω∗

τ |T (ω) = τ}|

|Ω∗
τ |

2For the present discussion we assume that Ω refers to women only. The same reason-
ing, however, applies to men with minor modifications.

3As in Section 8.3.4, we use the notation ‘≈e’ to indicate that the right-hand side is
assumed to be a reasonable estimate of the left-hand quantity.
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where the risk set on the right-hand side is now defined by

Ω∗
τ := {ω ∈ Ω∗ |T (ω) ≥ τ, 0 ≤ C(ω) ≤ τ}

Since both this risk set and the corresponding event set can be calculated
from data restricted to Ω∗, one gets estimates of the rates r(τ). Of course,
this will be possible only for ages

τ ≥ a+ := min{C(ω) |ω ∈ Ω∗}

which implies that only the conditional survivor function G[T |T ≥ a+] can
be estimated:

G[T |T ≥ a+](τ) ≈e

τ−1∏

j=0

(1 − r̃∗(j)) (9.1.1)

Notice also that in general

Ω∗
τ 6= {ω ∈ Ω∗ |T (ω) ≥ τ}

because a women in Ω∗ might get her first child later than τ . In order to
create suitable risk sets Ω∗

τ one has to apply the same conditioning as used
for the event sets to meet the assumption that mortality does not depend
on whether, and when, women become mothers.

4. An example can serve to illustrate the reasoning. We assume that Ω
contains 1000 women and consider, in turn, five age classes:

0 In the age class τ = 0 all 1000 women are at risk of dying, and we
assume that 100 women actually die.

1 There remain 900 women who might die in the age class τ = 1. We
assume that 100 of these women actually die. However, some of these
women will also become mothers of children. We assume that this is
true of 200 women. Implied by the assumption that mortality does not
depend on becoming a mother, about

100

900
200 ≈ 22

will also die; of course, they belong to the 100 persons who die in this
age class.

2 There remain 800 women who might die in the age class τ = 2. We
assume that 200 of these women actually die. Furthermore, we assume
that 300 women become mothers of a child. The assumption of equal
mortality implies that about 300 / 4 = 75 of these women also die. In
addition, there are 178 women who became mothers in age class τ = 1,
and of these about 178/4 ≈ 45 will die.
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3 The remaining number of women is 800 − 200 = 600, and we assume
that 200 of these women die in the age class τ = 3. Furthermore we as-
sume that again 200 women become mothers of a child. Consequently,
about 200/3 ≈ 67 of these women also will die. Furthermore, there are
358 women who became mothers before τ = 3, and of these 119 will
die.

4 Finally, there remain 400 women and all will die because τ = 4 is the
last and open-ended age class.

5. Given this situation, we can first assume that complete data are avail-
able. This would allow to calculate the survivor function in the following
way:

τ |Ωτ | |{ω ∈ Ωτ |T (ω) = τ}| r(τ ) G[T ](τ )

0 1000 100 1/10 1.00
1 900 100 1/9 0.90
2 800 200 1/4 0.80
3 600 200 1/3 0.60
4 400 400 1 0.40

Obviously, the survivor function is simply proportional to the number of
persons in the risk set. In a next step, we assume that data are only
available for Ω∗, that is, women who gave birth to at least one child. In
our example, there are altogether 200 + 300 + 200 = 700 women. We now
perform the same calculations for these women using the risk and event
sets as defined above. This can be summarized in the following table:

τ |Ω∗
τ | |{ω ∈ Ω∗

τ |T (ω) = τ}| r̃∗(τ ) G∗(τ )

0 1
1 200 22 0.110 g
2 478 120 0.251 g · 0.890
3 558 186 0.333 g · 0.667
4 372 372 1.000 g · 0.445

For τ = 0, the risk set is empty and we cannot calculate a death rate.
Consequently, we also cannot estimate the value of the survivor function
for τ = 1 which, in the table, is substituted by the unknown value g. For
τ > 0 it is possible, however, to create risk and event sets and calculate
corresponding rates r̃∗(τ). And these rates can finally be used to derive
the values of the conditional survivor function

G[T |T ≥ a+](τ) =
G[T ](τ)

G[T ](a∗)
≈e

1

g
G∗(τ)

where a+ = 1 in the present example.
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6. The important point is to recognize the difference between the uncon-
ditional rates

r∗(τ) :=
|{ω ∈ Ω∗ |T (ω) = τ}|

|{ω ∈ Ω∗ |T (ω) ≥ τ}|

and the rates r̃∗(τ) defined above. Using the rates r∗(τ) would result in a
survivor function for the variable T ∗ defined for the reference set Ω∗. But
this survivor function will not, in general, be proportional to a conditional
survivor function for the variable of interest, T , which is defined for the
reference set Ω. In order to calculate a conditional survivor function for
T one needs the rates r̃∗(τ), see formula (9.1.1). The risk sets Ω∗

τ from
which the rates r̃∗(τ) are derived take into account the temporal nature of
becoming a member of Ω∗. In our example, a woman becomes a member
of Ω∗ after the birth of her first child. Corresponding observations are
therefore called left truncated , in this example, left truncated at the age
of first child-bearing. Since our observations of death events only relate to
members of Ω∗, the risk of an observed death at the age τ only relates to
persons who became members of Ω∗ until τ . This argument will again be
used in Section 9.2.2.

9.2 Selection by Survival

Before applying the method discussed in the previous section to the GLHS

and SOEP data we need to discuss the additional complications that result
from a retrospective survey of children who are asked about their parents.
In order to understand some of the problems that might result from this
specific data generating process we use a simulation model.

9.2.1 The Simulation Model

1. The basic idea is to simulate data for a set of women according to a
known survivor function and then to compare this known function with
estimates based on information from the women’s children who survived
until some fixed interview date. In the first version of the model we refer
to a set of N = 10000 women all born in the year t0 := 1900; this set
will be denoted by Ω. We assume that these women survive according to
the 1891–1900 period life table for Germany (see Table 7.4-3 in Section
7.4.2); the corresponding age-specific death rates will be denoted by δf

τ .
Additional assumptions concern the birth of children.4 We assume age-
and parity-specific birth rates

βτ,k :=
Number of women giving birth to a further child at age τ

Number of women aged τ and having k children

4Women, as well as men, can become parents in different ways. In the model we only
consider women who might become mothers by giving birth to children.

9.2 SELECTION BY SURVIVAL 143

Box 9.2-1 Skeleton of the simulation model.

For each ω ∈ Ω do:
n(ω) := 0; # counter for ω’s children

For (τ = 0, . . . , 100 ) {

Get a random number ε;
If (ε ≤ βτ,n(ω))

add one child to n(ω), create a new entry
in Ωc, and record the mother’s identification
number and age;

Get another random number ε;

If (ε ≤ δf
τ )

goto L1;
}

L1:
Record that ω died at age τ and has given birth to c(ω)
children, also record for all children the mother’s age at death;

For each ω ∈ Ωc do:

For (τ = 0, . . . , 100 ) {

Get a random number ε;
If (ε ≤ δc

τ )
goto L2;

}
L2:

Record that ω died at age τ ;

In order to arrive at a simulation model that roughly corresponds to the
historical situation these rates are calculated from a subsample of the
census that took place in Germany in the year 1970 (see Section 12.2.1).
For each women who survived until 1970, this sample contains information
about the birth years of up to 12 children. For the calculation of age- and
parity-specific birth rates we have used all of these women who were born
between 1870 and 1925. These rates are only used to set up our simulation
model, we therefore do not pay attention to historical accuracy.

2. We can thus think of a second reference set, Ωc, containing identification
numbers of all children born of the women in Ω. Of course, the number of
members of Ωc is not known in advance but depends on the death rates
δf
τ and the birth rates βτ,k. But given these rates, we can finally create

two lists. One list containing, for each women in Ω, her identification
number, her death year, and her number of children. And another list
that contains, for each child in Ωc, an identification number, the birth
year, and the identification number of the mother. In addition, in order
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Fig. 9.2-1 Frequency distributions of birth and death years in the
simulated data set.

to simulate a retrospective survey, we assume that the children survive
according to the 1960–1962 period life table for women (see Table 7.4-3 in
Section 7.4.2); the corresponding age-specific death rates will be denoted
by δc

τ . So we can add, for each child in the second list, also a death year.

3. Box 9.2-1 depicts the algorithm that we have used to generate the data
for the simulation model. In this description, ε refers to a draw from
random numbers which are equally distributed in the interval from 0 to
1. Using this algorithm we get the first list with N = 10000 entries that
record the identification numbers of the women in Ω, their age at death,
and their number of children. Of these women, 4776 have at least one
child.5 We also get the second list which, in our implementation of the
model, contains entries for 11407 children. Figure 9.2-1 shows a frequency
distribution of the years in which the women in Ω died on a historical time
axis. Also shown are frequency distributions of the birth and death years
of the children. Note that the algorithm is based on the assumption that
women’s survival is independent of their giving birth to children. Problems
that might result from a violation of this assumption can therefore not be
checked within this model.

9.2.2 Considering Left Truncation

1. Before using the model to discuss the question whether we might be able
to recover the survivor function of the members of Ω based on information
resulting from a retrospective survey of their children, we illustrate the

5One should note that, based on the 1891–1900 period life table, only 68 % of the
women survived age 20, and only 60 % survived age 40.
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importance of correctly taking into account left truncated observations.
What we want to recover is some part of the distribution of the variable

T : Ω −→ T̃ := {0, 1, 2, 3, . . .}

that records the life length of the members of Ω. Of course, our observa-
tions refer at best to a subset of Ω that consists of those members of Ω
who gave birth to at least one child. This subset will be denoted by Ω∗.
We can now again define a variable

T ∗ : Ω∗ −→ T̃ := {0, 1, 2, 3, . . .}

that records the life length of the members of Ω∗. However, as already
mentioned in Section 9.1, it is important to recognize that the distribution
of T ∗ will not, in general, be identical with a conditional distribution of
T .

2. Referring to the simulation model of the previous section, we have de-
fined the distribution of T by the death rates δf

τ . The survivor function of
T is therefore given by

G[T ](τ) =

τ−1∏

j=0

(1 − δf
j )

Obviously, in order to recover (some part of) this survivor function we
need estimates of the death rates δf

τ . However, these death rates are
systematically different from the death rates

r∗(τ) :=
|{ω ∈ Ω∗ |T ∗(ω) = τ}|

|{ω ∈ Ω∗ |T ∗(ω) ≥ τ}|

which correspond to the variable T ∗ and might be used to calculate its
survivor function. In order to find estimates of δf

τ , we need to take into
account that women only become members of Ω∗ when they have given
birth to a first child. We therefore consider a two-dimensional variable

(T ∗, C∗) : Ω∗ −→ T̃ × T̃

where T ∗ is defined as before and C∗ records the age at which members
of Ω∗ gave, for the first time, birth to a child. This then allows to define
a rate function

r̃∗(τ) :=
|{ω ∈ Ω∗ |T ∗(ω) = τ C∗(ω) ≤ τ}|

|{ω ∈ Ω∗ |T ∗(ω) ≥ τ, C∗(ω) ≤ τ}|

The denominator counts the number of members of the risk set at τ ,
defined as

Ω∗
τ := {ω ∈ Ω∗ |T ∗(ω) ≥ τ, C∗(ω) ≤ τ}
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Fig. 9.2-2 Survivor functions, conditional on τ ≥ 21, from the 1891–1900
period life table (solid line) and from women with at least one child in the
simulated data set (dotted line).

that is, members of Ω∗ who actually have given birth to a first child not
later than τ ; and the numerator counts the number of members of the risk
set who actually died at the age τ . Obviously, r̃∗(τ) 6= r∗(τ), but r̃∗(τ) is
the death rate of women who actually are members of Ω∗ at the age of τ
and, as we have construed the model, is a reasonable estimate of δf

τ . We
therefore should use r̃∗(τ) to estimate a conditional version of the survivor
function G[T ].

3. In principle, it would be possible to obtain estimates of r̃∗ from the age
at the first birth onward. Since this rate is zero up to the age of the first
observed death in Ω∗, one might as well start at this age, say a∗,6 so that
the conditional survivor function is then

G̃∗
a∗(τ) :=

τ−1∏

j=a∗

(1 − r̃∗(j))

It might be taken as an estimate of the conditional survivor function
G[T |T ≥ a∗]. To illustrate, we use the simulated data set from our model.
Assuming complete knowledge about all women in Ω∗, we find that the
earliest death occurs at age 19. However, this occurs only once, and at
τ = 20 there is no death at all. We therefore define a∗ := 21 and, given
complete knowledge, can directly calculate G̃∗

a∗ . This is shown in Figure
9.2-2 as a dotted line. Also shown as a solid line is G[T |T ≥ a∗] calculated

6Of course, due to the small number of cases in a sample of observations, r̃∗(a∗) might
not be a good estimate of δf (a∗) and one should condition on some later age. In fact,
it might happen that r̃∗(a∗) = 1 so that one cannot find a reasonable estimate of a
survivor function beginning at a∗.
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Fig. 9.2-3 Conditional survivor functions G̃∗
a∗ (solid line) and

G[T ∗|T ∗ ≥ a∗] calculated from the simulated data set with a∗ = 21.

from the 1891-1900 period life table for women. Obviously, both curves
agree quite well. On the other hand, if we had not taken into account
the fact that women become members of Ω∗ only after having given birth
to a first child, but estimated the survivor function G[T ∗|T ∗ ≥ a∗], the
result would be systematically biased as a consequence of the inequality
r∗(τ) ≤ r̃∗(τ). This is illustrated by Figure 9.2-3 where the solid line shows
G̃∗

a∗ and the dotted line shows G[T ∗|T ∗ ≥ a∗].

4. The fact that women become members of Ω∗ only after the birth of a
child is formally equivalent to treating the observations as left truncated
at the age at first birth. Of course, nothing is wrong with estimating the
survivor function of T ∗ instead of G̃∗

a∗ . The argument has only shown
that one should use the latter one if the interest is in recovering part
of the distribution of T . One might also notice that, while G[T ∗] refers
to a well-defined statistical variable, this cannot be said of G̃∗

a∗ . This
function actually results from a mixture of rate functions. This is seen by
a partition of Ω∗ into subsets Ω∗

[a] := {ω ∈ Ω∗ |C∗(ω) = a} , consisting
of those members of Ω∗ who had a first birth at the age a. Defining rate
functions for these subsets by

r̃∗a(τ) :=
|{ω ∈ Ω∗

[a] |T
∗(ω) = τ}|

|{ω ∈ Ω∗
[a] |T

∗(ω) ≥ τ}|

one can express r̃∗(τ) as a mixture

r̃∗(τ) =
∑

a≤τ

r̃∗a(τ) wa(τ)
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where the weights, defined as

wa(τ) :=
|{ω ∈ Ω∗

[a] |T
∗(ω) ≥ τ}|

∑

a′≤τ |{ω ∈ Ω∗
[a′] |T

∗(ω) ≥ τ}|

reflect the composition of the risk set at τ .

9.2.3 Using Information from Children

1. We now turn to the question of how to estimate conditional survivor
functions for the members of Ω when we only have information from the
children, that is, members of Ωc. So we need to take into account the
relationship between Ωc and Ω∗. To make this explicit, we introduce a
variable (function)

m : Ωc −→ Ω∗

such that for each child ω ∈ Ωc, m(ω) refers to the mother of ω in Ω∗.
Conversely, for each women ω ∈ Ω∗, m−1({ω}) is the set of her children
in Ωc. Now let Ω̄c denote a simple random sample from Ωc. This induces
a random sample from Ω∗, namely

Ω̄∗ := {ω ∈ Ω∗ | there is an ω′ ∈ Ω̄c with m(ω′) = ω}

But Ω̄∗ is not a simple random sample from Ω∗ because women with more
children are more frequent in Ω̄∗ than in Ω∗. This should be taken into
account when estimating r̃∗(τ) from information provided by the children
in the sample Ω̄c.

2. A further problem concerns the temporal nature of the membership of
women in Ω∗. As has been discussed in the previous section, given the data
generating process assumed in our simulation model, a women belongs to
Ω∗ as soon as she has given birth to her first child. The definition of
the rates r̃∗ makes the condition explicit by including the variable C∗

referring to the age at the first birth. Therefore, if ω is any member of
the sample Ω̄c, one should not condition on the mother’s age when giving
birth to ω, but on the age of her first child-bearing. To illustrate, we use
the data from the simulation model and compare two fictitious samples:
Ω̄c

1 contains all first-born children from Ωc, and Ω̄c
2 contains all last-born

children from Ωc. Of course, both samples provide the same information
about the life length of women in Ω∗. But there are now different ways to
select truncation times. If we condition on the age of the mothers when
giving birth to the children in the samples, we get the results shown in
Figure 9.2-4. Obviously, conditioning on the mother’s age when giving
birth to her last child would result in an extremely biased estimate.
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Fig. 9.2-4 Comparison of conditional survivor functions calculated from
two different samples from the simulated data set.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
weighted

not weighted

Period 1891-1900

Fig. 9.2-5 Comparison of conditional survivor functions estimated with,
and without, weights from the simulated data set.

3. In order to avoid this mistake, we should, ideally, have values of the
following variable:

(T ∗
c , C∗

c , N∗
c ) : Ωc −→ T̃ × T̃ × {1, 2, 3, . . .}

where T ∗
c (ω) provides information about the (possibly censored) life length

of ω’s mother, C∗
c (ω) provides information about the mother’s age at first

child-bearing, and N∗
c (ω) counts the mother’s number of children. Since

N∗
c will be used to provide weights for the observations in the sample Ω̄c,
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this should be the number of children surviving up to the time when the
sample is drawn. Now, assuming that this information is available from a
simple random sample Ω̄c, the rates r̃∗ can be estimated in the following
way:7

r̃∗(τ) ≈e r̃∗w(τ) :=

∑

ω∈Ω̄c
1

N∗
c (ω) I [T ∗

c = τ, C∗
c ≤ τ ](ω)

∑

ω∈Ω̄c
1

N∗
c (ω) I [T ∗

c ≥ τ, C∗
c ≤ τ ](ω)

To illustrate, we use again data from the simulation model. Figure 9.2-5
compares conditional survivor functions calculated from estimated rates
r̃∗w(τ) and from analogously defined rates where the weights are dropped.8

The figure clearly indicates that one should use the weights 1/N ∗
c if this

information is available.

4. However, this information might not be available and it is important,
therefore, that there is also another and simpler way to arrive at reasonable
estimates. In order to explain this possibility consider the risk set

Ω∗
τ = {ω ∈ Ω∗ |T ∗(ω) ≥ τ, C∗(ω) ≤ τ}

at τ . The death rates to be estimated can then be written as

r̃∗(τ) =
|{ω ∈ Ω∗

τ |T
∗(ω) = τ}|

|Ω∗
τ |

By assumption, these rates do not depend on the number of children born
of members of Ω∗

τ until τ , and also do not depend on the children’s birth
dates. To make this explicit, we may partition the risk sets into subsets
according to the number of children born until τ . Let K∗

τ (ω) denote the
number of children born of ω until τ . Each risk set Ω∗

τ may then be written
as a union of subsets

Ω∗
τ,k := {ω ∈ Ω∗

τ |K
∗
τ (ω) = k}

taken over all possible values of k. Furthermore, we can define death rates
for these subsets,

r̃∗k(τ) :=
|{ω ∈ Ω∗

τ,k |T
∗(ω) = τ}|

|Ω∗
τ,k|

7The notation uses indicator variables. If X is any statistical variable with a possible
value x̃, then

I[X = x̃](ω) :=



1 if X(ω) = x̃

0 otherwise

8In the calculation we have used all observations from Ωc, but basically the same
differences would result from a simple random sample from Ωc.
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Fig. 9.2-6 Conditional survivor function estimated from the rates r̃∗
c (τ ),

compared with a conditional survivor function from the 1891-1900 period
life table.

However, by assumption these rates are all (approximately) identical with
the death rate r̃∗(τ). Consequently, we do not need weights when we only
use information from children born until τ . Instead, we can directly refer
to the sets of children born of women in Ω∗

τ,k which can be defined by

Ωc
τ,k := m−1(Ω∗

τ,k)

The death rates r̃∗k(τ) may then be written as

r̃∗k(τ) ≈e

|{ω ∈ Ωc
τ,k |T

∗
c (ω) = τ}|

|Ωc
τ,k|

and, since these rates are approximately identical across the subsets, we
might finally write

r̃∗(τ) ≈e r̃∗c (τ) :=
|{ω ∈ Ωc |T ∗

c (ω) = τ, S∗
c (ω) ≤ τ}|

|{ω ∈ Ωc |T ∗
c (ω) ≥ τ, S∗

c (ω) ≤ τ}|
(9.2.1)

where now S∗
c (ω) is the age of ω’s mother at the birth of ω. Notice that this

approach does not require any weights and also requires no information
about the mothers age at her first child-bearing.

5. To illustrate the argument we use again data from the simulation model.
We take into account all children in Ωc but, for the calculation of the rates
r̃∗c (τ) only use information from children born not later than τ . Of course,
this simply means to use all information from Ωc and, for each ω ∈ Ωc, treat
the observation about ω’s mother as left truncated at S∗

c (ω).9 Figure 9.2-6

9One can use, therefore, any standard Kaplan-Meier procedure that allows for left
truncated data. We have used TDA’s dple procedure.
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shows the conditional survivor function calculated from the rates r̃∗c(τ).
This function obviously agrees quite well with the 1891-1900 period life
table that was used to generate the data. Of course, the result would be
basically the same if we had used as simple random sample from Ωc.

9.2.4 Retrospective Surveys

1. In the previous section we assumed that we have data from a simple
random sample from the complete set of children, Ωc. However, our data
actually result from a retrospective survey performed in some specific year,
say t, and we therefore have to take into account that not all members of
Ωc survive until t. Fortunately, the approach to estimate δf

τ via the rates
r̃∗c (τ) that was discussed in the previous section can also be applied to a
retrospective sample if we make the additional assumption that children’s
life lengths are independent of their mother’s life length.10 To explain the
argument, let T c denote the life length of children in the reference set Ωc.
On a historical time axis, if mothers are born in the year t0, each child
ω ∈ Ωc survives until t0 + S∗

c (ω) + T c(ω) (as already introduced, S∗
c (ω) is

the age of the mother when ω was born). The set of children who survive
at least until the year t is therefore given by

Ωc[t] := {ω ∈ Ωc | t0 + S∗
c (ω) + T c(ω) ≥ t}

In the simulation model introduced in Section 9.2.1 we assumed t0 = 1900.
Based on this assumption, Figure 9.2-1 shows the survival of children in
historical time.

2. Now assume a retrospective survey performed in the year t. The sam-
ple is then drawn from the reference set Ωc[t]. Following the approach
discussed in the previous section, we can calculate rates

r̃∗c,t(τ) :=
|{ω ∈ Ωc[t] |T ∗

c (ω) = τ, S∗
c (ω) ≤ τ}|

|{ω ∈ Ωc[t] |T ∗
c (ω) ≥ τ, S∗

c (ω) ≤ τ}|

which are defined analogously to the rates r̃∗c (τ) introduced in (9.2.1). In
order to see that the rates r̃∗c,t(τ) are reasonable estimates of the rates
r̃∗c (τ), their definition might be written in the following way:

r̃∗c,t(τ) =
|{ω ∈ Ωc |T ∗

c (ω) = τ, S∗
c (ω) ≤ τ, S∗

c (ω) + T c(ω) ≥ t − t0}|

|{ω ∈ Ωc |T ∗
c (ω) ≥ τ, S∗

c (ω) ≤ τ, S∗
c (ω) + T c(ω) ≥ t − t0}|

The further argument proceeds in terms of conditional frequencies. Using

10This assumption, already built into the simulation model in Section 9.2.1, is probably
not completely true. However, for the moment we will base our argument on this
assumption.
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Fig. 9.2-7 Sizes of the risk sets Ωc
τ [t], depending on τ , calculated

from four retrospective surveys of the simulated data set in the years
t = 2000, 2010, 2015, and 2020.

an abbreviated notation, we may write:

r̃∗c,t(τ) =
P(T ∗

c = τ, S∗
c ≤ τ, S∗

c + T c ≥ t − t0)

P(T ∗
c ≥ τ, S∗

c ≤ τ, S∗
c + T c ≥ t − t0)

=
P(S∗

c + T c ≥ t − t0 |T ∗
c = τ, S∗

c ≤ τ)

P(S∗
c + T c ≥ t − t0 |T ∗

c ≥ τ, S∗
c ≤ τ)

P(T ∗
c = τ, S∗

c ≤ τ)

P(T ∗
c ≥ τ, S∗

c ≤ τ)

= r̃∗c (τ)
P(S∗

c + T c ≥ t − t0 |T ∗
c = τ, S∗

c ≤ τ)

P(S∗
c + T c ≥ t − t0 |T ∗

c ≥ τ, S∗
c ≤ τ)

Now, given the assumption mentioned at the beginning, that, conditional
on S∗

c ≤ τ , the survival of children does not depend on the survival of their
mothers, the last term on the right-hand side becomes approximately

P(S∗
c + T c ≥ t − t0 |S∗

c ≤ τ)

P(S∗
c + T c ≥ t − t0 |S∗

c ≤ τ)

and may be omitted.

3. There is, however, a further difficulty resulting from retrospective sur-
veys. The later the year t in which the survey is performed, the smaller
is the number of children who might participate in the survey, and conse-
quently also the risk set to be used for the estimation of the death rates
r̃∗c,t becomes smaller. This is shown in Figure 9.2-7 which is based on the
data from our simulation model. Shown are the functions

τ −→ Ωc
τ [t] := {ω ∈ Ωc[t] |T ∗

c (ω) ≥ τ, S∗
c (ω) ≤ τ}

as they result from four fictitious retrospective surveys performed in the
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Fig. 9.2-8 Conditional survivor functions, estimated from Ωc[2010]
(dotted line) and calculated from the 1891–1900 period life table (solid
line), both beginning at a∗ = 25.

years t = 2000, 2010, 2015, and 2020. The possible problem concerns esti-
mation with left truncated data. Contrary to the standard Kaplan-Meier
procedure with right censored data only, the risk set is very small at the
beginning and may not allow reliable estimates of the death rates. Due to
the cumulative nature of the calculation of survivor functions from these
rates, any imprecisions introduced at the beginning will then propagate to
values of the survivor function at later ages. To illustrate, we use the sim-
ulated data set and perform a retrospective survey in the year t = 2010.
We assume that all children who survive this year, that is about 20% of
the 11407 children in Ωc, participate in the survey and provide informa-
tion about their mothers. Nevertheless, we can only begin to estimate a
conditional survivor function at a∗ = 25 as shown in Figure 9.2-8.

9.3 Inferences from the GLHS and SOEP Data

We now use the methods discussed in the previous sections to draw some
inferences from the GLHS and SOEP data. We begin with a brief data
description, then estimate survivor functions, and finally show plots of the
death rates.

9.3.1 Description of the Data

1. We briefly describe the available data. The basic figures are shown
in Table 9.3-1. From the GLHS we use all studies which are currently
available in the Zentralarchiv für empirische Sozialforschung (see Section
14.1).
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a) The first study was LV I. The 2171 respondents were born in the periods
1929– 31, 1939– 41, and 1949– 51; the interviews were conducted in
the years 1981– 83. In 2120 cases respondents were able to provide a
valid birth year of their mother. Of these mothers, 732 died before
the interview date, 1386 were still alive, and for two mothers we have
no information. Complete information is therefore available for 2118
mothers. In 8 cases this information is inconsistent or implausible, for
example, the birth year of the respondent is greater than the death
year of the mother.11 If we exclude these cases there finally remain
2110 cases in which we know: the birth year of the mother, whether
she died before the interview date, and, if she died, also the death year.
Similarly, we get valid information for 2044 fathers.

b) The second study was LV II and involved respondents born in the years
1919– 21. This study was conducted in two parts: LVIIA with inter-
views during 1985– 86, and LVIIT with interviews during 1987– 88. In
the same way as explained for LV I we get valid information about the
lifetimes of 387 + 956 = 1343 mothers and 382 + 943 = 1325 fathers.

c) The third study was LV III and involved respondents born in the periods
1954– 56 and 1959– 61. From this study we get valid information about
1954 mothers and 1911 fathers.

2. Comparable information is available from the third wave of the SOEP

conducted in 1986. All members of subsample A of the SOEP were asked
to provide information about birth years of their parents, whether parents
died before the interview date and, if they died, about death years. In
order to get data comparable with the GLHS, we selected only persons
with a German citizenship. As shown in Table 9.3-1, there are 8021 per-
sons from which we get valid information about 7746 mothers and 7614
fathers. Taking the GLHS and SOEP data together, we finally have valid
information about 13153 mothers and 12894 fathers.

3. We prepared two data files for further analysis, one for mothers and the
other one for fathers. Both files contain values of four variables:

Bf := birth year of the mother

P f := birth year of the child (respondent)

Ef := 1 if mother died before the interview date, 0 otherwise

Df := mother’s death year, or the year of the interview,
depending on the value of Ef

Variables in the data file for fathers are defined accordingly and will be
denoted by Bm, P m, Em, and Dm.

11In addition to inconsistent cases we also exclude cases with a life length which is
greater than 105 years. For women we also require that the age at which the women
gave birth to her child (the respondent) is not greater than 51 years.
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Table 9.3-1 Information about lifetimes of mothers and fathers which is
available in the GLHS and SOEP data sets.

LV I LV IIA LV IIT LV III SOEP

Interview dates 1981-83 1985-86 1987-88 1989 1986
Respondents 2171 407 1005 2008 8021

Mothers

- valid birth year 2120 390 962 1954 7819
- still alive 1386 24 43 1766 4872
- known death year 732 366 919 188 2911
- no information 2 0 0 0 36

- complete information 2118 390 962 1954 7783
- dismissed 8 3 6 0 37
- remaining cases 2110 387 956 1954 7746
- still alive 1385 24 43 1766 4854
- died 725 363 913 188 2892

Fathers

- valid birth year 2062 386 955 1916 7699
- still alive 909 1 8 1460 3586
- known death year 1150 384 945 451 4053
- no information 3 1 2 5 60

- complete information 2059 385 953 1911 7639
- dismissed 15 3 10 0 25
- remaining cases 2044 382 943 1911 7614
- still alive 909 1 8 1460 3577
- died 1135 381 935 451 4037

9.3.2 Survivor Functions of Parents

1. We now apply the method discussed in the previous section to the data
introduced in Section 9.3.1. Since we already know that mortality con-
ditions have substantially changed during the last 100 years, we consider
birth cohorts as defined in Table 9.3-2.12 To develop the argument we
consider variables T̂ f

c and T̂ m
c representing the life length of women and

men who belong to a birth cohort indexed by c. Derivable from the vari-
ables introduced at the end of Section 9.3.1, available data are given by
variables

Cf
c := P f

c − Bf
c and Cm

c := P m
c − Bm

c

which record the ages at which persons belonging to birth cohort c became
mothers or fathers, and variables

T f
c := Df

c − Bf
c and T m

c := Dm
c − Bm

c

which record the knowledge about the life length. If Ef
c (ω) = 1, T f

c (ω) =
T̂ f

c (ω) is the known life length of ω; otherwise, the information is censored

12Compared with the figures in Table 9.3-1 the total number of cases is slightly smaller
because persons born before 1870 or after 1939 have been omitted.
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Table 9.3-2 Definition of birth cohorts used in the estimation of survivor
functions.

Mothers Fathers

Cohort Birth years died alive total died alive total

C1 1870 – 1879 271 0 271 528 0 528

C2 1880 – 1889 1064 10 1074 1393 12 1405

C3 1890 – 1899 1698 170 1868 1591 101 1692

C4 1900 – 1909 1123 954 2077 1685 600 2285

C5 1910 – 1919 438 1456 1894 907 1011 1918

C6 1920 – 1929 272 2467 2739 464 2035 2499

C7 1930 – 1939 123 2219 2342 196 1773 1969

and we only know that T̂ f
c (ω) ≥ T f

c (ω). For variables pertaining to men
the interpretation is analogous.

2. To illustrate the calculations we refer to women belonging to birth co-
hort C4. The data are shown in Table 9.3-3. The column labeled (a) shows
the risk sets. As discussed in the previous section, the risk set at age τ
contains all women who did not die before τ and became a mother not later
than τ .13 In this example, the youngest age for which we know of a child
is 15; risk sets can therefore be calculated only for ages τ ≥ τ ∗ = 15. The
next column, labeled (b), shows the number of death events. Then follows
column (d) providing the number of censored cases which are required to
update the risk sets. As shown by the definition

R∗(τ) := {ω |T f
c (ω) ≥ τ, Cf

c (ω) ≤ τ}

women belong to a risk set only until the maximal value of T f
c , that is,

until a death event occurs or until the interview date (of their children).

3. The information in Table 9.3-3 suffices to calculate death rates. For
example, r∗(20) = 1/100 and r∗(80) = 33/507. These rates can then be
used to estimate the survivor function

G∗(τ) = gτ∗

τ−1∏

j=τ∗

(1 − r∗(j))

Of course, we do not know gτ∗ , that is, the proportion of women who
survived age 14. So we can only estimate a conditional survivor function

G[T̂ f
c |T̂

f
c ≥ τ∗] ≈e

τ−1∏

j=τ∗

(1 − r∗(j))

13Of course, from our data we do not know when women actually gave birth to a first
child. Whether this has implications for the quality of the estimates will be discussed
in a later section.
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Table 9.3-3 Mortality data for mothers belonging to birth cohort C4 in the
merged GLHS and SOEP data set.

(a) Size of risk set at age τ .

(b) Number of deaths at age τ .

(c) Number of censored cases at age τ .

(d) Values of the conditional survivor function at age τ .

τ (a) (b) (c) (d) τ (a) (b) (c) (d)

15 1 0 0 1.000 52 1901 4 0 0.878

16 2 0 0 1.000 53 1897 15 0 0.876

17 3 0 0 1.000 54 1882 13 0 0.869

18 18 0 0 1.000 55 1869 21 0 0.863

19 45 0 0 1.000 56 1848 7 0 0.854

20 100 1 0 1.000 57 1841 17 0 0.850

21 183 1 0 0.990 58 1824 14 0 0.843

22 266 2 0 0.985 59 1810 18 0 0.836

23 347 0 0 0.977 60 1792 20 0 0.828

24 435 2 0 0.977 61 1772 19 0 0.818

25 556 1 0 0.973 62 1753 15 0 0.810

26 690 3 0 0.971 63 1738 23 0 0.803

27 781 4 0 0.967 64 1715 18 0 0.792

28 928 1 0 0.962 65 1697 33 0 0.784

29 1075 3 0 0.961 66 1664 23 0 0.769

30 1217 3 0 0.958 67 1641 36 0 0.758

31 1327 2 0 0.956 68 1605 32 0 0.741

32 1427 5 0 0.954 69 1573 24 0 0.727

33 1512 9 0 0.951 70 1549 41 0 0.715

34 1597 5 0 0.945 71 1508 39 0 0.697

35 1677 6 0 0.942 72 1469 54 32 0.679

36 1740 5 0 0.939 73 1383 53 53 0.654

37 1800 5 0 0.936 74 1277 56 57 0.629

38 1864 9 0 0.934 75 1164 53 43 0.601

39 1903 13 0 0.929 76 1068 55 30 0.574

40 1929 12 0 0.923 77 983 42 125 0.544

41 1945 2 0 0.917 78 816 57 96 0.521

42 1952 5 0 0.916 79 663 42 114 0.484

43 1957 7 0 0.914 80 507 33 85 0.454

44 1957 5 0 0.910 81 389 20 78 0.424

45 1956 13 0 0.908 82 291 12 70 0.402

46 1947 7 0 0.902 83 209 21 48 0.386

47 1943 10 0 0.899 84 140 12 34 0.347

48 1935 8 0 0.894 85 94 5 41 0.317

49 1928 8 0 0.891 86 48 0 39 0.300

50 1920 7 0 0.887 87 9 0 5 0.300

51 1913 12 0 0.884 88 4 0 4 0.300
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Fig. 9.3-1 Female survivor function of the German period life table
1901/10 (dotted line) and conditional survivor function from Table 9.3-3.

which is shown in the last column of Table 9.3-3 labeled (d).

4. Since this approach to estimate a conditional survivor function depends
on a previous estimation of rates, one should also consider the question
whether these rates can be reliably estimated. Formally, one can begin at
age τ∗ which is 15 in our example. However, due to the small number of
cases in the risk sets at ages under 20, one might question the reliability
of these estimates. In fact, formally following the estimation procedure
implies estimated death rates having a value of zero during ages from 15
to 19. But given our knowledge about mortality and life tables from other
sources, these estimates will clearly be wrong. Moreover, the reliability
of estimates of death rates not only depends on the size of the risk sets
but also on the number of death events that can be observed. Therefore,
regarding the data in Table 9.3-3, it might be sensible to begin an inter-
pretation of estimated death rates only at some later age, for example, at
age 26 or even later.

5. Conditional survivor functions can be represented graphically in two
possible ways: The function can be plotted beginning at some age τ with
arbitrary value gτ ; or one can try to find some estimate of gτ and then plot
the conditional survivor function as part of a complete survivor function.
In any case one needs to decide where to start the plotting. For our
example we begin at age 26 and estimate g26 from the female survivor
function of the German period life table for the period 1901–10 (see Table
7.4-3 in Section 7.4.2). Beginning at age 26, we therefore multiply all
values of column (d) in Table 9.3-3 with the factor

g26 =
0.71463

0.971
= 0.736
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Fig. 9.3-2 Conditional survivor functions, beginning at age 30, for men
(solid lines) and women (dotted lines) belonging to specified birth cohorts.
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The result is shown in Figure 9.3-1. The dotted line represents the female
survivor function from the 1901–10 period life table; the solid line shows
the adjusted conditional survivor function from Table 9.3-3. By definition,
values are identical at age 26. The different development of both curves
reflects the reduction of death rates that occurred during the period from
about 1930 until the end of the century. So we might use the latest 1986–
88 period life table for a further comparison. As can be estimated from
Table 9.3-3, the death rate at age 80 is about 0.065. A corresponding
estimate from the 1986–88 period life table is 0.066.14 One should note,
however, that values of rates calculated from sample data for single years
often show high fluctuations and it might be better, therefore, to use mean
values for larger age classes.

6. In the same way as has been discussed for women belonging to birth
cohort C4 (1900–1909) one can estimate conditional survivor functions for
all birth cohorts distinguished in Table 9.3-2. Results are shown in Figure
9.3-2. To allow for a comparison, all survivor functions are drawn condi-
tional on τ∗ = 30. The placement onto a historical time axis was done by
using the centers of the birth cohort intervals. For example, the value of
the conditional survivor function for birth cohort C1 at age 30 is shown in
the year 1875 + 30 = 1905. The changing shapes of the survivor functions
not only reflect a general tendency of decreasing death rates, both for men
and women. Also clearly seen are period effects, especially the substan-
tial increases of male death rates during the years of World War II. This
seems not to be the case with regard to female death rates. An interpreta-
tion should consider, however, that the occurrence of death events might
not be independent for mothers and their children, in particular during
war time. The death events of mothers might therefore be substantially
underrepresented in our data set.

9.3.3 Visualization of Death Rates

1. In order to investigate period effects it is often preferable to directly
plot the rates from which (conditional) survivor functions are derived.
The only drawback is that rates calculated from small samples are often
highly fluctuating. As an example we refer to death rates of men belonging
to birth cohort C5 (1910–1919). The solid line in Figure 9.3-3 shows the
death rates as directly calculated from the data, that is, for each year of
age, the number of deaths divided by the number of persons in the risk
set. There obviously are big fluctuations. One should therefore apply some
kind of smoothing procedure to provide a better view of the general shape
of the rate function.

2. Many such smoothing procedures have been proposed in the literature.

14Calculated from the data in Table 7.4-4 in Section 7.4.2.
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Fig. 9.3-3 Raw values (solid line) and smoothed values (dotted line) of
death rates of men belonging to birth cohort C5 (1910 – 1919).

In the present context, smoothing will only serve to visualize rate functions.
It might therefore suffice to simply use moving averages. Given a series
of values rτ , for τ = τ1, . . . , τn, each value is then substituted by a mean
of neighboring values. If the number of neighbors is denoted by k, the
smoothed values are calculated as

r(k)
τ :=

1

2k + 1

τ+k∑

j=τ−k

rj

At both ends of the series only the actually available values are taken into
account.15 Choosing k = 2, this procedure was used to calculate values
for the dotted line in Figure 9.3-3. It is seen how the smoothing removes
the fluctuations but preserves the global shape of the rate function.

3. We now compare the death rates of men belonging to birth cohorts
C1, . . . , C6. The rate functions are shown in Figure 9.3-4 and placed onto a
historical time axis. To support visibility, the rate functions are smoothed
with the procedure just described (again, k = 2). Compared with the
survivor functions shown in Figure 9.3-2, the rate functions provide a much
better view of the impact of World War II.

15The complete formula may then be written as follows:

r
(k)
τ :=

1

min{τn, τ + k} − max{τ1, τ − k} + 1

min{τn,τ+k}
X

j=max{τ1,τ−k}

rj

where τ1 and τn refer, respectively, to the first and last element of the series.
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Fig. 9.3-4 Smoothed death rates of men belonging to the indicated birth
cohorts. (Moving averages with k = 2.)



Chapter 10

Parametric Mortality Curves

This chapter is not finished yet.

Chapter 11

Period and Cohort Birth Rates

We now leave the topic of mortality and turn to the complementary one:
the birth of children. In this chapter, we begin with the standard approach
that records the development of births in terms of rates. We then turn to
a life course perspective which suggests to view birth events in the context
of women’s life courses.

11.1 Birth Rates

1. Demographers have invented a lot of measures to statistically record
the fertility of a population.1 An elementary measure parallels the crude
mortality rate and is called crude birth rate [allgemeine Geburtenziffer].2

It is defined as

Crude birth rate :=
bt

nt
(multiplied by 1000)

The numerator records the total number of births that occurred during the
year t, and the denominator refers to the midyear population size in the
same year. To calculate crude birth rates one can use the data from Tables
6.2-2 and 6.3-1 in Chapter 6. For example, referring to the territory of the
former FRG, the crude birth rate in 1950 is 1000 · 812.8/49989 = 16.26.
Figure 11.1-1 compares the development, until 1999, in the territories of
the former FRG and the former GDR. The impression is that developments
were quite similar until about 1973. Then, in the western part of Germany,
the crude birth rate stabilized around a value of 10, while in the eastern
part a temporary increase in fertility was ended by a sharp decline that
began, roughly, at the time of the German unification.

2. Like crude mortality rates, crude birth rates neglect the age and sex
composition of a population. Demographers therefore often calculate a
general birth rate [allgemeine Geburtenrate3], also called a general fertility

1We mention that in the German demographic literature, and in publications of statis-
tical offices, the literal translation of ‘fertility’ [‘Fruchtbarkeit’] is considered obsolete;
instead, one refers to birth events [Geburten] or newborn children [Geborene]. One
should also notice that the terms ‘fertility’ and ‘fecundity’ are used somewhat differ-
ently in the literature. English texts most often use the term ‘fertility’ to refer to
realized births, and the term ‘fecundity’ to refer to women’s ability to bear children
(see, e.g., Pressat 1972, p. 172, and Newell 1988, p. 35); some other authors use these
words in an opposite meaning (see, e.g., Mueller 1993, p. 154).

2One also often finds the term ‘crude fertility rate’.

3Also called ‘allgemeine Fruchtbarkeitsziffer’ in the older German literature, see, e.g.,
Statistisches Bundesamt 1985, p. 18.



166 11 PERIOD AND COHORT BIRTH RATES

1950 1960 1970 1980 1990 2000
0

5

10

15

20

Fig. 11.1-1 Crude birth rates in the territory of the former FRG (solid
line) and the territory of the former GDR (dotted line); calculated from
Tables 6.2-2 and 6.3-1 in Chapter 6.
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Fig. 11.1-2 Proportion (in percent) of women in the midyear population
(dotted line) and of women aged 15 to 45 in all women (solid line).
Calculated from data in Segment 36 of the STATIS data base of the
Statistisches Bundesamt .

rate, in which the number of births is related only to the number of women
in childbearing ages. We will use the notation

General birth rate :=
bt

nf∗

t

(multiplied by 1000)

where the index, f∗, refers to women in the reproductive period , often as-
sumed to be 15 to 45 years of age. However, there is no general agreement;
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Fig. 11.1-3 Development of the general birth rate in Germany since
1871. Data for the post-World War II period refer to the territory of
the former FRG. Available data for the period before 1939 are indicated
by dots. Source: Statistisches Bundesamt, Bevölkerung und Wirtschaft
1872 – 1972 (p. 109), and Fachserie 1, Reihe 1.

in publications of demographic data one also finds the periods 15 – 44, or
15– 49, etc. We will use τa to denote the beginning and τb to denote the
end of the reproductive period. As shown by the definition, the difference
between a crude and a general birth rate depends on the sex ratio and the
proportion of women in childbearing ages. How these proportions have
changed over the years in the territory of the former FRG is shown in Fig-
ure 11.1-2. They obviously cannot explain the big changes that are visible
in Figure 11.1-1.

3. In order to get an impression of long-term changes in childbearing both
crude and general birth rates can be used. The long-term development of
crude birth rates has been shown in Figure 6.3-2 in Section 6.3. A similar
plot based on data on the general birth rate is shown in Figure 11.1-3.
Both figures show that a long-term trend of declining fertility began in
Germany roughly at the end of the nineteenth century.

4. A further concept is the age-specific birth rate [altersspezifische Gebur-
tenziffer] which refers to women of a specific age. We will use the following
definition:

βt,τ :=
bt,τ

nf
t,τ

The denominator refers to the midyear number of women in year t aged τ
(in completed years), and the numerator refers to the number of children
born of these women during the year t. Notice that in publications from
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Table 11.1-1 Number of children born in Germany 1999 (b1999,τ ) and number
of women (nf

1999,τ and nf+
1999,τ ) classified according to women’s age (τ ); also

shown are age-specific birth rates (β̃1999,τ and (β̃1999,τ ). Source: Values of
b1999,τ : Statistisches Jahrbuch 2001 (p. 71) and Segment 2070 in the STATIS
data base; nf

1999,τ : Fachserie 1, Reihe 1, 1999 (pp. 64-65); values of nf+
1999,τ :

unpublished material provided by the Statistisches Bundesamt .

τ b1999,τ nf
1999,τ β̃1999,τ nf+

1999,τ β̃+
1999,τ

≤14 80
15 341 438.4 0.78 436.782 0.78
16 1234 446.7 2.76 441.006 2.80
17 3085 453.2 6.81 452.610 6.82
18 6332 457.2 13.85 454.730 13.92
19 11158 451.3 24.72 460.706 24.22
20 15558 441.6 35.23 442.599 35.15
21 19693 441.7 44.58 440.781 44.68
22 24009 442.0 54.32 443.065 54.19
23 27326 436.7 62.57 440.361 62.05
24 30436 438.6 69.39 432.779 70.33
25 35493 449.3 79.00 444.718 79.81
26 39850 477.1 83.53 454.341 87.71
27 45348 528.2 85.85 500.610 90.59
28 52632 568.8 92.53 555.333 94.78
29 56566 604.4 93.59 582.220 97.16
30 60007 642.6 93.38 626.937 95.71
31 60093 668.1 89.95 657.849 91.35
32 56767 686.8 82.65 677.296 83.81
33 50623 697.5 72.58 696.136 72.72
34 43428 705.9 61.52 699.210 62.11
35 36185 711.7 50.84 713.016 50.75
36 28680 700.4 40.95 710.250 40.38
37 21055 687.5 30.63 690.981 30.47
38 15398 675.1 22.81 684.141 22.51
39 11165 656.2 17.01 666.236 16.76
40 7540 630.1 11.97 646.050 11.67
41 4627 608.9 7.60 614.752 7.53
42 2963 597.8 4.96 603.257 4.91
43 1619 584.7 2.77 592.163 2.73
44 789 575.7 1.37 577.973 1.37
45 342 566.9 0.60 573.468 0.60
46 163 561.7 0.29 560.591 0.29
47 58 558.4 0.10 563.369 0.10
48 48 556.0 0.09 553.593 0.09
49 25 548.5 0.05 558.612 0.04
50 12 517.2 0.02

≥51 16

official statistics age-specific birth rates are often multiplied by 1000, we
will then use the notation β̃t,τ := βt,τ 1000. Table 11.1-1 illustrates the
calculation of these rates for the year 1999. We also mention that the
Statistisches Bundesamt uses a slightly different definition and calculates
women’s age as the difference between the birth year of the women and the
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Fig. 11.1-4 Age-specific birth rates in Germany, 1999, restricted to ages
in the range from 15 to 49 years. Data are taken from columns β̃1999,τ

(solid line) and β̃+
1999,τ (dotted line) in Table 11.1-1.

birth year of the child. This leads to slightly different birth rates as is also
shown in Table 11.1-1: nf+

1999,τ is the number of women who are born in the

year 1999− τ .4 The differences are illustrated in Figure 11.1-4. However,
both curves clearly show how birth rates depend on women’s age.

5. The general birth rate can then be viewed as a weighted mean of age-
specific birth rates. We mention that demographers also calculate an un-
weighted mean value which is called total birth rate [zusammengefasste
Geburtenziffer].5 The definition is

Total birth rate :=

τb∑

τ=τa

βt,τ (multiplied by 1000)

where the range of summation depends on assumptions about the child-
bearing ages of women. For example, the calculation of total birth rates
in Fachserie 1, Reihe 1 (1999, p. 50) is based on an age range from 15 to
49 years. The value for 1999, calculated for the territory of the former
FRG, is 1405.8. However, while formally a mean value, this figure does
not relate to any well-defined population and is therefore difficult to in-
terprete. It is not possible, for example, to infer that the mean number of
children per women (which women?) is 1.4. However, the total birth rate
can also be viewed as a standardized version of the general birth rate and,

4We are grateful to Hans-Peter Bosse who made available these figures which are not
normally published by the Statistisches Bundesamt .

5One also often finds the term ‘total fertility rate’.
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with this understanding, used as a measure for the comparison of birth
frequencies in a sequence of calendar years. This will be illustrated in a
later section where we compare total birth rates with a similar measure
relating to cohorts.

11.2 A Life Course Perspective

1. In order to develop a conceptual framework for recording birth events
it seems sensible to refer to the life courses of women who might, or might
not, give birth to children. Beginning at some age, it becomes possible for
most women to bear children; but whether they will do so is basically con-
tingent on their life courses. With the general availability of contraceptive
means, women can also influence the occurrence of birth events. There-
fore, whether, and when, a women will give birth to children is always
a personal decision. A statistical approach cannot claim to reconstruct
such individual histories in any serious sense. Nevertheless, also from a
statistical point of view, one can try to relate birth events to women’s life
courses and their social conditions.

2. This is most often done by using a cohort approach. In the present
context this means that we begin with a reference to birth cohorts. Using
previously introduced notation, we will denote by Cf

t0 a set of women all

born in the same year, t0. Life courses of the members of Cf
t0 are then

parallel on a calendar time axis as shown in the following graphic.

- historical
time

t0

- age

0 τa τb

first
child?

more
children?

All members of Cf
t0 begin their life course in the same year, t0, at age τ = 0,

and they can be compared with respect to their childbearing histories.

3. How can one record birth events of the members of Cf
t0 in terms of

statistical variables? We can begin by defining a variable

B̄t0 : Cf
t0 −→ {0, 1, 2, 3, . . .}

which simply counts the number of children, possibly zero, born of mem-
bers of Cf

t0 . For each women ω ∈ Cf
t0 , B̄t0(ω) is the number of children

born of ω. Of course, this number can only be known at the end of the re-
productive period of the women in Cf

t0 , that is, when they have reached an
age τ > τb. In a temporal view, this means that only at the end of the year
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t0 +τb the variable B̄t0 gets an empirically definite meaning. Nevertheless,
with this reservation, one can use B̄t0 to define

∑

ω∈Cf
t0

B̄t0(ω)
/

| Cf
t0 |

This might be called a cohort birth rate: the denominator records the
number of women in Cf

t0 , and the numerator refers to the total number of
children born of these women.

4. The cohort birth rate obviously does not provide any information about
ages of childbearing but globally refers to the total number of children born
during the reproductive period. To incorporate age information one might
define variables

Bt0,τ : Cf
t0 −→ {0, 1, 2, 3, . . .}

recording the number of children born of members of Cf
t0 at the age of τ .

Values of these variables can be cumulated:

B̄t0,τ (ω) :=

τ∑

j=τa

Bt0,j(ω)

In particular, one finds the simple relationship B̄t0(ω) = B̄t0,τb
(ω).

5. It is also helpful to introduce age-specific cohort birth rates . We will
use the following definition:

γt0,τ :=

∑

ω∈Cf
t0,τ

Bt0,τ (ω)

| Cf
t0,τ |

The denominator refers to the number of members of Cf
t0 who survived age

τ − 1 and therefore might give birth to children at age τ . The numerator
refers to the number of children born of members of Cf

t0,τ at age τ .

6. The rates γt0,τ can be used to investigate the distribution of births dur-
ing the reproductive period of women belonging to the same birth cohort.
As will be illustrated later, this can be done by plotting values of γt0,τ

against τ . Alternatively, one can plot cumulated cohort birth rates

γ̄t0,τ :=
τ∑

j=τa

γt0,j

However, γ̄t0,τb
should not be confused with the mean number of children

born of members of Cf
t0 until the end of the reproductive period. In order to

relate age-specific cohort birth rates to the total number of children born
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of members of a birth cohort, one has to take into account the women
who died before the end of the reproductive period. The total number of
children born of members of Cf

t0 is

τb∑

τ=τa

γt0,τ |C
f
t0,τ |

Dividing this quantity by the number of women belonging to Cf
t0 would

provide the mean number of children per women. To see explicitly the de-
pendence on women’s age-specific death rates, one can use the relationship

|Cf
t0,τ |

|Cf
t0 |

=

τ−1∏

j=0

(1 − ηf
t0,j)

derived in Section (8.1). Using this relationship, one finds

Mean number of children per women =

τb∑

τ=τa

γt0,τ

|Cf
t0,τ |

|Cf
t0 |

=

τb∑

τ=τa

γt0,τ

τ−1∏

j=0

(1 − ηf
t0,j)

This discussion will be continued in Section 18.1 where we deal with re-
production rates. Here we only mention that, although cumulated cohort
birth rates do not allow inferences about the mean number of children born
of women belonging to the same birth cohort, they can be used as some
measure of “cohort fertility”. In particular, one can use γ̄t0,τb

, commonly
called a completed cohort birth rate. This rate would equal the cohort birth
rate if all women survived the end of the reproductive period.

11.3 Childbearing and Marriage

1. Due to an unfortunate focus on marital births, official birth statistics
are inadequate when dealing with questions of parity and number and
timing of births. The problem is aggravated by the fact that generally not
even divorces are taken into account. Counting of children starts anew
with every marriage, disregarding all previous births.6

2. The confounding of childbearing and marriage behavior has a long tra-
dition in demography. Many demographers assume that a statistical anal-
ysis of marriages and divorces should be considered an essential part of
demography. The following quotation from a textbook can serve as an

6The latter defect has been avoided in a 10 % subsample of the 1970 census where
women were asked to report the birth dates of all their marital children, regardless of
their current marital status. These data will be discussed in Chapter 12.2.
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example:7

“Marriage and divorce have been of long concern in population studies because
of their recognized relationship to population composition, on the one hand, and
to fertility, on the other. Next to age and sex, no characteristic is more basic to
a population than its composition by marital status: its absolute and relative
numbers of single, married, widowed, and divorced persons of each sex and at
each age. Although children may be born outside of marriage, in every society
childbearing is intimately associated with marriage and generally is viewed both
as the object and as a more or less immediate consequence of marriage and
conjugal relations.” (Matras 1973, p. 258)

However, for several reasons we shall not adopt this view. The most im-
portant one is that a substantial proportion of women who give birth to
children is not married. Table 11.3-1 provides figures that show the num-
ber of non-marital births (per 1000) in Germany since 1872. Figure 11.3-1
provides a graphical illustration. It is seen that until about 1940 the pro-
portion of non-marital birth was already about 10 percent.8 Then, after
an initial decline after World War II, beginning in the mid-sixties, the
proportion is continually rising. This trend is particularly strong in the
territory of the former GDR where the proportion of non-marital births
has reached almost 50 percent.9 On the other hand, there are also mar-
ried women who, for whatever reasons, remain childless. In short, being
married is neither a necessary nor a sufficient condition for childbearing,
nor is there any kind of causal relationship.

3. This is not to deny that living arrangements may play an important
role in women’s decisions to give birth to children. But living conditions
and marriage are different concepts. This is often obscured by an unclear
usage of terms. To cite Matras again:

“Basically, a family consists of an adult male and female living in a common
residence, maintaining a socially approved sexual relationship, and sharing the
residence with their offspring and sometimes with other persons united with
them in some biologically based relationship. Marriage is the establishment of
this residence and socially approved sexual relationship between the adult male
and female.” (Matras 1973, p. 260)

Not only does this definition of ‘family’ ignore the widely different forms
of household types which have emerged in human history. More important

7As an example from the German literature see Bolte, Kappe and Schmid (1980,
pp. 13 -14).

8Actually, at least in some parts of Germany, percentages of non-marital births were
even higher in earlier periods. For example, Lindner (1900, p. 217) reports about 20 %
non-marital births during the period 1825 –1868 for the Königreich Bayern. For an in-
terpretation of some of the changes that occurred during the 19th century see Kottmann
(1987).

9For a discussion see Huinink (1998).
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Table 11.3-1 Proportion of non-marital births (per 1000 births) in Germany
and the territories of the former FRG and GDR. Sources: Statistisches
Bundesamt, Bevölkerung und Wirtschaft 1872 –1972 (pp. 107-108) for the pe-
riod 1872 –1938; Fachserie 1, Reihe 1, 1999 (pp. 50-51) for the period 1946 –1999.

Territory of the former

Germany (Reichsgebiet) FRG GDR FRG GDR

Year Year Year Year

1872 87.8 1908 87.7 1946 163.8 192.5 1973 62.7 156.4
1873 91.3 1909 89.2 1947 118.5 151.1 1974 62.7 162.9
1874 85.7 1910 89.6 1948 102.3 126.9 1975 61.2 161.4
1875 85.6 1911 90.8 1949 93.1 118.9 1976 63.5 162.1
1876 1912 94.4 1950 97.3 127.9 1977 64.7 157.7
1877 85.8 1913 96.0 1951 96.4 131.5 1978 69.6 173.4
1878 85.7 1914 96.9 1952 90.3 130.0 1979 71.3 195.9
1879 87.6 1915 110.7 1953 86.7 130.3 1980 75.6 228.4
1880 1916 109.5 1954 84.2 132.5 1981 79.0 255.8
1881 89.7 1917 114.1 1955 78.6 130.0 1982 84.9 292.9
1882 91.9 1918 129.6 1956 74.7 131.9 1983 88.3 320.4
1883 91.3 1919 110.3 1957 71.9 131.8 1984 90.7 335.5
1884 94.2 1920 112.2 1958 68.5 123.7 1985 94.0 338.1
1885 93.6 1921 105.6 1959 66.9 120.1 1986 95.5 344.3
1886 93.8 1922 106.3 1960 63.3 116.0 1987 97.1 328.0
1887 93.4 1923 103.1 1961 59.5 111.3 1988 100.3 334.4

1924 104.1 1962 55.6 100.8 1989 102.2 336.4
1893 90.5 1925 118.2 1963 52.3 93.4 1990 104.9 349.9
1894 92.7 1926 123.7 1964 49.9 94.2 1991 111.1 417.2
1895 89.8 1927 122.8 1965 46.9 98.1 1992 115.9 418.2
1896 92.7 1928 122.1 1966 45.6 99.9 1993 118.7 410.9
1897 91.3 1929 120.7 1967 46.1 107.0 1994 124.3 414.4
1898 90.3 1930 120.0 1968 47.6 114.9 1995 128.9 417.7
1899 88.8 1931 117.5 1969 50.4 124.1 1996 136.8 423.9
1900 86.3 1932 116.3 1970 54.6 133.0 1997 142.7 441.0
1901 84.8 1933 106.7 1971 58.1 151.2 1998 159.2 471.5
1902 83.9 1934 85.3 1972 60.5 162.0 1999 176.7 499.4
1903 82.4 1935 77.7
1904 83.1 1936 77.0
1905 84.3 1937 76.6
1906 84.1 1938 76.0
1907 86.0

for our present argument is Matras’s unspecific use of the term ‘marriage’.
Given his definition, a marriage takes place when two people, of opposite
sex, decide to start a common household (residence). However, this ob-
scures the fact that, in modern societies, ‘marriage’ does not refer to some
kind of household formation, but is a juridical term that gets its meaning
from laws and a corresponding juridical practice. In fact, two people can-
not simply decide to become married but need the approval of an official
institution. In particular, only then they will be counted as being married
in official statistics. In contrast to terms that refer to living conditions,
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Fig. 11.3-1 Proportion of non-marital births (in percent) in Germany
and in the territory of the former FRG (solid line) and in the territory of
the former GDR (dotted line); calculated from the data in Table 11.3-1.

the term ‘marriage’ should therefore be considered, not as a sociological
category, but as belonging to the realm of administrative regulations. Of
course, this does not preclude a sociological analysis of practices of mar-
riage and divorce.

4. A further argument can illustrate the difference. While it seems plau-
sible that women’s decisions to give birth to children depend on their
actual and expected living arrangements, this can most often not be said
of marriages. Women do not bear children because they are married; but
they might want to become married because they want a legally secured
framework for their children.

11.4 Birth Rates in a Cohort View

1. In order to record age-specific birth rates of a cohort Cf
t0 it would be

necessary to follow the cohort members from birth until the end of the
reproductive period. Difficulties are the same as in the construction of
cohort life tables (see Chapter 8). Mainly three surrogate methods seem
possible:

a) One can approximate age-specific cohort birth rates with age-specific
period data;

b) one can use data from retrospective surveys, which implies that one
has to ignore cohort mortality; and

c) one can use data from panel studies which allow to follow the members
of a birth cohort for a sequence of years during their life courses.



176 11 PERIOD AND COHORT BIRTH RATES

Table 11.4-1 Age-specific birth rates of women belonging to birth cohorts
1930, . . . , 1970. Source: Fachserie 1, Reihe 1, 1999 (pp. 198-200).

Birth year

Age 1930 1935 1940 1945 1950 1955 1960 1965 1970

15 0.3 0.2 0.4 0.8 0.9 1.2 1.0 0.7 0.6
16 2.1 2.2 2.3 5.0 5.5 7.8 5.0 3.1 2.2
17 10.0 9.8 10.7 18.9 21.8 26.8 13.8 8.1 6.5
18 28.9 26.8 28.0 46.6 53.8 43.7 26.0 14.4 14.2
19 52.7 52.2 56.9 82.4 90.5 58.6 40.1 23.6 25.7
20 74.6 77.3 85.9 113.1 109.8 67.1 55.9 32.4 37.7
21 96.6 104.2 120.0 141.0 115.5 78.9 67.1 43.0 47.8
22 114.2 130.1 143.3 159.8 109.9 86.1 77.3 55.1 55.8
23 125.3 145.8 163.3 155.9 105.9 93.6 83.5 68.1 61.9
24 134.9 161.6 173.2 138.6 110.3 99.5 89.2 79.6 67.6
25 139.4 167.5 171.7 125.3 110.3 111.1 97.4 94.9 75.0
26 145.9 170.0 169.0 118.9 110.9 112.9 109.0 101.2 86.9
27 149.1 161.7 156.0 102.5 105.0 110.0 112.8 104.3 95.7
28 141.8 155.1 138.0 88.5 98.0 101.2 114.7 107.4 96.8
29 136.5 143.2 116.9 80.9 91.3 93.5 108.0 103.5 99.3
30 123.9 127.6 94.1 72.8 85.8 86.4 104.1 99.7
31 113.6 112.6 78.2 63.3 74.8 81.7 91.8 97.1
32 98.9 95.6 61.0 53.1 63.3 72.7 80.4 91.3
33 89.5 78.7 46.8 45.1 50.8 63.6 68.5 78.7
34 78.7 65.3 38.8 37.6 41.5 52.6 56.5 68.1
35 65.6 50.6 30.5 32.6 35.1 45.8 47.7
36 56.4 40.4 24.2 26.0 29.0 35.6 40.3
37 45.0 29.8 18.4 19.9 23.3 27.5 33.1
38 36.1 21.2 13.5 14.6 18.4 20.4 24.9
39 27.6 15.5 10.2 10.6 12.9 15.1 18.8
40 19.7 10.7 7.5 7.6 10.2 10.6
41 14.3 7.3 5.2 5.2 6.9 7.4
42 8.5 4.4 3.3 3.7 4.3 5.0
43 5.1 2.6 1.9 2.2 2.6 2.8
44 2.7 1.3 1.0 1.3 1.4 1.5
45 1.3 0.8 0.6 0.8 0.7
46 0.6 0.4 0.3 0.3 0.3
47 0.3 0.2 0.2 0.2 0.2
48 0.1 0.1 0.1 0.1 0.1
49 0.1 0.0 0.1 0.0 0.1

In the present section we discuss the first approach.

2. The basic idea is quite simple. If there were no in- and out-migration,
one could identify age-specific cohort birth rates and period birth rates in
the following way:

γt0,τ = βt0+τ,τ

It would be possible, then, to reconstruct the age-specific birth rates of a
cohort Cf

t0 from the sequence of period birth rates

βt0+τa,τa
, . . . , βt0+τb,τb
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Fig. 11.4-1 Age-specific birth rates of quasi-cohorts 1930, . . . , 1960. Data
are taken from Table 11.4-1.

Of course, in reality migration takes place, and the approach therefore
essentially consists in the construction of age-specific birth rates for quasi-
cohorts.

3. Age-specific birth rates for the territory of the former FRG have been
published by the Statistisches Bundesamt in Fachserie 1, Reihe 1, 1999
(pp. 198-200) for cohorts beginning in the birth year 1930 and for ages 15
to 49. For a selection of birth cohorts the data are shown in Table 11.4-1.
Figure 11.4-1 shows a plot of these age-specific quasi-cohort birth rates on
a calendar time axis. It can be seen how the births of women of successive
quasi-cohorts changed through historical time, both in shape and size.

4. Next, we consider the cumulated birth rates

γ̄∗
t0,τ :=

τ∑

j=15

βt0+j,j

which are helpful to compare distributions of birth rates during the repro-
ductive period as shown in Figure 11.4-2. The plot exhibits substantial
changes in the timing of births. Using the 1930 birth cohort as an arbitrary
reference, the plot suggests that the mean age of childbearing declined un-
til birth cohorts born between 1945 and 1950, and then began to increase.
This is also seen in Figure 11.4-3 showing a level plot of the cumulated
rates in an age-period diagram. The mapping is

(t, τ) −→ γ̄∗
t−τ,τ

where t refers to calendar years. Accordingly, each diagonal line refers to
a 1-year birth cohort, with birth years ranging from 1930 to 1978. The
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Fig. 11.4-2 Plot of cumulated age-specific birth rates for birth cohorts
1930, . . . , 1960, based on the data in Table 11.4-1.

contour lines connect cumulated birth rates (per 1000 of women) having
approximately the same value. The maximal value of 2240 is reached by
women belonging to birth cohort 1934 at age 49.

5. Figure 11.4-2 also suggests that completed cohort birth rates declined,
beginning with birth years around 1935. This is also seen from the dotted
line in Figure 11.4-4 which shows γ̄∗

t0,40 for t0 = 1930, . . . , 1959.10 The fig-
ure also shows the development of total birth rates that, for comparability,

10Age 40 was chosen to allow the calculation of cumulated birth rates until birth cohort
1959, given that data are only available until calendar year 1999.
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Fig. 11.4-3 Level plot of cumulated age-specific quasi-cohort birth rates in
the period 1945 – 99, based on data from Fachserie 1, Reihe 1, 1999 (pp. 198-200).
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Fig. 11.4-4 Comparison of total birth rates (solid line) and cumulated
quasi-cohort birth rates (dotted line), both calculated for ages 15 – 40.

have been calculated from age-specific birth rates as

40∑

τ=15

βt,τ

for t = 1950, . . . , 1999. Since completed cohort birth rates do not refer to
single calendar years, both time series cannot be compared directly. Nev-
ertheless, the figure clearly suggests that variability in completed cohort
birth rates is much smaller than in total birth rates. This is explainable
by the fact that total birth rates also depend on the timing of births.
Women might give birth to more children in one year and to less children
in another year without necessarily affecting the completed cohort birth
rates. This idea will be taken up in Chapter 13.3 where we show that a
substantial part of the “baby boom” that occurred in the period 1955– 65
can be attributed to “timing effects”.

Chapter 12

Retrospective Surveys

Even though cohort birth rates are quite informative, they do not allow to
recover (a) the distribution of ages at first childbearing, (b) the proportion
of women who remain childless, and (c) the distribution of the number of
births. As was mentioned in the previous chapter, due to an unfortunate
focus on marital births, official statistics in Germany provides only limited
information on these quantities. Most investigations are therefore based
on retrospective surveys in which women are asked to report about the
birth dates of their children. In the present chapter we briefly discuss the
conceptual framework and then use data from the 1970 census. Additional
data from non-official surveys will be considered in Chapter 14.

12.1 Introduction and Notations

1. To focus the discussion, we consider the question whether, and at which
age, women give birth to a first child. To allow for an investigation of
changes among successive cohorts, our conceptual framework refers to
birth cohorts. Using Cf

t0 to denote the birth cohort of women born in

the year t0 we might begin with a duration variable, T̂t0 , that records the

age when members of Cf
t0 get their first child (the corresponding property

space, T̃ := {0, 1, 2, . . .}, being understood as a representation of ages in
completed years). Obviously, there are two complications. First, not all
women will give birth to a child, and in such cases there is also no dura-
tion until the birth of a first child. Secondly, some women will die before
the end of the reproductive period.1 It is therefore necessary to introduce
a second variable that records which of these possibilities actually takes
place. This second variable will be denoted by D̂t0 and defined as follows:

D̂t0(ω) :=

{

1 if ω ∈ Cf
t0 has given birth to at least one child

0 otherwise

We are concerned, then, with a two-dimensional variable

(T̂t0 , D̂t0) : Cf
t0 −→ T̃ × D̃

where the meaning of the duration variable, T̂t0 , depends on the value
of D̂t0 . If D̂t0(ω) = 1 then T̂t0(ω) ≤ τb records the age at which ω has

1We use τa and τb to denote, respectively, the beginning and end of the reproductive
period of women.



182 12 RETROSPECTIVE SURVEYS

given birth to a first child.2 If, on the other hand, D̂t0(ω) = 0, T̂t0(ω) will
represent the age at which ω dies, or τb, whichever occurs first.

2. In order to recover the distribution of (T̂t0 , D̂t0), it is necessary to fol-

low the members of Cf
t0 at least until the end of the reproductive period.

However, if only for reasons of practicability, the standard approach is to
perform a retrospective survey . The following graphic provides an illustra-
tion:

- historical
time

t0 t∗

p p p p p p p p p
-

ω1

ω2

At some date in historical time, t∗, which will be called the interview date,
people are asked about their previous life courses. Of course, this can only
be done with persons born before the interview date. There are, however,
two further implications.

a) One can only interview people still alive at the interview date. In
the picture, one might ask ω1, but not ω2 who died before t∗. So it
is normally not possible, with a retrospective survey, to get complete
information about all members of a birth cohort.3 Whether this is a
serious problem depends on the purpose of the survey. It might be
a serious problem if one intends to interview people at very old ages.
On the other hand, assuming a historical situation in which only few
women die during the reproductive period, it might well be possible to
ignore the problem of mortality when performing a survey to record
information about childbearing histories.

b) A second implication concerns the fact that information about life his-
tories is always right censored at the date of the interview. In the
above picture this is shown by the person called ω1. This person is
still alive at the interview date and therefore can report about his or
her life course until t∗,4 but cannot report about what might happen
in the future. If, for example, the end of the reproductive period of the
members of Cf

t0 has been reached before the interview date, it is possi-
ble to get complete records of the childbearing histories; but otherwise

2Of course, also twins, or triplets, might be born. For the moment we ignore this
possibility and simply speak of a first child.

3To indicate this fact one might speak of retrospective cohorts. Contrary to proper
birth cohorts they are defined by conditioning on survival until the interview date and
living in the region where the survey is conducted.

4This, of course, also depends on memory. It is well possible that details of a life course
have been forgotten or become confused after some while.
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the recorded histories will be more or less incomplete.

3. An immediate implication of the censoring problem is that the amount
of information that can be gathered with a retrospective survey depends
on the birth year of the interviewed persons. If one selects, for the survey,
only persons belonging to the same birth cohort, say Cf

t0 , then also the life-
span until the interview date is approximately the same for all interviewed
persons. But often an interest concerns differences in the life courses of
persons who belong to different birth cohorts. For example, we might
want to compare childbearing histories of women born in the years 1950,
1960, and 1970, and the interviews are performed in the year 2000. The
childbearing histories of the women born in 1950 will then be complete,
but for the younger birth cohorts they will be censored at an age of 30 or
40, respectively.

4. We finally need to relate the information which can be gained by a retro-
spective survey to the conceptual framework introduced at the beginning.
We therefore think of a survey in which members of Cf

t0 , who survived
the interview date t∗, are asked whether they already gave birth to a first
child and, given this was the case, at which age the birth event occurred.
The data can be represented by a two-dimensional variable denoted by
(Tt0 , Dt0). The property spaces are again T̃ and D̃, respectively, but the
meaning of the variables is different from (T̂t0 , D̂t0). Dt0 now records
whether a women has given birth to a first child until the interview date.
The relation is therefore as follows:

a) If Dt0(ω) = 1, ω has born a child before the interview date, and in this
case Tt0(ω) records the age of the women in the year of her first birth.
So one can conclude that D̂t0(ω) = 1 and T̂t0(ω) = Tt0(ω).

b) If, on the other hand, there was no first birth until the interview date,
then Dt0(ω) = 0 and Tt0(ω) records the age of the women at the
interview date. Given the definition of T̂t0 , one can conclude that
T̂t0(ω) ≥ Tt0(ω) but the conclusion about D̂t0 depends on the women’s
age. If Tt0(ω) > τb, one can conclude that D̂t0(ω) = 0; but otherwise
no definite conclusion about the value of D̂t0(ω) can be drawn.

Consequently, data from a retrospective survey in which not all interviewed
women have already reached the end of the reproductive period, are nec-
essarily to some extent incomplete; and so the question arises how to use
the data for an assessment of the distribution of (T̂t0 , D̂t0).

5. In any case, the available data only allow inferences for those members
of Cf

t0 who survived the interview date t∗, or, equivalently, who survived
age τ∗ := t∗−t0. Using notation introduced in Section 3.4 (see also Section

8.1), this is the subset Cf
t0,τ∗ . One therefore can only consider a variable

(T̂t0,τ∗ , D̂t0,τ∗) : Cf
t0,τ∗ −→ T̃ × D̃
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that is restricted to the members of Cf
t0,τ∗ . For these members, the values

are identical:

T̂t0,τ∗(ω) = T̂t0(ω) and D̂t0,τ∗(ω) = D̂t0(ω)

Moreover, it is also evident that the available data do not allow inferences
for periods beyond t∗. Therefore, one can only consider the distribution
of (T̂t0,τ∗ , D̂t0,τ∗) conditional on T̂t0,τ∗ ≤ τ∗. However, this implies the
formal identity

P[T̂t0,τ∗ , D̂t0,τ∗ | T̂t0,τ∗ ≤ τ∗] = P[Tt0 , Dt0 |Tt0 ≤ τ∗]

for all ω ∈ Cf
t0,τ∗ . One therefore does not need any specific estimation

procedure but can directly use the observed values of Tt0 and Dt0 .

6. This result is due to the fact that censoring occurs at the same time
for all members of Cf

t0,τ∗. Slightly more complicated is the situation when
interview dates extend over a longer period of time and/or cohorts are
defined by comprising several birth years. As a consequence, also the
censoring times extend over several years and there is no longer a definite
period for reliable conclusions. If one is not willing to restrict inferences
until the minimal age of censored observations, that is, min{T (ω) |D(ω) =
0}, one needs some method of estimation. One possibility is to use the
Kaplan-Meier procedure introduced in Section 8.3.4. Examples will be
discussed in Chapter 14.

12.2 Data from the 1970 Census

As was mentioned in Section 11.3, information available from official birth
statistics in Germany is severely limited by the fact that the parity of
births [Ordnungsnummer der Geburten] is only recorded for marital births
in current marriages. Somewhat better information is available from the
1970 census in which 10% of the women were asked to report the dates
of all marital births, regardless of their current marital status. In the
following sections we discuss a subsample of this data set available for
scientific research.

12.2.1 Sources and Limitations

1. The census of 1970 was conducted on May 27 of that year in the terri-
tory of the former FRG.5 As part of this census a subsample of 10% of the
population was asked to provide additional information, in particular, all
women with a German citizenship who participated in the 10% subsample

5For a detailed description, including a presentation of the questionnaire, see Schubnell
and Herberger (1970).
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were asked for dates of marriage and birth dates of all their marital chil-
dren, regardless of their current marital status. Some results from these
additional questions were published, albeit in highly aggregated form, by
the Statistisches Bundesamt in Fachserie A.6 Fortunately, some years ago,
official statistics in Germany agreed to make available, for scientific re-
search, anonymised subsamples of many main surveys, including the 1970
census.7

2. The data set to be used in the present chapter consists of a 10% sub-
sample of the 10% part of the 1970 census.8 So it is a 1% subsample of
all women who lived in May 1970 in the territory of the former FRG and
had a German citizenship. The number of cases is 314993; if multiplied
by 100, this is roughly the number of women, with a German citizenship,
who lived in the former FRG in May 1970.

3. For each person in our subsample we have the following information: (a)
the birth year, and (b) the births years of all (up to 12) marital children.
So we are able to reconstruct marital childbearing histories. The limitation
is, of course, that we have no information about non-marital births. As
shown in Table 11.3-1 in Section 11.3, for the period until about 1970 this
amounts to about 10% of all births. Actually, however, the birth coverage
of the sample is somewhat higher than 90% because a substantial portion
of non-marital births has been “legitimized” by a following marriage. To
provide an example, the total number of births during the year 1969 in
the territory of the former FRG was 903456. In 852783 cases the mother
had a German citizenship, and of these cases 810002 were marital births.9

On the other hand, the number of birth in 1969, reported by women in
our sample, is 8215 which is 821500 when multiplied by 100. So one can
estimate that about 27% of non-marital birth have been “legitimized” by
a following marriage. Nevertheless, it is clearly important to be aware of
the fact that our sample does not cover all births.

4. Further limitations are due to the fact that our data set results from
a retrospective survey as was discussed in Chapter 12. Only women who
survived until 1970 could have been asked about previous childbearing.
This is illustrated by the distribution of birth years shown in Figure 12.2-

6Fachserie A. Bevölkerung und Kultur. Volkszählung vom 27. Mai 1970. Heft 7,
Geburten. See also Schwarz (1974).

7More information on these data sets are available from the Zentrum für Umfra-
gen, Methoden und Analysen (ZUMA, Mannheim), Abteilung für Mikrodaten; see:
www.gesis.org/Dauerbeobachtung/Mikrodaten.

8We are grateful to Bernhard Schimpl-Neimanns (ZUMA) who prepared the tables
which we have used. The tables are based on the data set: Ergebnisse der Volks- und
Berufszählung 1970 mit den Ergänzungsfragen (1 % Stichprobe der Wohnbevölkerung);
see Bach, Handl and Müller (1980), Schimpl-Neimanns and Frenzel (1995).

9Fachserie 1, Reihe 1, 1999 (p. 211).
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Fig. 12.2-1 Number of women born between 1870 and 1969 in the 1 %
subsample of the 1970 census.

1.10 However, part of the problem can be circumvented by a separation
into birth cohorts and reconstructing childbearing histories for each birth
cohort separately. This then only requires to assume that differential mor-
tality is not heavily correlated with childbearing. In the following sections
we will make this assumption and consider all birth cohorts with birth
years from 1905 to 1945. Of course, for the younger birth cohorts, begin-
ning about 1930, childbearing histories are not completed by 1970.

5. Only to consider, and compare, birth cohorts is insufficient if one intends
to reconstruct the historical development of births. It becomes necessary,
then, to locate the birth cohorts in historical time and, in particular, take
into account changes in cohort size. One aspect of this problem concerns
the absolute number of children born of women who survived until 1970.
This is shown by the solid line in Figure 12.2-2. For comparison, the
dotted line that begins in 1946 shows the number of births as recorded
in the territory of the former FRG by official statistics. The difference is
mainly due to the fact that the dotted line refers to all births while our
sample only reports marital births of women with a German citizenship.
The important point is that both curves are nearly proportional so that
it seems justified to use our sample for a reconstruction of changes in the
development of birth rates in the post-war period. More problematic are
the earlier periods. Since political boundaries have changed and no valid
data are available for the years from 1939 to 1945, it is already difficult
to assess the birth coverage of the sample. The first part of the dotted
line in Figure 12.2-2, which ends in 1938, shows the total number of births

10This can also be viewed as an age distribution of the female population in 1970; see,
for comparison, the age distributions which were shown in Chapter 6.5.
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Fig. 12.2-2 Number of children (in 1000) born during the years 1920 –
1969 in Germany. The solid line refers to the number of children reported
by women in the 1 % subsample of the 1970 census. Dotted lines are based
on data taken from Statistisches Bundesamt, Bevölkerung und Wirtschaft
1872 –1972 (pp. 107-9). Until 1938 these data refer to the territory of the
former Deutsches Reich, beginning in 1946 they refer to the territory of
the former FRG.

in the territory of the former Deutsches Reich. Obviously, at least until
about 1930, there is no correspondence between the two curves, due to
the fact that many women who gave birth to children before 1930 died
before 1970. It might be possible, however, to use the sample data also
for some conclusions about the development of births since the beginning
of the 1930 s.

12.2.2 Age at First Childbearing

1. We begin with an investigation of the distribution of ages at first marital
childbearing. This will be done separately for each 1-year birth cohort,
C5, . . . , C45. The numbers refer to birth years, for example, C5 denotes
the birth cohort of women born in 1905. For some of these birth cohorts
the data are shown in Table 12.2-1. Referring to birth cohort C10 as
an example, there are 5 women who reported that their first marital birth
occurred in the year 1926, that is, at age 16. As can be seen from the table,
all births occurred at ages between 16 and 48. Altogether, 3251 women
reported a birth year for the first marital child. In addition, 1166 women
had no marital children until the interview date in 1970, corresponding to
an age of 60 years. These are called censored cases in the table. However,
since the age at censoring is after the end of the reproductive period,
one can safely assume that these women will remain without a marital
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Table 12.2-1 Number of women in the 1 % subsample of the 1970 census who
reported a first marital birth at the specified age, classified according to 1-year
birth cohorts. Also shown is the number of women with no marital birth until
the interview date in 1970.

τ C5 C10 C15 C20 C25 C30 C35 C40 C45

15 1

16 3 5 1 5 7 1 10 7 9

17 8 15 18 29 12 10 30 57 39

18 34 58 34 82 33 43 70 103 112

19 75 82 80 119 73 136 152 218 176

20 117 138 128 197 114 208 237 342 230

21 166 167 169 245 177 259 292 401 238

22 177 167 169 261 259 289 365 452 225

23 204 227 228 297 311 280 390 439 229

24 220 274 269 356 305 270 373 407 172

25 211 302 272 201 292 270 320 409 58

26 182 307 233 233 251 269 285 286

27 154 265 145 216 241 228 265 252

28 166 255 170 203 207 181 183 201

29 189 231 134 224 200 136 153 150

30 159 190 66 179 137 120 118 43

31 118 121 73 150 121 90 107

32 97 78 61 125 109 47 82

33 81 78 65 78 74 68 52

34 71 67 53 66 52 41 32

35 59 41 52 56 52 35 12

36 46 28 25 39 36 22

37 32 43 25 35 30 20

38 33 29 17 21 33 18

39 27 26 9 17 19 12

40 14 19 9 17 8 2

41 12 14 9 7 9

42 8 6 4 4 7

43 6 8 3 3 3

44 2 3 4 3 3

45 2 4 3 2

46 2

47 2

48 1 1 1

49 1

50 1

Total 2676 3251 2529 3470 3178 3055 3528 3767 1488

Censored 1250 1166 874 1158 984 790 762 1223 1297

at age 65 60 55 50 45 40 35 30 25

Cohort size 3926 4417 3403 4628 4162 3845 4290 4990 2785
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Fig. 12.2-3 Percentage of women without marital children in the 1 %
subsample of the 1970 census. The broken part of the curve can not be
reliably estimated from the data.

child. This allows to calculate the proportion of women who finally remain
without a marital child in the birth cohort C10 to be 26%.

2. In the same way one can calculate the proportion of women without a
marital child for each birth cohort. The result is shown in Figure 12.2-3.
Obviously, at least until birth cohorts born around 1930 the proportion of
childless women declined. For younger birth cohorts our data set does not
allow any safe conclusions because these cohorts did not reach the end of
the reproductive period in 1970. However, we will see in Chapter 14 that
the trend of declining proportions of childless women continued until birth
cohorts of women born around 1945.

3. Additional information can be gained by a consideration of the dis-
tribution of ages at first childbearing. This is easy because, as shown
in Table 12.2-1, censored cases only occur in 1970. So one does not need
the Kaplan-Meier procedure that was discussed in Section 8.3.4 but can di-
rectly calculate distribution and survivor functions. For example, referring
again to C10, 298 out of 4417 women had a first child before age 20. The
distribution function has therefore a value of F (20) = 298/4417 = 0.067,
that is, about 7% of women born in 1910 had a first marital child until
age 20. For selected cohorts, corresponding survivor functions are shown in
Figure 12.2-4. It is clearly seen that younger birth cohorts began childbear-
ing at earlier ages. As discussed above, this was associated by a declining
proportion of finally childless women. There is no reason, however, to be-
lieve this correlation to be stable through time. In fact, as will be shown
later, a decline of the age at first childbearing can also be associated with
an increase in the proportion of finally childless women.
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Fig. 12.2-4 Survivor functions for the age at first marital birth, calcu-
lated from the 1 % subsample of the 1970 census.
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4. While a plot of survivor functions, as shown in Figure 12.2-4, is well
suited to compare a small number of cohorts, it becomes impractical for
long time series. An alternative possibility to investigate changes in a
series of distribution or survivor functions is based on the calculation of
quantiles. An example is the median that was introduced in Section 7.2.
Referring to a distribution function F , the median is a number, say m,
such that F (m) ≈ 0.5. By generalization, the q-quantile is defined as a
number, say mq , such that

F (mq) ≈ q

with the understanding that q is some number strictly between 0 and
1. One possibility to calculate quantiles is by linear interpolation.11 To
illustrate, we calculate the median age at first childbearing for the C10
cohort. Using the data from Table 12.2-1, one finds F (27) = 0.454 and
F (28) = 0.512. Therefore, by linear interpolation:

28 − 27

0.512− 0.454
=

m − 27

0.5 − 0.454

from which can be derived the median m = 27.8. In the same way, one
can calculate quantiles for any value of q between 0 and 1. We have done
this for the values

q = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

The result is shown in Table 12.2-2 for all birth cohorts born between 1905
and 1945. It is seen, for example, that the median age at first marital
childbearing declined from 29.4, for birth cohort C5, to 23.8, for birth
cohort C45. These quantiles can finally be presented graphically as shown
in Figure 12.2-5.

5. Interpretations should keep in mind that our data set only records mar-
ital births. Results would be different if one would be able to include all
first births, regardless of whether the mother is married or not. To provide
an impression of the differences we use data from the German Life History
Study (GLHS) for three birth cohorts, C20, C30, and C40.12 Figure 12.2-6
compares the distributions; the solid lines refer to the 1% subsample of
the 1970 census, the dotted lines refer to the GLHS data set. Obviously,
the proportion of childless women is much smaller than the proportion of
women without a marital child.

11Since already the definition of quantiles relies on approximation, there exist several
different methods to calculate quantiles. One should also note that statistical packages
often use different formulas. For an overview see Hyndman and Fan (1996).

12The GLHS, and how we have done the calculations, will be discussed in Section 14.1.
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Fig. 12.2-5 Graphical presentation of quantiles of the distribution of
ages at first marital childbearing, calculated for 1-year cohorts with birth
years between 1905 and 1945 from the 1 % subsample of the 1970 census.

12.2.3 Age-specific Birth Rates

1. Our next question concerns the number of children born. As was dis-
cussed in Chapter 11, some useful information can already be gained from
age-specific cohort birth rates, defined as

γt0,τ :=
number of children born of women at age τ

number of women at age τ

with the understanding that both the numerator and the denominator
refer to women born in the year t0. If we assume that death rates do not
depend on women’s parity, such rates, restricted to martial births, can be
calculated from the 1 % subsample of the 1970 census.13 For a selection
of birth cohorts, the required data are shown in Table 12.2-3. Each entry
shows how many children were born of members of a specified birth cohort

13Actually, one also has to ignore migration. Therefore, in a strict sense, also the 1 %
percent subsample of the 1970 census only allows to calculate quasi-cohort birth rates.
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Table 12.2-2 Quantiles of the distribution of ages at first marital childbearing,
calculated from the 1 % subsample of the 1970 census.

Quantiles

Cohort 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

1905 20.9 23.0 24.8 27.1 29.4 32.9
1906 21.0 23.1 24.9 27.1 28.9 31.8 42.1
1907 20.8 22.8 24.7 26.7 28.6 30.9 36.0
1908 20.8 23.0 25.0 26.5 28.4 31.0 37.5
1909 20.8 22.9 24.8 26.4 28.3 30.6 36.2
1910 20.9 23.1 24.6 26.1 27.8 29.8 35.9
1911 20.7 22.8 24.4 25.9 27.5 29.4 34.3
1912 21.0 22.8 24.2 25.7 27.3 29.4 34.5
1913 20.9 22.6 24.2 25.5 26.9 29.1 34.3
1914 20.5 22.4 23.8 25.1 26.6 28.8 34.1
1915 20.5 22.4 23.7 25.0 26.7 28.9 34.3
1916 20.7 22.2 23.5 24.9 26.6 29.4 34.7
1917 20.4 21.9 23.1 24.7 26.7 30.1 34.7
1918 20.0 21.5 22.8 24.4 25.9 29.0 33.1
1919 20.1 21.5 23.2 24.7 26.8 29.3 33.3
1920 20.1 22.0 23.4 25.3 27.4 29.6 33.6
1921 20.3 22.1 24.0 25.7 27.5 29.8 34.4
1922 20.5 22.1 24.0 25.6 27.3 29.4 33.5
1923 20.6 22.6 24.1 25.6 27.3 29.6 33.6
1924 20.8 22.5 23.9 25.3 27.1 29.4 33.0
1925 21.0 22.5 23.9 25.3 27.0 29.1 32.9
1926 20.7 22.2 23.7 25.2 26.8 28.9 32.2
1927 20.5 22.0 23.3 24.8 26.3 28.2 31.0
1928 20.2 21.6 22.9 24.4 26.0 27.8 30.7
1929 20.1 21.5 22.9 24.3 25.7 27.4 30.1
1930 19.9 21.4 22.7 24.2 25.6 27.2 29.9
1931 19.7 21.2 22.5 23.8 25.2 26.8 29.3 35.2
1932 19.5 21.0 22.4 23.6 25.0 26.4 28.6 34.0
1933 19.4 21.0 22.4 23.7 24.8 26.2 28.1 33.0
1934 19.6 21.2 22.4 23.6 24.8 26.2 28.1 32.4
1935 19.7 21.2 22.3 23.5 24.7 26.2 28.2 32.0
1936 19.7 21.2 22.4 23.6 24.7 26.2 28.1 32.1
1937 19.5 20.9 22.1 23.2 24.4 25.8 27.7 31.5
1938 19.5 21.0 22.1 23.2 24.4 25.8 27.6
1939 19.6 20.9 22.0 23.0 24.2 25.6 27.4
1940 19.3 20.7 21.8 22.9 24.2 25.6 27.6
1941 19.3 20.8 21.9 23.0 24.2 25.6 27.8
1942 19.2 20.6 21.8 22.9 24.2 25.7
1943 19.1 20.5 21.7 22.8 24.1 25.8
1944 19.0 20.4 21.6 22.7 24.0
1945 18.7 20.0 21.1 22.4 23.8

at a specified age. For example, out of 3845 women belonging to birth
cohort C30, 505 reported to have born a marital child at the age of 25.
Thus, given the above mentioned assumption, one gets the approximation

γ1930,25 ≈
505

3845
= 0.1313
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Fig. 12.2-6 Comparison of distributions of the age at first (marital)
birth, calculated from the 1 % subsample of the 1970 census (solid lines)
and from the GLHS data (dotted lines).
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This figure can also be compared with period data for the year 1955. As
reported in Fachserie 1, Reihe 1, 1999 (p. 198), the birth rate of women at
age 25 in 1955 was

β1955,25 = 0.1394

The difference of about 6% can be attributed to the fact that the period
data include all births and are not restricted to women having a German
citizenship.

2. Again for birth cohort C30, Figure 12.2-7 compares the distribution of
these rates. The solid and dotted lines show, respectively, the quantities

γ1930,τ
∑39

j=15 γ1930,j

and
β1930,τ

∑39
j=15 β1930,j

The differences between the curves that occur at younger ages might indi-
cate that non-marital births are more frequent in these ages.

3. It remains the question how to graphically present the age-specific co-
hort birth rates for a whole sequence of birth cohorts. One possibility is to
first calculate cumulated cohort birth rates, γ̄t0,τ , and then to plot values
for specified ages. The required data are shown in Table 12.2-4. From
these data one can calculate the cumulated cohort birth rates

γ̄t0,25, γ̄t0,30, γ̄t0,35, γ̄t0,40, γ̄t0,45

for birth cohorts t0 = C5, . . . , C45. These rates can finally be presented
graphically as shown in Figure 12.2-8.

12.2.4 Number of Children

1. Cumulated cohort birth rates refer to all children born of all members
of a birth cohort until some specified age and therefore do not provide
information about the distribution of the number of children among the
cohort members. The latter distribution requires to calculate, separately
for each birth cohort, the proportion of women with distinct numbers of
children. This has been done in Table 12.2-5. For example, altogether
there are 3926 women in the 1% subsample of the 1970 census born in the
year 1905. Of these, 1250 have no marital child, 828 have one marital child,
797 have two marital children, and so on. The total number of children
born of these women is 6713 (equal to the number of children shown in
Table 12.2-3). One should notice that these figures refer to the interview
date in 1970. For birth cohorts born after about 1930, both the absolute
numbers and the proportions will probably change until the end of the
reproductive period.

2. The figures in Table 12.2-5 can be used to calculate the mean number
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Table 12.2-3 Number of marital children, born of women belonging to the
specified birth cohort in the specified age; calculated from the 1 % subsample of
the 1970 census.

τ C5 C10 C15 C20 C25 C30 C35 C40 C45

15 1

16 3 5 1 5 7 1 10 7 9

17 8 16 19 29 12 10 32 57 42

18 36 61 36 88 35 44 76 118 116

19 79 97 89 133 76 140 169 260 209

20 141 173 150 243 126 230 274 416 305

21 198 215 210 326 213 324 380 553 374

22 261 242 257 336 332 402 507 683 379

23 310 338 358 422 429 445 595 768 414

24 375 437 451 524 444 488 646 801 358

25 378 503 484 368 473 505 657 834 130

26 354 568 476 423 474 541 688 730

27 338 568 331 452 488 555 700 743

28 353 596 389 482 467 496 628 634

29 432 618 356 522 474 485 597 558

30 426 573 223 463 459 437 503 193

31 393 510 247 428 383 424 474

32 386 383 237 408 389 339 408

33 374 368 262 372 367 338 339

34 382 341 256 315 319 269 269

35 321 193 221 277 289 225 86

36 273 183 187 232 233 218

37 207 193 155 217 187 156

38 200 167 112 186 156 139

39 160 159 104 142 142 111

40 103 118 90 99 91 28

41 66 95 71 79 64

42 54 61 60 48 51

43 50 40 30 22 23

44 28 29 25 27 17

45 12 15 13 9 7

46 5 8 5 4

47 3 2 2 2

48 2 3 2 3

49 1 4 1 2

50 1 1

51 1

Total 6713 7884 5910 7688 7228 7350 8038 7355 2336

Cohort size 3926 4417 3403 4628 4162 3845 4290 4990 2785
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Fig. 12.2-7 Age-specific quasi-cohort birth rates for birth cohort C30,
calculated from the 1 % subsample of the 1970 census (solid line) and from
Table 11.4-1 (dotted line). The ordinate shows proportions as explained
in the text.
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Fig. 12.2-8 Cumulated cohort birth rates until specified ages, based on
the data in Table 12.2-4.

of marital children per women. If one takes into account only women
with at least one marital child, this mean value varies between 2.2 and
2.5, but does not show any substantial trend. Changes become visible,
however, if one investigates the distribution of the number of children.
The proportions can easily be calculated from the data in Table 12.2-5
and their development is graphically presented in Figure 12.2-9.
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Table 12.2-4 Number of women belonging to specified birth cohorts, and
number of children born of these women until specified age, calculated from the
1 % subsample of the 1970 census.

Children until age

Birth year Cohort size 25 30 35 40 45

1905 3926 1789 3692 5548 6491 6701

1906 4045 1794 3852 5768 6668 6926

1907 4208 1923 4281 6422 7378 7624

1908 4430 1947 4510 6603 7444 7695

1909 4395 1969 4647 6735 7556 7796

1910 4417 2087 5010 6805 7625 7865

1911 4349 2095 4971 6592 7485 7721

1912 4511 2297 5139 6721 7710 7944

1913 4377 2304 5067 6514 7416 7652

1914 4301 2509 5073 6472 7266 7488

1915 3403 2055 3830 5053 5701 5900

1916 2578 1559 2846 3734 4235 4354

1917 2428 1527 2599 3509 4009 4128

1918 2465 1599 2800 3704 4124 4248

1919 3595 2184 3904 5245 5927 6082

1920 4628 2474 4816 6616 7492 7677

1921 4680 2336 4947 6796 7720 7962

1922 4442 2223 4764 6545 7431 7652

1923 4265 2091 4520 6345 7242 7462

1924 4058 2091 4354 6139 7015 7199

1925 4162 2147 4509 6256 7065

1926 3998 2129 4441 6113 6861

1927 3863 2261 4682 6362 7159

1928 3923 2472 4859 6543 7243

1929 3762 2443 4904 6525 7168

1930 3845 2589 5103 6698

1931 3535 2518 4928 6450

1932 3444 2568 4992 6483

1933 3280 2531 4961 6347

1934 4036 3197 6151 7746

1935 4290 3346 6462

1936 4348 3482 6598

1937 4302 3668 6762

1938 4715 4020 7342

1939 5044 4402 7921

1940 4990 4497

1941 4562 4082

1942 3771 3370

1943 3842 3406

1944 3820 3387

1945 2785 2336
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Fig. 12.2-9 Proportion (in %) of women born in specified years with 0,
1, 2, 3, and 4 or more children; calculated from the data in Table 12.2-5.

12.2.5 Timing of Births

1. A final question concerns the timing of childbearing in women’s life
courses. One aspect of this question, the age at first childbearing, has
been discussed in Section 12.2.2. We now discuss two further aspects.
One of them concerns the temporal distance between the births of several
children, often called the spacing of childbearing . Another one concerns the
idea that there might be a relationship between age at first childbearing
and the total number of children born until the end of the reproductive
period.

2. As in the preceding sections, calculations are based on the 1 % subsam-
ple of the 1970 census. For all women with at least two children (exclud-
ing twins) we can calculate the temporal distance between the two births.
Similarly, for all women with at least three children one can calculate the
temporal distances between the first and the third and between the second
and the third birth. Additional temporal intervals can be calculated for
women with at least four children. Results of these calculations are shown
in Table 12.2-6. As can be seen, at least for the birth cohorts C5, . . . , C30,
there are virtually no changes in the spacing of childbearing. No conclu-
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Table 12.2-5 Number of women in the 1 % subsample of the 1970 census, and
number of children born of these women, classified according to women’s birth
cohort.

Number of children

Birth year Cohort size 0 1 2 3 4 5+ Total

1905 3926 1250 828 797 505 266 280 6713

1906 4045 1202 903 883 513 268 276 6945

1907 4208 1128 914 1002 599 258 307 7640

1908 4430 1230 985 1041 626 272 276 7711

1909 4395 1200 973 1037 607 299 279 7812

1910 4417 1166 991 1043 627 317 273 7884

1911 4349 1055 1039 1082 648 263 262 7739

1912 4511 1133 1044 1145 649 282 258 7955

1913 4377 1102 1013 1117 622 264 259 7664

1914 4301 1066 1023 1136 552 294 230 7506

1915 3403 874 788 854 467 224 196 5910

1916 2578 666 591 685 371 154 111 4358

1917 2428 613 592 618 321 160 124 4134

1918 2465 603 592 634 349 174 113 4256

1919 3595 885 926 892 495 222 175 6093

1920 4628 1158 1155 1248 603 270 194 7688

1921 4680 1209 1109 1222 616 279 245 7978

1922 4442 1110 1085 1121 595 305 226 7665

1923 4265 1050 997 1108 629 249 232 7467

1924 4058 966 966 1083 563 265 215 7203

1925 4162 984 1008 1144 567 252 207 7228

1926 3998 933 980 1083 536 265 201 6981

1927 3863 855 849 1068 590 250 251 7283

1928 3923 810 933 1093 599 267 221 7313

1929 3762 777 841 1065 571 253 255 7199

1930 3845 789 885 1057 603 278 233 7350

1931 3535 656 785 1067 544 264 219 6923

1932 3444 617 727 1050 579 250 221 6852

1933 3280 557 714 990 553 278 188 6552

1934 4036 694 878 1290 695 267 212 7824

1935 4290 762 989 1345 735 276 183 8038

1936 4348 802 1020 1428 677 247 174 7886

1937 4302 807 1036 1376 700 239 144 7653

1938 4715 939 1172 1570 678 253 103 7927

1939 5044 1060 1323 1682 676 205 98 8063

1940 4990 1223 1377 1535 624 163 68 7355

1941 4562 1291 1273 1383 453 113 49 6119

1942 3771 1199 1147 1010 314 78 23 4543

1943 3842 1427 1169 899 283 43 21 4102

1944 3820 1613 1179 764 225 32 7 3549

1945 2785 1297 841 489 123 27 8 2336
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Table 12.2-6 Temporal distance in years between the i-th and the j-th birth,
for birth cohorts C5, . . . , C30; calculated from the 1 % subsample of the 1970
census.

Birth year 1 – 2 2 – 3 3 – 4 1 – 3 1 – 4

1905 5.1 5.3 4.8 8.7 10.9
1906 5.2 5.1 4.7 8.3 11.2
1907 5.1 5.0 4.7 8.4 10.7
1908 5.0 5.0 4.4 8.5 10.7
1909 5.0 4.8 4.2 8.2 10.4
1910 4.9 4.9 4.6 8.1 10.5
1911 5.0 4.8 4.3 8.1 10.4
1912 4.9 4.9 4.8 8.1 10.7
1913 5.0 5.1 4.9 8.4 11.1
1914 4.7 4.9 4.9 8.0 10.6
1915 4.9 5.1 4.9 8.2 10.6
1916 4.9 5.0 4.5 8.3 10.4
1917 4.9 4.8 4.8 8.2 10.7
1918 4.9 4.8 4.7 8.3 10.9
1919 4.8 5.1 4.9 8.6 11.0
1920 4.9 4.9 4.8 8.5 11.1
1921 5.0 5.2 4.7 8.5 10.6
1922 4.8 5.0 5.1 8.3 11.6
1923 4.8 5.1 4.7 8.4 10.8
1924 5.0 5.1 4.6 8.4 10.6
1925 4.9 5.1 4.8 8.2 10.7
1926 4.8 4.9 5.0 8.1 10.9
1927 5.0 5.1 4.5 8.3 10.3
1928 4.8 4.9 4.5 8.1 10.6
1929 4.9 4.8 4.3 8.0 10.2
1930 5.0 4.8 4.1 8.0 9.9

sions can be derived, however, for younger birth cohorts.14

3. Also based on data from the 10% subsample of the 1970 census, similar
calculations have been performed by Rückert (1975). Instead of birth co-
horts, Rückert considers marriage cohorts of women in their first marriage.
He therefore finds slightly shorter distances between successive births. For
example, he finds a mean duration of 4 years between the birth of the first
and second child, for women who married between 1940 and 1949. How-
ever, also Rückert’s figures show that there have been virtually no changes
in the mean durations between successive births at least for marriage co-
horts of women who married between 1920 and 1949.

4. Rückert also investigated possible relationships between the spacing of
childbearing and the final number of children born of women in their first

14Performing the same calculations for younger birth cohorts would result in a substan-
tial selection bias. For example, the temporal distance between the first and second
child for birth cohort C45 is just 2.5 years. But this is most probably due to the fact
that members of this cohort are only observed until an age of 25 years.
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Fig. 12.2-10 Mean number of marital children (ordinate) by age at first
marital childbearing (abscissa), for birth cohorts C5, C10, C15, C20, C25,
and C30, calculated from the 1 % subsample of the 1970 census.

marriage. He found that the mean interval lengths between successive
births decreases with increasing completed marital fertility.15 It is, how-
ever, questionable how to interpret this result. There is obviously no reason
to assume a causal relationship. How many children a women will eventu-
ally bear does not depend on the temporal distance between her first and
second child. On the other hand, given a limited period of childbearing
and conditioning on the number of eventually born children, it seems not
surprising to find relatively shorter distances between successive births for
women who finally give birth to more children.

5. A similar problem occurs when one tries to find relationships between
the age at first childbearing and the final number of children born. Figure
12.2-10 provides an illustration. The relationship is quite similar for all
birth cohorts C5, . . . , C30. Women who began childbearing at younger
ages finally gave birth to relatively more children. But again, except for
cases where reaching the end of the reproductive period creates definite
limits to childbearing, there is no obvious causal relationship. Moreover,
the relationship is actually not so stable as suggested by Figure 12.2-10.
While this can not be demonstrated with the data from the 1% subsample
of the 1970 census, some additional information can be gained from period
data of official statistics. Given age-specific birth rates, βt,τ , they can be
used to calculate the mean age at childbearing for quasi-cohorts in the

15
”
Es gilt offensichtlich allgemein, daß der durchschnittliche Geburtenabstand um so

kürzer ist, je größer die Kinderzahlen in den Ehen nach abgeschlossener Familienbildung
sind.“ (Rückert 1975, p. 87)
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Table 12.2-7 Mean age at childbearing (τ̄t0) and until age 40 cumulated cohort
birth rates (β̄t0 , per 1000) for birth cohorts t0. Calculated from age-specific
birth rates in Fachserie 1, Reihe 1, 1999 (pp. 198 -200).

t0 τ̄t0 β̄t0 t0 τ̄t0 β̄t0 t0 τ̄t0 β̄t0

1930 27.7 2107.3 1940 26.1 1958.8 1950 26.1 1684.5
1931 27.7 2133.7 1941 26.0 1891.2 1951 26.2 1642.6
1932 27.6 2173.4 1942 25.9 1837.5 1952 26.4 1630.8
1933 27.4 2201.4 1943 25.7 1797.2 1953 26.6 1612.9
1934 27.1 2220.7 1944 25.6 1765.1 1954 26.8 1589.0
1935 27.1 2155.7 1945 25.5 1761.4 1955 26.9 1604.0
1936 26.9 2120.3 1946 25.5 1765.3 1956 27.1 1599.7
1937 26.7 2095.1 1947 25.6 1738.0 1957 27.3 1582.5
1938 26.5 2056.6 1948 25.7 1714.2 1958 27.5 1585.2
1939 26.3 2012.1 1949 25.9 1700.0 1959 27.6 1581.4
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Fig. 12.2-11 Plot of the data in Table 12.2-7. The abscissa refers to
mean age at childbearing, the ordinate refers to until age 40 cumulated
age-specific birth rates (per 1000).

following way:

τ̄t0 :=

∑τb

τ=τa
τ βt0+τ,τ

∑τb

τ=τa
βt0+τ,τ

For each cohort t0, one can also calculate the cumulated cohort birth rate

β̄t0 :=

τb∑

τ=τa

βt0+τ,τ

so that it becomes possible to investigate changes in the relationship be-
tween the two quantities across cohorts. The age-specific birth rates pub-
lished by the Statistisches Bundesamt allow to calculate these quantities
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for t0 = 1930, . . . , 1959, assuming τa = 15 and τb = 40.16 Results of the
calculation are shown in Table 12.2-7. The graphical view of these data in
Figure 12.2-11 clearly shows that there is no simple relationship between
mean age at first childbearing and cumulated birth rates.

16Data are taken from Fachserie 1, Reihe 1, 1999 (pp. 198 -200).

Chapter 13

Births in the Period 1950 –1970

In the previous chapter, the presentation of data from a 1% percent sub-
sample of the 1970 census focused on birth cohorts. This is useful for
an understanding of historical changes but has limitations. The subjects
of historical change are individuals, not birth cohorts. Birth cohorts are
just analytical tools for the presentation of data related to life courses of
individuals. These life courses are not, however, determined by a specific
birth year but depend on the changing historical contexts in which they de-
velop. The cohort approach therefore has to incorporate historical periods.
There is, however, no direct connection both for a technical and a substan-
tial reason. The technical reason refers to the fact that cohorts contribute
to the whole range of historical periods during which their members live.
The more substantial reason refers to the fact that the starting point for
an understanding of individual behavior is a historical period from which,
possibly, substantial differences between successive birth cohorts result.1

In order to understand the relationship between cohorts and periods, we
consider, in the present chapter, the development of births in the period
1950– 70. As in the previous chapter, the data source is the 1% subsample
of the 1970 census.

13.1 Age-specific Birth Rates

1. In the territory of the former FRG, a substantial increase in the number
of births began in the mid-fifties. This increase, sometimes called “baby
boom”, lasted until about the mid-sixties and was followed by a long-
term decline in the number of births. In the present chapter we try to
reconstruct this development, for the period 1950– 70, with the data of
the 1% subsample of the 1970 census. As was shown in Figure 12.2.1-
2 in Section 12.2.1, most of the births that occurred in this period were
contributed by women represented in our data set.

2. We begin with an investigation of age-specific birth rates. Using our
standard notation, the age-specific birth rate for age τ in year t is defined as
βt,τ = bt,τ/nf

t,τ . The denominator refers to the number of women who are
of age τ in the year t, and the numerator refers to the number of children

1We therefore do not follow Ryder’s (1964) idea of a “process of demographic transla-
tion”. From a technical point of view this simply means to derive period measures from
cohort measures of people’s reproductive behavior. But this way to set up the problem
confuses the order in which the facts from which cohort measures are statistically de-
rived are brought about by people’s behavior which always takes place in specific and
changing historical periods.
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Fig. 13.1-1 Level plot of age-specific birth rates in the period 1950 – 69,
calculated from the 1 % subsample of the 1970 census.
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Fig. 13.1-2 Level plot of cumulated age-specific birth rates in the period
1950 – 69, calculated from the 1 % subsample of the 1970 census.
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Fig. 13.1-3 Age-specific birth rates in the period 1950 – 69. Mean values
for the specified age groups calculated from our 1 % subsample of the 1970
census.

per 1000 women occurs again in the year 1963. This figure also illustrates
that, until the second half of the 1960 s, women tended to get children in
younger ages.

4. Additional information can be gained by focusing on birth rates for
specific age groups. We selected five age groups and, for each group,
calculated birth rates as unweighted mean values of the age-specific birth
rates of the contributing ages. The result is presented in Figure 13.1-3. It
is seen that mainly young women, up to an age of about 30, contributed
to the rising number of births until the mid-sixties. Furthermore, with the
exception of very young women, birth rates began to decline already since
about 1965.

5. The data presented so far suggest that the increase in the number of
births until the mid-sixties is mainly due to increasing birth rates. How-
ever, the number of children actually born also depends on the number
and age distribution of potential mothers. One might therefore ask what
part of the rising number of children can be attributed to changes in cohort
sizes and age distribution, and what part can be attributed to changes in
age-specific birth rates. One possibility to approach this question is by
performing a hypothetical calculation based on the assumption that the
number and age distribution of women remained the same as it was in 1950
for the whole period from 1950 to 1969. The actual number of births, bt,
can then be compared with a hypothetical number of births, calculated as

b∗t :=

45∑

τ=16

βt,τ nf
1950,τ
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Table 13.1-2 Actual and hypothetical number of marital children born in the
period 1950 – 69 of women in the 1 % subsample of the 1970 census.

Actual development Hypothetical development

t bt bt − 7291 cumulated b∗t b∗t − 7291 cumulated

1950 7291 0 0 7291 0 0
1951 7216 -75 -75 7251 -40 -40
1952 7424 133 58 7479 188 148
1953 7217 -74 -16 7290 -1 147
1954 7546 255 239 7655 364 511
1955 7527 236 475 7586 295 806
1956 7942 651 1126 7972 681 1488
1957 8385 1094 2220 8333 1042 2529
1958 8618 1327 3547 8502 1211 3741
1959 8949 1658 5205 8685 1394 5134
1960 9104 1813 7018 8741 1450 6585
1961 9505 2214 9232 9082 1791 8376
1962 9591 2300 11532 9075 1784 10160
1963 9978 2687 14219 9414 2123 12283
1964 9886 2595 16814 9377 2086 14369
1965 9572 2281 19095 9134 1843 16212
1966 9479 2188 21283 9140 1849 18061
1967 9193 1902 23185 8902 1611 19672
1968 8875 1584 24769 8643 1352 21023
1969 8200 909 25678 8023 732 21755

Table 13.1-2 shows the result of this calculation; Figure 13.1-4 compares
the development of bt and b∗t . It is seen that only a small part of the
increasing number of marital children born in the period 1950– 69 can be
attributed to changes in the number and age distribution of women. So we
conclude that the main part of the “baby boom” resulted from increasing
birth rates, that is, women, in particular younger women, gave birth to
more children.

6. One might try to quantify the contribution to the rising number of
children which can be attributed to changes in the number and age dis-
tribution of women. A simple measure can be derived from Table 13.1-2.
Column bt − 7291 shows the surplus of marital children compared with
1950; the next column shows the cumulated values. The same calculations
are then applied to the hypothetical development. For example, until the
year 1963, the cumulated surplus of marital children amounted to 14219.
Under the assumption that the number and age distribution of women
had not changed since 1950, this figure would be 12283. One can therefore
attribute about 14% of the cumulated surplus until 1963 to changes in the
number and age distribution of women.

7. An additional consideration concerns “timing effects”: women can give
birth to children anywhere during the reproductive period. In fact, as
already mentioned several times, until about the mid-sixties, women began
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Fig. 13.1-4 Actual (solid line) and hypothetical (dotted line) number
of marital children born in the period 1950 – 69. Data are taken from
columns bt and b∗t in Table 13.1-2.

childbearing in younger ages. Several authors have therefore suggested
that at least some part of the baby boom is due to such “timing effects”
(see, e.g., Dinkel, 1983). However, investigating this question requires more
complicated considerations and will be postponed until Chapter 13.3.

13.2 Parity-specific Birth Rates

1. One can get additional information by distinguishing births with respect
to parity, that is, for each women, the first child, the second child, and so
on. We will use the following notation:

b
(p)
t,τ := number of children of parity p born in year t

of women at age τ

Of course, women might give birth to several children at the same time
(twins, triplets, . . . ), and in these cases parities are arbitrarily assigned.
In a first step we ignore the dependence on age and simply consider

b
(p)
t :=

τb∑

τ=τa

b
(p)
t,τ

called parity-specific number of children. Values can be calculated from the
1% subsample of the 1970 census as shown in Table 13.2-1. For consistency
with earlier calculations, we have taken into account, for each year t =
1947, . . . , 1969, only women who were of age 16 – 45 in the respective year.
Once again, the figures in Table 13.2-1 only refer to marital children.
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Table 13.2-1 Number of marital children, classified with respect to parity,
born by women of age 16 – 45 who are members of the 1 % subsample of the
1970 census.

t bt b
(1)
t b

(2)
t b

(3)
t b

(4)
t b

(5+)
t

1947 6307 2963 1768 808 385 383

1948 6864 3209 1949 940 381 385

1949 7316 3395 2182 970 415 354

1950 7291 3530 2086 932 360 383

1951 7216 3415 2124 897 405 375

1952 7424 3399 2245 1020 423 337

1953 7217 3260 2233 992 405 327

1954 7546 3358 2345 1050 448 345

1955 7527 3364 2266 1045 494 358

1956 7942 3503 2332 1183 518 406

1957 8385 3675 2487 1279 518 426

1958 8618 3744 2591 1237 565 481

1959 8949 3781 2768 1310 582 508

1960 9104 3924 2716 1316 633 515

1961 9505 4061 2832 1379 655 578

1962 9591 3989 2946 1431 663 562

1963 9978 4042 3141 1509 656 630

1964 9886 3872 3103 1525 725 661

1965 9572 3905 3007 1457 617 586

1966 9479 3662 3063 1543 624 587

1967 9193 3617 2965 1471 608 532

1968 8875 3457 2864 1435 587 532

1969 8200 3345 2617 1247 532 459

2. Figure 13.2-1 provides a graphical display of the data in Table 13.2-1.
It is seen that children of all parities contributed to the general increase
until about 1963. It is also seen that, depending on parity, the decline in
the number of births began in different years.

3. In a next step we can consider parity-specific birth rates. The standard
definition is

β
(p)
t,τ :=

b
(p)
t,τ

nf
t,τ

The denominator refers to the number of women aged τ in the year t, and
the numerator refers to the number of children of parity p who are born of
these women during the year t. The definition has, however, a drawback in
not taking into account that, except in cases of multiple births, children of
parity p can only be born of women who have already given birth to p− 1
children. It is therefore preferable to calculate parity progression rates .5

5Also called parity progression ratios, see, e.g., Newell (1988, p. 58).
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Fig. 13.2-1 Parity-specific number of children in the period 1950 – 69,
corresponding to the values in Table 13.2-1.

We use the following definition:

β
(p)
t,τ :=

b
(p)
t,τ

n
f,(p−1)
t,τ

In this definition, the denominator only refers to women at age τ in year

t who have already given birth to p − 1 children. For example, β
(1)
t,τ is the

proportion of women at age τ in year t who gave birth to their first child

during that year. Similarly, β
(2)
t,τ is the proportion of women with already

a first child who gave birth to a second child during the year t.6

4. We will try to calculate parity progression rates from the data in the
1% subsample of the 1970 census. We begin with a simplified approach
and ignore age, that is, we relate the number of children of parity p born
during a year t to all women who might give birth to a child of this parity
during the year t. The formal definition is

β
(p)
t :=

b
(p)
t

n
f,(p−1)
t

Table 13.2-2 shows values for the denominator. For example, there are
117800 women born during the years 1902–31 and therefore in an age
between 16 and 45 in the year t = 1947. Of these women, 64498 had no
child until the end of 1946 and might get a first child during the year 1947;

6Birg, Filip and Flöthmann (1990, p. 11) call these rates “bedingte Geburten-
wahrscheinlichkeiten”. We avoid this wording because partity progression rates are
simply proportions, not probabilities.
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Table 13.2-2 Number of women born in the years specified in the first column
with p children before year t, calculated from the 1 % subsample of the 1970
census.

Birth years t n
f,(0)
t n

f,(1)
t n

f,(2)
t n

f,(3)
t n

f,(4+)
t nf

t

1902 – 1931 1947 64498 22644 16692 7801 6165 117800

1903 – 1932 1948 63745 23087 16948 7815 6070 117665

1904 – 1933 1949 62616 23566 17228 7922 5952 117284

1905 – 1934 1950 62028 23939 17577 8006 5799 117349

1906 – 1935 1951 61535 24556 17936 8072 5614 117713

1907 – 1936 1952 61266 24941 18282 8046 5481 118016

1908 – 1937 1953 61038 25180 18507 8044 5341 118110

1909 – 1938 1954 61260 25222 18705 8010 5198 118395

1910 – 1939 1955 61744 25261 18964 8004 5071 119044

1911 – 1940 1956 62201 25368 19141 7930 4977 119617

1912 – 1941 1957 62202 25500 19207 7947 4974 119830

1913 – 1942 1958 61162 25644 19272 8058 4954 119090

1914 – 1943 1959 60158 25783 19505 8111 4998 118555

1915 – 1944 1960 59127 25775 19826 8286 5060 118074

1916 – 1945 1961 57113 26194 20370 8505 5274 117456

1917 – 1946 1962 55757 26831 21139 8856 5666 118249

1918 – 1947 1963 54726 27284 22036 9303 6045 119394

1919 – 1948 1964 53949 27595 23035 9806 6416 120801

1920 – 1949 1965 53359 27438 23722 10113 6744 121376

1921 – 1950 1966 52479 27181 24024 10348 6901 120933

1922 – 1951 1967 51575 26672 24319 10654 7003 120223

1923 – 1952 1968 50899 26241 24690 10922 7082 119834

1924 – 1953 1969 50195 25837 25009 11143 7188 119372

22644 women had a first child until the end of 1946 and might get a second
child during the year 1947, and so on. These numbers are used to calculate

β
(1)
t , β

(2)
t , β

(3)
t , and β

(4)
t

The required numerators can be found in Table 13.2-1. For example,

β
(1)
1947 =

2963

64498
= 0.0459

that is, about 4.6% of women who might get a first marital child during
1947 actually realized this possibility.

5. In the same way parity progression rates, for p = 1, . . . , 4, can be calcu-
lated for all years. The result is shown in Figure 13.2-2. It suggests that
the decline of parity progression rates began somewhat earlier for parities
3 and 4, compared with parities 1 and 2. Since there is only a very short
time-lag it seems not warranted, however, to make this a substantial point.
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Fig. 13.2-2 Parity progression rates of marital children in the period
1950 – 69, calculated from the data in Tables 13.2-1 and 13.2-2.
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13.3 Understanding the Baby Boom

An instructive example of the fact that population growth not only de-
pends on the number of newborn children but also on the timing of births
and, especially, on women’s age at childbearing, is the baby boom in
West Germany during the period 1955– 1965. It has been argued (e.g., by
Dinkel, 1983) that this baby boom was mainly a consequence of the fact
that women began childbearing at younger ages. The argument implies
a comparison between the actual population growth and a hypothetical
one that might have occurred if women behaved differently. One therefore
needs some kind of analytical model to make the argument fully explicit.

13.3.1 Number and Timing of Births

1. In order to develop a conceptual framework we refer to birth cohorts
of women denoted by Cf

t0 , t0 being the birth year. This allows to define
age-specific cohort birth rates7

γt0,τ :=
bt0+τ,τ

|Cf
t0,τ

where the denominator refers to the number of women belonging to the
birth cohort Cf

t0 at age τ , and the numerator records the number of children

born by members of Cf
t0 at age τ (in the year t = t0 + τ). Denoting the

beginning and end of the reproductive period by τa and τb, respectively,
one can also define cumulated cohort birth rates

γ̄t0,τ :=

τ∑

j=τa

γt0,j

2. These concepts can be used to compare childbearing among birth co-
horts of women and, in these comparisons, distinguish between the num-
ber of children born and the timing of childbearing. The first aspect is
captured by the completed cohort birth rate, γ̄t0,τb

; the second aspect is
captured by the shape of the function

τ −→ γ̄t0,τ

As an example, we use data from the 1% subsample of the 1970 census dis-
cussed in Chapter 12.2. Figure 13.3.1-1 compares birth rates of the cohorts
t0 = 1910 and t′0 = 1920. The topmost plot (a) compares the cumulated
cohort birth rates γ̄1910,τ (solid line) and γ̄1920,τ (dotted line). Assuming
τb = 45, it is seen that cohort C20 has a somewhat lower completed cohort

7These notions have been introduced in Section 11.2.
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Fig. 13.3.1-1 Comparison of age-specific cohort birth rates; see the text
for explanation.
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birth rate than cohort C10. Values can be calculated from Table 12.2.3-1
in Section 12.2.3: γ̄1910,45 = 1.7806 and γ̄1920,45 = 1.6588. Furthermore,
there is also a somewhat different timing of births. Compared with C10,
relatively more women belonging to C20 gave birth to children at ages
under 25.

3. Of course, it would be strange to say that these women hastened to
realize births that they anticipated to have anyway.8 Nevertheless, in
order to conceptually distinguish between the number and timing of births,
one cannot avoid to apply a retrospective view and assume completed
cohort birth rates as given. In our example, this allows to construct, for
birth cohort C20, hypothetical cumulated cohort birth rates which have
the same shape as the cumulated cohort birth rates of C10 but keep the
original completed cohort birth rate of C20. The following definition shows
the construction:

γ̄∗
1920,τ := γ̄1910,τ

γ̄1920,45

γ̄1910,45

Part (b) of Figure 13.3.1-1 compares γ̄1920,τ (solid line) and γ̄∗
1920,τ (dotted

line). Without changing the completed cohort birth rate, part of the births
are “shifted” into higher ages. This is also seen in part (c) of the figure
where the solid line refers to the age-specific birth rates γ1920,τ and the
dotted line refers to the corresponding hypothetical birth rates

γ∗
1920,τ := γ1910,τ

γ̄1920,45

γ̄1910,45
(13.3.1)

4. Finally, one can compare the actual with a hypothetical development
of births. The actual development is given by the equation

bt =

τb∑

τ=τa

bt,τ =

τb∑

τ=τa

γt−τ,τ |C
f
t−τ,τ |

which shows how the number of births in year t derives from the surviving
cohort members, |Cf

t−τ,τ |, and the cohort birth rates, γt−τ,τ , of all births
cohorts t − τ (τ = τa, . . . , τb). The idea now is to compare this actual
development of births with a hypothetical development defined by

b∗t :=

τb∑

τ=τa

γ∗
t−τ,τ |C

f
t−τ,τ | (13.3.2)

b∗t would be the number of children born in year t if the childbearing of
women who might contribute to these births would follow the modified

8Actually, the whole argument is in statistical terms and does not relate to the behavior
of individual women; and, as was discussed in Section 3.4, one also cannot sensibly speak
of the behavior of a cohort.
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birth rates γ∗
t−τ,τ , instead of the actually realized birth rates γt−τ,τ . Of

course, in order to define the modified birth rates one needs to refer to one
birth cohort whose timing of births provides a reference. In the example
above the cohort of women born 1910 was used to defined the reference.
It is quite possible, however, that the results of a comparison between bt

and b∗t also depend on the choice of the reference cohort.

13.3.2 Performing the Calculations

1. We now try to compare bt and (different versions of) b∗t in the period
1950–1970 in the territory of the former FRG. Values of bt are available
from official statistics (see Table 6.3-1 in Section 6.3). In order to find
values of b∗t one needs to refer to all birth cohorts of women who contributed
to the births in the period 1950–1970. Assuming a reproductive period
from age 16 to age 45, cohort birth years range from 1905 to 1954. For each
birth cohort we need values for the cohort size in 1950 and the completed
cohort birth rates. Since appropriate data are not directly available from
official period statistics, we try to find approximately valid quantities from
the 1% subsample of the 1970 census discussed in Chapter 12.2.

2. We assume that cohort sizes in 1950 are approximately proportional
to the number of women, born in years from 1905 to 1954, who were
still alive at the census date in 1970. These numbers, taken from the
1% subsample of the census, are shown in the second column of Table
13.3.2-1. Completed cohort birth rates are more difficult to approximate.
Cumulated cohort birth rates that can be calculated from the subsample of
the 1970 census only refer to marital births. Moreover, assuming τb = 45,
completed marital cohort birth rates can only be calculated for cohorts
1905–1924. They are shown in column (b) of Table 13.3.2-1. In order
to extend the period one can use the fact that cumulated cohort birth
rates at age 45 are only slightly larger than at age 40. This is seen in
Table 13.3.2-1 by comparing column (b) with column (a) which shows the
cumulated cohort birth rates up to an age of 40. The entries for birth
cohorts 1925–30, shown in column (c) of the table, have been calculated
by simply multiplying the entries in column (a) by 1.026. Beginning with
birth cohort 1930, official period statistics allow to calculate completed
quasi-cohort birth rates. Still assuming that τb = 45, they are shown in
column (d) of Table 13.3.2-1.9 Finally, since these values refer to all births,
one needs an adjustment of the completed cohort birth rates calculated
from the 1% subsample of the 1970 census which only refer to marital
births. Assuming a proportion of about 10% non-marital births we have
simply multiplied the entries in columns (b) and (c) by the factor 1.1 in
order to get the entries in column (e). The values in columns (d) and (e)

9Data are taken from Fachserie 1, Reihe 1, 1999 (pp. 198 -200). See also the discussion
of these data in Section 11.4.
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Table 13.3.2-1 Calculation of completed cohort birth rates for birth cohorts
1905 – 1954. See the text for explanations.

Birth year Cohort size (a) (b) (c) (d) (e)

1905 3926 1.6533 1.7068 1.8775
1906 4045 1.6485 1.7122 1.8834
1907 4208 1.7533 1.8118 1.9930
1908 4430 1.6804 1.7370 1.9107
1909 4395 1.7192 1.7738 1.9512
1910 4417 1.7263 1.7806 1.9587
1911 4349 1.7211 1.7754 1.9529
1912 4511 1.7092 1.7610 1.9371
1913 4377 1.6943 1.7482 1.9230
1914 4301 1.6894 1.7410 1.9151
1915 3403 1.6753 1.7338 1.9072
1916 2578 1.6427 1.6889 1.8578
1917 2428 1.6512 1.7002 1.8702
1918 2465 1.6730 1.7233 1.8956
1919 3595 1.6487 1.6918 1.8610
1920 4628 1.6188 1.6588 1.8247
1921 4680 1.6496 1.7013 1.8714
1922 4442 1.6729 1.7226 1.8949
1923 4265 1.6980 1.7496 1.9246
1924 4058 1.7287 1.7740 1.9514
1925 4162 1.6975 1.7416 1.9158
1926 3998 1.7161 1.7607 1.9368
1927 3863 1.8532 1.9014 2.0915
1928 3923 1.8463 1.8943 2.0837
1929 3762 1.9054 1.9549 2.1504
1930 3845 1.9116 1.9613 2.1395
1931 3535 2.1623
1932 3444 2.1993
1933 3280 2.2244
1934 4036 2.2395
1935 4290 2.1721
1936 4348 2.1347
1937 4302 2.1079
1938 4715 2.0695
1939 5044 2.0243
1940 4990 1.9708
1941 4562 1.9025
1942 3771 1.8490
1943 3842 1.8089
1944 3820 1.7771
1945 2785 1.7746
1946 3371 1.7791
1947 3573 1.7513
1948 3872 1.7286
1949 4170 1.7145
1950 4185 1.7003
1951 3970 1.6578
1952 4053 1.6464
1953 3803 1.6287
1954 4012 1.6057
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Table 13.3.2-2 Age-specific cohort birth rates for birth cohorts 1910, 1920,
and 1930.

τ 1910 1920 1930 τ 1910 1920 1930

16 0.00113 0.00108 0.0021 31 0.11546 0.09248 0.1136
17 0.00362 0.00627 0.0100 32 0.08671 0.08816 0.0989
18 0.01381 0.01901 0.0289 33 0.08331 0.08038 0.0895
19 0.02196 0.02874 0.0527 34 0.07720 0.06806 0.0787
20 0.03917 0.05251 0.0748 35 0.04369 0.05985 0.0656
21 0.04868 0.07044 0.0968 36 0.04143 0.05013 0.0564
22 0.05479 0.07260 0.1142 37 0.04369 0.04689 0.0450
23 0.07652 0.09118 0.1253 38 0.03781 0.04019 0.0361
24 0.09894 0.11322 0.1349 39 0.03600 0.03068 0.0276
25 0.11388 0.07952 0.1394 40 0.02671 0.02139 0.0197
26 0.12859 0.09140 0.1459 41 0.02151 0.01707 0.0143
27 0.12859 0.09767 0.1491 42 0.01381 0.01037 0.0085
28 0.13493 0.10415 0.1418 43 0.00906 0.00475 0.0051
29 0.13991 0.11279 0.1365 44 0.00657 0.00583 0.0027
30 0.12973 0.10004 0.1239 45 0.00340 0.00194 0.0013

Total 1.7806 1.6588 2.1395

will then be used in the following simulations.

3. A further question concerns the birth cohort to be used as a reference
for the assessment of timing effects. Since simulation results might well
depend on the choice of a reference cohort, we perform the calculations
separately for three reference cohorts with birth years 1910, 1920, and
1930, respectively. The age-specific birth rates for these cohorts that we
have used for the simulations are shown in Table 13.3.2-2. For birth cohorts
1910 and 1920, the rates refer to marital birth and are calculated from the
1% percent subsample of the 1970 census. For birth cohort 1930 they are
taken from official period statistics (Fachserie 1, Reihe 1, 1999, p. 198) and
refer to all births. This difference may be neglected, however, because in
the simulation the age-specific rates are only used to provide a standard
shape for the timing of childbearing. In order to calculate hypothetical
birth rates with formula (13.3.1), one only needs to use the appropriate
completed cohort birth rates as shown in the last row of Table 13.3.2-2.

4. So we finally have at least some approximations for all values required to
calculate hypothetical developments of births with formula (13.3.2). The
result is shown in Figure 13.3.2-1. The solid line shows the actual number
of births in the period 1950–1970.10 The dotted lines show corresponding
hypothetical developments. Since the calculation is based on a 1% percent
subsample of the 1970 census, the simulated figures have been multiplied
by 100 in order to make the hypothetical developments roughly comparable
with the actual development. However, regardless of the exact level, it is

10Data are taken from Table 6.3-1 in Section 6.3.
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Fig. 13.3.2-1 Number of birth (in 1000) in the territory of the former
FRG (solid line) and hypothetical developments (dotted lines) which
assume a timing of births according to birth cohorts 1910, 1920, and 1930,
respectively.

clearly seen that the development of birth would have been quite different
without the changes in the timing of births which actually occurred. In
fact, the plot suggests that the baby boom that occurred in the period
1955– 65 can mainly be attributed to changes in the timing of childbearing.
It is also remarkable that the hypothetical developments, on the whole, do
not depend on the birth cohort that is used to provide a shape for the
timing of births. This is consistent with the fact, discussed in Section
11.4, that substantial shifts of births towards younger ages occurred in
cohorts with birth years roughly between 1930 and 1945.

13.3.3 Extending the Simulation Period

This section is not finished yet.



Chapter 14

Data from Non-official Surveys

As was mentioned in Section 11.3, if one wants to investigate the timing
and distribution of birth events, data from official statistics are of only
limited use. A closer investigation requires data which allow to relate
birth events to women’s life courses. Such data can be gathered with
retrospective surveys in which women are asked about the birth dates of
their children. One example, a subsample of the 1970 census, has been
discussed in the two preceeding chapters. In addition, several non-official
surveys are available that provide data on childbearing histories.1 In the
present chapter we consider data from the following non-official surveys
that, in particular, provide information about number and birth dates of
children:

• the German Life History Study (GLHS),

• the Socio-economic Panel (SOEP),

• the Fertility and Family Survey (FFS), and

• the DJI Family Survey (DJIFS).

The main questions to be discussed in the present chapter concern age at
first childbearing, the proportion of childless women, and the distribution
of the number of children. We also calculate cumulated cohort birth rates
to allow comparisons with data from official statistics.

14.1 German Life History Study

1. The German Life History Study (GLHS) is a long-term project con-
ducted by the Max Planck Institute for Human Development (Berlin).
The main data source of this project is a series of retrospective surveys
in which members of selected birth cohorts were asked to provide detailed
information about their life courses. Part of these data are available for

1We speak of non-official surveys in order to signify that these surveys are conducted,
not by official statistics, but by a variety of institutions of social research. Additional
differences depend on circumstances. Most often the sample size of non-official surveys
is much smaller than the sample size of official surveys. Furthermore, while some
official surveys (e.g., the Mikrozensus) are based on an obligation to give information,
participation in non-official surveys is always a matter of free decision. Consequently,
there is often a substantial proportion of non-respondents in non-official surveys; see,
e.g., Porst (1996).

14.1 GERMAN LIFE HISTORY STUDY 225

the general scientific public:2

a) Data from the first survey (LV I) were sampled during the years 1981–
83 and included 2171 members of the birth cohorts 1929– 31, 1939– 41,
and 1949– 51.

b) Data from a second survey (LV II) were sampled in two parts, both
relating to persons born in the years 1919– 21; a first part was con-
ducted in 1985– 86 and included 407 persons (LV IIA), a second part
was conducted in 1987– 88 and included 1005 persons (LV IIT).

c) Data from a third survey (LV III) were sampled in 1989 and included
2008 members of the birth cohorts 1954– 56 and 1959– 61.

All surveys were conducted in the territory of the former FRG. For our
present study we take into account all female respondents from the surveys
LV I, LV IIT, and LV III (only cohort 1959– 61). The case numbers and
how they distribute over the five cohorts is shown in the following table:3

Birth cohort Birth years Male Female Interview date

C20 1919 − 21 373 632 1987 − 88
C30 1929 − 31 349 359 1981 − 83
C40 1939 − 41 375 355 1981 − 83
C50 1949 − 51 365 368 1981 − 83
C60 1959 − 61 512 489 1989

We also mention that all members of our subsample have a German citizen-
ship. — In the remainder of this section we use this data set to investigate
changes in the distribution of ages at first childbearing and the number of
children across the five birth cohorts.4

Age at First Childbearing

2. Denoting our subsample of the GLHS by Ω, we can define a three-
dimensional variable

(C, T, D) : Ω −→ C̃ × T̃ × D̃

2For an overview, see Wagner (1996). The data are available from the Zentralarchiv
für empirische Sozialforschung (Köln). We thank Karl Ulrich Mayer, the director of
the GLHS, for the permission to use the data sets.

3Of the 632 women of birth cohort C20 three did not give valid birth years for their
children and will be excluded in further calculations.

4We mention that the GLHS data have already been used in quite a large number
of earlier studies. Concerning the questions of the present section, see, in particular,
Huinink (1987, 1988, 1989), Blossfeld and Huinink (1989), Tuma and Huinink (1990).
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Table 14.1-1 Age at first childbearing in our GLHS subsample.

C20 C30 C40 C50 C60

τ d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0

15 1
16 1 3 3
17 2 1 5 4 6
18 11 5 15 10 10
19 21 16 21 30 16
20 28 23 21 34 14
21 37 23 25 36 22
22 60 29 36 26 24
23 60 22 40 22 17
24 68 21 37 16 21
25 41 32 21 13 27
26 35 32 23 20 26
27 28 31 13 22 35 12
28 28 16 21 14 27 85
29 22 17 6 12 8 80
30 15 16 10 13 21 1 54
31 15 7 5 3 22
32 7 11 8 3 35
33 10 5 3 1 8
34 7 8
35 5 3 2
36 7 1 2
37 5 2
38 3 1
39 1
40 3 7
41 1 11
42 13
43 8
50 9
51 16
52 7
53 6
66 4
67 47
68 34
69 24

Total 520 109 321 38 316 39 282 86 258 231

C, with property space C̃ := {C20, . . . , C60}, records the birth cohort;
D, with property space D̃ := {0, 1}, records whether a women has given
birth to at least one child;5 and T , with property space T̃ := {0, 1, 2, . . .},
records the age of the women which, depending on the value of D, is the

5The GLHS allows to distinguish women’s own children, step children, and adoptive
children. For the present investigation we only take into account women’s own children.
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age of first childbearing (if T (ω) = 1) or the age in the interview year (if
T (ω) = 0). The distribution of this three-dimensional variable, in terms
of absolute frequency, is shown in Table 14.1-1.6 For example, there are
68 women in birth cohort C20 who gave birth to a first child at age 24, 41
at age 25, and so on. In total, 520 women of this birth cohort had at least
one child, and 109 remained childless.

3. The data from Table 14.1-1 can be used to estimate distributions of
the age at first childbearing. We use the formal framework introduced in
Chapter 12 and refer to a duration variable

T̂c : Ωc −→ T̃ := {0, 1, 2, 3, . . .}

where the index c specifies one of the birth cohorts in our sample. Since
each birth cohort comprises three birth years, and the interviews extend
over up to three years, also the censoring times extend over several ages.
However, as seen from Table 14.1-1, for birth cohorts C20, C30, and C40,
censoring only occurs after the last observed event (first childbearing). For
these birth cohorts, the data can therefore directly be used to calculate a
frequency distribution of T̂c:

P[T̂c](τ) =
| {ω ∈ Ωc |T (ω) = τ} |

|Ωc |

For example, referring to birth cohort C20, one immediately finds

P[T̂C20](25) =
41

629
= 0.065

that is, 6.5% of the members of C20 gave birth to a first child at age 25.
These values can then be used for the calculation of distribution functions,
survivor functions, and rate functions.

4. The situation is slightly different for birth cohorts C50 and C60 where
event times and censoring times overlap in some years. To illustrate, we
refer to birth cohort C50. Obviously, for ages under 30, one can calculate
frequencies directly. For example, for τ = 25, one gets

P[T̂C50](25) =
13

368
= 0.035

However, this direct calculation is no longer possible for ages τ ≥ 30.
We therefore use the Kaplan-Meier procedure introduced in Section 8.3.4.
Table 14.1-2 illustrates the calculations for birth cohort C50. Notice that,
until age 29, results are identical with those from a direct calculation of
frequencies.

6Note that the ages are not contiguous because the table refers to the realized property
spaces. Note also that birth cohort C20 only contains 629 members because we have
excluded three cases with unknown birth years of children.
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Table 14.1-2 Kaplan-Meier procedure to calculate the survivor function for
the age at first childbearing. Data refer to cohort C50 in Table 14.1-1.

survivor
τ at risk events censored rate 1 – rate function

16 368 3 0 0.0082 0.9918 1.0000
17 365 4 0 0.0110 0.9890 0.9918
18 361 10 0 0.0277 0.9723 0.9809
19 351 30 0 0.0855 0.9145 0.9537
20 321 34 0 0.1059 0.8941 0.8722
21 287 36 0 0.1254 0.8746 0.7798
22 251 26 0 0.1036 0.8964 0.6820
23 225 22 0 0.0978 0.9022 0.6114
24 203 16 0 0.0788 0.9212 0.5516
25 187 13 0 0.0695 0.9305 0.5081
26 174 20 0 0.1149 0.8851 0.4728
27 154 22 0 0.1429 0.8571 0.4185
28 132 14 0 0.1061 0.8939 0.3587
29 118 12 0 0.1017 0.8983 0.3206
30 106 13 21 0.1226 0.8774 0.2880
31 72 3 22 0.0417 0.9583 0.2527
32 47 3 35 0.0638 0.9362 0.2422
33 9 1 8 0.1111 0.8889 0.2267
34 0.2015

5. The survivor functions for all five birth cohorts are shown in Figure
14.1-1. Several points are remarkable.

a) Until an age of about 27, the distribution for cohort C30 is quite similar
to the distribution for cohort C20. After this age, that is, beginning
at the end of the nineteen-fifties, a substantially greater proportion of
the women belong to cohort C30 give birth to a child. Eventually, the
proportion of childless women is quite smaller in C30 than in C20.

b) Compared with C30, members of birth cohort C40 begin childbearing
at younger ages, but overall, both distributions are quite similar. In
particular, in both cohorts, a high proportion of women, about 90 %,
have at least one child.

c) Like the members of C40, also the members of C50 begin childbearing
at younger ages. However, beginning in the mid-sixties, birth rates
begin to decline, and it might be supposed that the proportion of
women who eventually remain childless will be substantially greater
than it was in the two preceeding cohorts.

d) Finally, members of birth cohort C60 delay the birth of a first child,
and although the data do not allow definite conclusions, it seems quite
possible that the proportion of finally childless women will again be
greater than in the preceeding cohorts.
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Fig. 14.1-1 Distribution of age at first childbearing described by survivor
functions, calculated from the data in Table 14.1-1.
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Fig. 14.1-2 Cumulated cohort birth rates calculated from the data in
Table 14.1-3.

The results can be compared with the distribution of age at first marital
childbearing. This was already done in Section 12.2.2.

Number of Children

6. The next step is to investigate the number of children born of women in
the GLHS subsample. We begin with the calculation of cumulated cohort
birth rates. Table 14.1-3 shows the data. For example, 44 women belonging
to birth cohort C20 have given birth to a child at an age of 21. The data
can be used to calculate cumulated cohort births rates. The following
table shows these rates, denoted by CCBR(τ), until age τ as specified in
the second column:

Cohort τ CCBR(τ ) CCBR∗(τ )

C20 45 1.80
C30 43 2.19 2.15
C40 40 1.99 1.96
C50 31 1.38 1.39
C60 29 0.82 0.99

The final column, labeled CCBR∗(τ), shows corresponding cumulated co-
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Table 14.1-3 Number of children in the GLHS subsample, classified with
respect to mother’s birth cohort and age (τ ).

τ C20 C30 C40 C50 C60

15 1
16 1 3 3
17 2 1 5 4 6
18 11 5 16 11 11
19 25 16 22 30 17
20 34 26 34 40 18
21 44 26 33 48 26
22 72 44 48 40 33
23 80 37 60 44 27
24 105 44 67 32 34
25 77 49 64 37 56
26 68 53 56 42 44
27 76 66 56 50 67
28 67 48 54 41 46
29 54 62 35 35 13
30 57 63 39 37 2
31 64 35 23 15
32 41 43 23 9
33 41 35 22 1
34 42 33 13
35 36 26 14
36 39 22 11
37 29 17 5
38 19 15 1
39 18 7 4
40 10 2 2
41 10 7 2
42 3 5
43 2 1
44 3 1
45 1
46 1

Total 1132 789 709 519 404

hort birth rates calculated from official statistics.7 Except for the youngest
cohort, the rates are surprisingly similar. The difference for the youngest
cohort is possibly due to the fact that the official statistics also includes
births of immigrants.

7. Figure 14.1-2 presents a graphical view of the cumulated cohort birth
rates. It is remarkable that we do not find a simple relationship between
age at first childbearing and completed cohort birth rates. This can be
seen, for example, by comparing cohorts C30 and C40. Although members
of C40 begin childbearing at younger ages, compared with members of C30

7These are mean values of the year-specific rates published in Fachserie 1, Reihe 1
(1999, p. 198 -200). No official data are available for C20; for C30, the mean value refers
to the years 1930 and 1931.
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Table 14.1-4 Number of women with 0, 1, 2, 3, 4, and 5 or more children,
calculated from the data in the GLHS subsample. Percentage values relate to
all women in each of the cohorts who have at least one child. Percentage values
in brackets provide the proportion of finally childless women.

C20 C30 C40 C50 C60

Children N % N % N % N % N %

0 109 (17) 38 (11) 39 (11) 86 231
1 185 35.6 75 23.4 78 24.7 106 37.6 145 56.2
2 168 32.3 126 39.3 139 44.0 134 47.5 86 33.3
3 104 20.0 61 19.0 64 20.3 30 10.6 21 8.1
4 40 7.7 36 11.2 23 7.3 7 2.5 6 2.3

≥ 5 23 4.4 23 7.2 12 3.8 5 1.8

(see Figure 14.1-1), the completed cohort birth rate is lower for C40 than
for C30. Of course, a delay of childbearing might be accompanied by a
decline in the total number of births; this will probably be true for cohort
C60. However, a decline of birth rates can not be explained by simply
referring to changes in the distribution of ages at first childbearing.8

8. Cumulated and completed cohort birth rates provide information about
the total number of children born, but not about the distribution of the
number of children. So we should finally also look at the number of births
per women. The data are shown in Table 14.1-4. Since members of birth
cohorts C50 and C60 have not reached the end of the reproductive period
by the time when the interviews were performed, an interpretation should
be confined to the cohorts C20, C30, and C40.

a) Compared with C20, more women of C30 gave birth to at least one
child. Moreover, the proportion of women with only one child declined,
resulting in an increase of the mean number of children per women,
from 2.2 in C20 to 2.5 in C30. The substantial increase in the com-
pleted cohort birth rate is therefore a result of both, the decline in the
proportion of childless women and the increase in the mean number of
children per women.

b) The proportion of childless women in C40 remains roughly the same
as it was in C30. There is, however, a tendency to reduce the number
of children per women. In particular, the proportion of women with
four or more children declines while the proportion of women with
two children increases. The result is a decline of the mean number of
children per women, from 2.5 in C30 to 2.3 in C40, and consequently
also a decline in the completed cohort birth rate.

It remains to be investigated how these tendencies continued in younger

8See also the discussion in Section 12.2.5.
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birth cohorts. We already know from official statistics that the completed
cohort birth rates continued to decline at least until birth cohort C60 (see
Section 11.4). However, the data in our GLHS subsample do not allow
to identify the changes in the distribution of children from which this
tendency results.

14.2 Socio-economic Panel

1. Our second data source is the Socio-economic Panel (SOEP), already
introduced in Section 8.4. In the present section we discuss data from the
second wave (1985), in which participants were asked about children and
their birth dates.9 Our data set will be confined to women who belong to
the subsample A of the SOEP which are mainly persons with a German
citizenship.10 In total, 4353 women with birth years from 1892 to 1968
participated in this subsample. For the data set to be used in the present
section we take into account all of these women who are born not earlier
than 1908 and not later than 1957. The resulting number of 3203 women
is partitioned into 5-year birth cohorts as shown in the following table:

Birth cohort Birth years Number of women

C10 1908 − 12 209
C15 1913 − 17 189
C20 1918 − 22 263
C25 1923 − 27 322
C30 1928 − 32 325
C35 1933 − 37 338
C40 1938 − 42 439
C45 1943 − 47 339
C50 1948 − 52 395
C55 1953 − 57 384

2. As was done in the previous section, we begin with an investigation
of the distribution of the age at first childbearing. Data are shown in
Tables 14.2-1a and 14.2-1b. As in Table 14.1-1, columns labeled d = 1
provide numbers of women who have given birth to a first child at the
corresponding age, and columns labeled d = 0 provide numbers of women
who remained childless until the interview date. The survivor functions
that can be calculated from these data are shown in Figure 14.2-1.11

3. Before any interpretations, the results should be compared with those

9For an earlier analysis of these data see Klein (1989).

10This is done in order to make our subsample comparable with the other surveys to
be discussed in this chapter. This selection also allows to ignore sampling weights.

11Since the distributions for C25 and C30 are very similar we have omitted C25.
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Table 14.2-1a Age at first childbearing in our SOEP subsample.

C10 C15 C20 C25 C30

τ d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0

15 1
16 1
17 2 1 3 2 1
18 4 3 4 4 4
19 2 5 8 7 7
20 3 8 9 9 13
21 11 15 17 18 21
22 7 9 18 17 25
23 10 12 16 32 23
24 16 19 20 27 30
25 8 11 15 21 22
26 13 12 18 23 25
27 14 11 16 23 15
28 16 15 10 21 20
29 14 6 12 16 18
30 11 5 14 13 12
31 7 6 10 12 5
32 3 2 7 7 6
33 4 2 4 2 8
34 4 9 5 3 6
35 2 2 2 3
36 3 3 3 5
37 1 1 3 4 2
38 1 1 5 1 1
39 3 1 1
40 4 2
41 1 1 2
42 1
43 1 1
53 4
54 14
55 11
56 12
57 8
58 9
59 11
60 12
61 7
62 8
63 8
64 11
65 12
66 9
67 2
68 3
69 7
70 6
71 10
72 8
73 10
74 9
75 8
76 14
77 8

Total 160 49 155 34 221 42 275 47 276 49
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Table 14.2-1b Age at first childbearing in our SOEP subsample.

C35 C40 C45 C50 C55

τ d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0

16 1 1 2
17 2 5 4 8 7
18 9 9 12 20 8
19 18 21 19 32 19
20 24 29 28 35 20
21 23 33 39 33 22
22 24 34 39 29 20
23 26 37 32 25 27
24 35 45 24 22 21
25 24 41 25 22 27
26 21 32 12 21 33
27 18 26 23 21 20
28 16 16 7 21 12 27
29 14 11 13 9 8 33
30 16 17 6 14 4 30
31 7 8 6 6 5 24
32 7 6 4 7 15
33 3 5 5 20
34 2 5 2 2 11
35 1 4 2 2 15
36 5 4 4 11
37 1 2 8
38 1 1 5
39 1 1 2 6
40 2 5
41 8
42 6
43 10
44 9
45 10
46 7
47 8
48 8
49 7
50 13
51 5
52 8

Total 297 41 395 44 309 30 330 65 255 129

from the GLHS data discussed in the previous section. This can be done
for cohorts C20, C30, C40, and C50, as shown in Figure 14.2-2. It comes
without surprise that the survivor functions describing the distribution
of ages at first childbearing are not identical. Since the data result from
surveys and the sampled cohort sizes are small, one might have expected
even greater differences. In particular for cohorts C20 and C40, both data
sets provide essentially the same estimates of the proportion of finally
childless women, about 16% for C20 and 10% for C40. An exception is
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Fig. 14.2-1 Distribution of age at first childbearing described by survivor
functions, based on the data in Tables 14.2-2a and 14.2-2b.
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Fig. 14.2-2 Comparison of survivor functions for the age at first child-
bearing estimated, respectively, with SOEP data (solid line) and GLHS
data (dotted line).

the cohort C30. As will be seen below, based on a comparison of cumulated
cohort birth rates, the data from the GLHS are probably more reliable than
the SOEP data for this cohort.

4. Given that the data sets provide comparable results, Figure 14.2-1 can
be used to supplement some conclusions already drawn from Figure 14.1-1.
The most remarkable point is that the tendency to begin childbearing at
younger ages already began with birth cohort following C10. Compared
with this cohort, already women belonging to C15 had their first child at
younger ages. It is also seen that this tendency holds at least until birth
cohort C45, roughly corresponding to the end of the baby boom in the
mid-sixties.

5. Further information can also be gained about the proportion of finally
childless women. The following table summarizes the results from the
GLHS and SOEP data:

C10 C15 C20 C25 C30 C35 C40 C45

GLHS 17 11 11

SOEP 23 18 16 15 15 12 10 ≤ 9

Leaving aside the SOEP result for C30, the figures indicate a long-term
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Table 14.2-2 Number of children in the SOEP subsample, classified with
respect to mother’s birth cohort and age (τ ).

τ C10 C15 C20 C25 C30 C35 C40 C45 C50 C55

15 1

16 1 1 1 2

17 2 1 3 2 1 2 6 4 8 7
18 4 3 6 4 4 9 11 13 23 8

19 2 5 8 7 7 18 23 24 35 20
20 5 9 11 11 16 28 42 38 44 22

21 15 20 21 23 24 33 52 47 40 26

22 7 18 24 22 34 40 54 53 45 31
23 16 22 27 38 36 42 61 57 44 40

24 24 29 32 40 47 63 75 52 41 38
25 20 24 23 42 44 57 79 61 41 51

26 26 21 35 43 48 50 75 48 52 65

27 27 21 34 51 40 43 68 46 45 43
28 30 24 33 43 39 49 60 19 55 41

29 38 21 35 46 46 50 52 35 29 24
30 22 17 27 49 39 64 53 19 40 14

31 26 17 29 44 35 27 41 17 26 12

32 17 12 21 48 20 26 20 20 29 1
33 16 15 20 27 27 36 25 14 15

34 19 15 24 30 22 27 17 13 6
35 15 14 9 23 26 18 15 9 8

36 12 7 19 21 23 16 10 14 3

37 13 9 14 20 11 10 13 11 1
38 11 9 12 10 6 5 8 7

39 10 5 10 11 11 8 4 4
40 7 11 7 18 12 3 5 1

41 5 4 7 6 1 3

42 2 2 2 6 3 2
43 4 3 4 3 2 1

44 1 1 1 1 1
45 1 2

46 1 1 1

47 1
48

49
50

51

52 1

Total 399 356 499 692 628 729 874 626 631 445

decrease in the proportion of finally childless women at least until birth
cohort C45. Of course, in interpretating these figures one has to consider
the fact that the data result from retrospective surveys and consequently
only provide information about women who survived the interview dates in
the 1980 s. The proportions of finally childless women would presumably
quite higher if related to all women of the respective birth cohorts.
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Table 14.2-3 Cumulated cohort birth rates up to an age of τ , calculated
from SOEP data (CCBRs(τ )), from GLHS data (CCBRg(τ )), and from official
statistics (CCBR∗(τ )). Fachserie 1, Reihe 1, 1999 (pp. 198-200).

Birth cohort τ CCBRs(τ) CCBRg(τ) CCBR∗(τ)

C10 45 1.90
C15 45 1.88
C20 45 1.89 1.80
C25 45 2.15
C30 43 1.93 2.19 2.15
C35 43 2.15 2.18
C40 40 1.98 1.99 1.96
C45 38 1.83 1.75
C50 31 1.44 1.38 1.39
C55 29 1.09 1.09
C60 29 0.82 0.99

6. The next step is to investigate the number of children that were born of
women in our SOEP subsample. We begin with the calculation of cumu-
lated cohort birth rates. Table 14.2-2 shows the data and is organized
in the same way as Table 14.1-2. With the exception of cohort C30,
plotting the cumulated cohort birth rates would show mainly the same
cross-cohort changes as have been visible in Figure 14.1-2. We therefore
only compare the cumulated cohort birth rates up to some higher ages as
shown in Table 14.2-3. Also shown are comparable rates calculated from
official statistics.12 The comparison suggests that the SOEP data for birth
cohort C30 are, in fact, somewhat exceptional and that, for this cohort,
the GLHS data might be more reliable. However, more interesting is the
additional information that can be gained for birth cohorts born before
1930. Since official statistics only allows to calculate completed cohort
birth rates beginning with birth year 1930, one might easily get the im-
pression of a long-term decline of these rates that began with birth cohorts
following C35 (see Section 11.4). Quite to the contrary, our survey data
suggest that the birth rates of cohorts with birth years roughly between
1925 and 1935 were exceptional high.

7. Finally, we can distinguish women with regard to parity. Results from
the SOEP subsample are shown in Table 14.2-4. In the same way as was
done in Table 14.1-4 in the previous section, the lower panel of Table
14.2-4 shows the distribution of parities in subsets of women having at
least one child. This allows to separate the parity distribution from effects
that result from a changing proportion of finally childless women. As
an example, we consider the proportion of women having four or more
children. How this proportion developed is shown graphically in Figure

12These rates are calculated as mean values for 3-year periods in the same way as was
explained in the previous section.
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Table 14.2-4 Upper panel: Number of women with 0, 1, 2, 3, 4, and 5 or
more children, calculated from the data in the SOEP subsample. Lower panel:
Percentage values relating to all women in each of the cohorts who have at least
one child.

Children C10 C15 C20 C25 C30 C35 C40 C45 C50 C55

0 49 34 42 47 49 41 44 30 65 129
1 46 41 79 74 80 59 101 89 99 106
2 55 66 71 95 106 129 185 146 173 115
3 30 23 41 52 47 62 62 57 48 27
4 14 16 15 25 28 26 31 12 8 7

5+ 15 9 15 29 15 21 16 5 2

Children C10 C15 C20 C25 C30 C35 C40 C45 C50 C55

1 28.8 26.5 35.7 26.9 29.0 19.9 25.6 28.8
2 34.4 42.6 32.1 34.5 38.4 43.4 46.8 47.2
3 18.8 14.8 18.6 18.9 17.0 20.9 15.7 18.4
4 8.8 10.3 6.8 9.1 10.1 8.8 7.8 3.9

5+ 9.4 5.8 6.8 10.5 5.4 7.1 4.1 1.6

1900 1910 1920 1930 1940 1950
0

10

20

Birth cohort

Fig. 14.2-3 Percentages of women with four or more children belonging
to birth cohorts C10, . . . , C45; calculated from SOEP data (solid line) and
from GLHS data (dotted line).

14.2-3. The solid line connects figures calculated from the SOEP data, the
dotted line connects comparable figres from the GLHS. Again, the value
for the C30 cohort in the SOEP data should be considered as exceptional.
However, the remarkable result is that we do not find a continuous long-
term decline in the proportion of women with four or more children. To
the contrary, an initial decline was superseded by rising proportions in
birth cohorts with birth years roughly between 1920 and 1930. A repeated
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decline only began roughly at the time when the baby boom ended in the
second half of the 1960 s.

14.3 Fertility and Family Survey

1. Even if surveys refer to the same region and historical period they are
likely to provide more or less different data. So it is always a good idea
to consider all possibly informative data sources and compare the infor-
mation. In the present section we use data from the German part of
the Fertility and Family Survey (FFS). The FFS project was initiated
by the Population Activities Unit (PAU) of the United Nations Economic
Commission for Europe (UNECE) in order to conduct comparable Fertility
and Family Surveys in about 20 ECE member countries.13 The German
FFS was conducted by the Bundesinstitut für Bevölkerungsforschung (BiB,
Wiesbaden) in 1992.14 While several studies using these data have already
been performed and published,15 the data set is now generally available
for scientific research.16

2. The sampling design intended to get data from 10000 persons, 5000 in
the territory of the former FRG (“West”) and 5000 in the territory of the
former GDR (“East”). In both territories, 3000 women and 2000 men of
age 20 to 39, having a German citizenship, should be included.17 The
field work was done during the period May to September in 1992 using a
random route method to select persons for the survey. The final sample
includes data from interviews with 10012 persons. The number of male
and female sample members in both regions of Germany is shown in the
left part of the following table:

All sample members With valid birth year
Region Male Female Male Female

West 2024 3012 2016 3005
East 1992 2984 1982 2971

Since for 38 persons neither a valid birth year nor a valid age at the time
of the interview is known, the number of cases reduces as shown in the
right part of the table. All remaining persons are born between 1952 and

13See www.unece.org/ead/pau/ffs/. Festy and Prioux (2002) provide an overview and
evaluation.

14The basic data documentation is by Pohl (1995). For additional information see the
homepage of the BiB: www.bib-demographie.de.

15Hullen (1998), Roloff and Dorbritz (1999).

16We thank Gert Hullen (BiB) who provided us with a copy of the data. The data set
is also available from the Zentralarchiv für empirische Sozialforschung (Köln).

17For more details on the sampling design see Pohl (1995, pp. 7-8).
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Table 14.3-1 Age at first childbearing in the FFS subsample.

West East

C55 C60 C65 C55 C60 C65

τ d=1 d=0 d=1 d=0 d=1 d=0 d=1 d=0 d=1 d=0 d=1 d=0

15 1 2 3 1 1
16 6 5 3 3 6 5
17 12 6 4 7 14 9
18 32 13 13 35 36 23
19 28 22 13 59 69 57
20 49 21 28 67 106 88
21 38 32 25 94 108 95
22 30 35 19 94 90 91
23 34 31 53 68 62 76
24 40 39 23 54 52 49
25 39 50 32 141 42 48 30 52
26 36 32 26 103 25 33 30 45
27 30 47 17 101 17 17 5 42
28 30 39 8 96 11 15 6 19
29 28 33 2 59 13 6 26
30 33 14 91 7 8 26
31 20 9 46 7 3 24
32 13 4 67 4 2 15
33 12 1 42 5 9
34 6 41 2 17
35 8 47 2 19
36 3 37 2 10
37 35 11
38 1 34 12
39 46 30

Total 529 199 435 287 266 500 621 82 676 91 565 184

1972. Since our interest concerns births we only consider female sample
members. In order to allow comparisons with the GLHS and SOEP we
only consider women who belong to one of the birth cohorts shown in the
following table:

Birth cohort Birth years West East

C55 1953 − 57 728 704
C60 1958 − 62 723 767
C65 1963 − 67 768 751

3. As was done in the previous sections, we begin with an investigation
of the distribution of ages at first childbearing. Table 14.3-1, organized
in the same way as Tables 14.1-1 and 14.2-1, shows the data and can be
used to calculate survivor functions.18 For the cohorts C55 (West) and

18Like the GLHS, also the FFS allows to distinguish women’s own children from step
children and adoptive children. For creating the data in Table 14.3-1 we have only
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Fig. 14.3-1 Comparison of survivor functions for the age at first child-
bearing. FFS survivor functions are calculated from the data in Table
14.3-1. The SOEP and GLHS survivor functions are taken from Figures
14.1-1 and 14.2-1, respectively.

C60 (West) they can be compared with corresponding survivor functions
from the SOEP and GLHS respectively. As can be seen in Figure 14.3-1,
the curves agree quite well. So we can turn to a comparison of all six
age distributions that can be calculated with the data in Table 14.3-1.
The result is shown in Figure 14.3-2. Quite remarkable is the difference
between the distributions in both territories. In the former GDR, women
began childbearing at substantially younger ages, and also the proportion

considered women’s own children. One should note, however, that in a few cases no
valid birth year for the first child is available, the number of women referred to in Table
14.3-1 is therefore slightly smaller than in the table in paragraph 2.
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Fig. 14.3-2 Distribution of age at first childbearing described by survivor
functions, calculated from the data in Table 14.3-2.

14.3 FERTILITY AND FAMILY SURVEY 245

Table 14.3-2 Number of children in the FFS subsample, classified with respect
to mother’s birth cohort and age (τ ).

West East

τ C55 C60 C65 C55 C60 C65

15 1 2 3 1 1
16 7 5 4 4 7 5
17 12 6 6 8 14 10
18 36 17 13 37 39 26
19 31 23 13 62 75 61
20 61 27 38 79 119 100
21 50 42 29 113 143 114
22 51 58 31 128 142 138
23 49 55 69 116 127 118
24 70 60 48 105 112 108
25 71 75 60 113 111 69
26 62 62 47 86 110 71
27 61 85 32 74 81 30
28 64 84 13 53 63 13
29 62 70 9 41 36 1
30 69 56 47 29
31 52 38 28 19
32 40 17 26 8
33 38 13 23 3
34 26 2 8 1
35 25 8
36 11 6
37 1 5
38 4 1
39 1

Total 955 797 412 1174 1240 865
Total∗ 981 826 429 1213 1253 887

of childless women was much smaller than in the former FRG. Further-
more, the distribution is quite similar for all three cohorts. In contrast, the
tendency of delaying childbearing into older ages continues in the western
part of Germany. Of course, at least for the birth cohorts C60 and C65,
the data to not allow to reliably estimate the proportion of eventually
childless women.

4. We now turn to the number of children and begin with cumulated cohort
birth rates. The data are shown in Table 14.3-2. As in Table 14.3-1, we
have only considered women’s own children. We also note that the FFS
questionnaire only asked for birth years of up to four children. However,
the number of women with more than four children is quite small (seven
women have five, and four women have six children). More important
is the number of cases where, for one or more children, there is no valid
birth year. This is documented in the last two rows of Table 14.3-2. The
row labeled Total∗ has been calculated from women’s report on the total
number of their own children, so that the difference between both rows
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Fig. 14.3-3 Cumulated cohort birth rates calculated from Table 14.3-2
for three cohorts in the western part of Germany (solid lines). The dotted
lines show corresponding rates calculated from the SOEP (C55) and the
GLHS (C60).
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Fig. 14.3-3 Cumulated cohort birth rates calculated from the data in
Table 14.3-2 for the western part (solid lines) and the eastern part (dotted
lines) of Germany.

amounts to the number of children without a valid birth year. However,
the impact of these missing values on cumulated cohort birth rates is quite
limited, and so the data can nevertheless be used for further investigation.
Figure 14.3-3 shows these cumulated rates for the cohorts in the western
part of Germany and, for cohorts C55 and C60, also provides a comparison
with the results from the SOEP and the GLHS data, respectively. Figure
14.3-4 compares the rates between both territories.
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14.4 DJI Family Surveys

1. A further source of information about childbearing histories in Germany
is a series of surveys conducted by the Deutsches Familieninstitut (DJI,
München). Data sets are available from the Zentralarchiv für empirische
Sozialforschung (Köln). In the present section we use data from a survey
conducted in the territory of the former FRG in 1988. The sample refers
to persons with a German citizenship who, at the interview date in 1988,
lived in private households and were between 18 and 55 years old.19 The
final sample size is 10043, 4554 men and 5489 women. The following table
shows the distribution of birth years of the female participants:

Birth year Number Birth year Number Birth year Number

1933 130 1946 96 1959 161
1934 121 1947 128 1960 169
1935 129 1948 165 1961 158
1936 153 1949 143 1962 158
1937 143 1950 158 1963 165
1938 139 1951 173 1964 179
1939 149 1952 172 1965 145
1940 142 1953 153 1966 147
1941 123 1954 166 1967 112
1942 129 1955 185 1968 118
1943 148 1956 157 1969 114
1944 137 1957 182 1970 66
1945 96 1958 180

For compatibility with the data discussed in previous sections we consider
the following birth cohorts:

Birth cohort Birth years Number of women

C35 1933 − 1937 676
C40 1938 − 1942 682
C45 1943 − 1947 605
C50 1948 − 1952 811
C55 1953 − 1957 843
C60 1958 − 1962 826

Women born later than 1962 will not be considered because their age in
1988 does not allow any reliable conclusions about childbearing histories.

2. As was done in the previous sections, we begin with an investigation of
ages at first childbearing. This is easy because the data set already contains

19For a description of the sampling design see Alt (1991).
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Table 14.4-1 Age at first childbearing in our DJI subsample.

C35 C40 C45 C50 C55 C60

τ d=1 d=0 d=1 d=0 d=1 d=0 d=1 d=0 d=1 d=0 d=1 d=0

15 1 2 3

16 4 1 3 6 4

17 10 10 5 15 7 13

18 15 12 22 32 38 19

19 37 25 48 50 42 31

20 46 51 41 56 41 40

21 35 53 55 49 39 49

22 69 65 56 56 53 55

23 54 68 51 52 65 39

24 58 59 40 65 51 54

25 65 46 33 55 57 69

26 55 50 28 48 63 54 83

27 39 31 26 46 59 44 66

28 20 29 23 45 39 32 50

29 32 28 26 38 39 11 56

30 9 14 17 17 26 7 50

31 15 18 13 23 21 44

32 6 7 11 18 10 31

33 9 5 9 14 6 36

34 6 4 5 9 4 39

35 1 6 8 7 2 22

36 4 3 4 7 21

37 1 2 1 3 32

38 1 1 1 22

39 1 2 11

40 3 3 13

41 1 14

42 1 16

43 1 8

44 1 22

45 19

46 10

47 15

48 15

49 28

50 18

51 11

52 22

53 14

54 15

55 18

Total 594 80 595 86 526 79 711 99 671 172 521 305
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Fig. 14.4-1 Comparison of survivor functions for the age at first child-
bearing for birth cohorts C35, C40, C45, C50, C55, and C60.

a variable providing the age of women at first childbearing.20 Table 14.4-
1 shows, separately for birth cohorts, how many women of specified age
have given birth to a child (d = 1) or are censored at the interview date
(d = 0).21 These data can be used to estimate survivor functions as in
the previous sections. Figure 14.4-1 compares the survivor functions with
estimates based on the GLHS SOEP and FFS data. For birth cohorts C35,
C40, C45, and C50, the results are quite similar. Substantial differences
only occur for the two younger cohorts, C55 and C60.

20We have used the SPSS file fall88.sav. The variable providing age at first child-
bearing is F275 ALT.

21Notice that for some birth cohorts the totals are slightly smaller than the number
of cases tabulated in the preceeding paragraph because we have dropped cases with a
reported age at first childbearing below 15.
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Birth Rates in East Germany

This chapter is not finished yet.

Chapter 16

In- and Out-Migration
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Chapter 17

An Analytical Modeling Approach

In the present chapter we begin with the discussion of an analytical model
that can support modal reasoning about demographic processes. We begin
with a version of the model that takes into account births and deaths but
ignores migration. How to extend the model in order to include migration
will be discussed in Section 18.6.

17.1 Conceptual Framework

1. To introduce a conceptual framework for the model, we refer to a de-
mographic process, (S, T ∗, Ωt), as discussed in Section 3.2. S provides
the spatial context, T

∗ is the time axis, and Ωt represents the population
living in the space S in the temporal location t ∈ T

∗. The numbers of men
and women in Ωt aged τ will be denoted by nm

t,τ and nf
t,τ , respectively; the

total number of persons aged τ will be denoted by nt,τ := nm
t,τ + nf

t,τ . To
simplify notations we will assume that age is measured in the same time
units that are used in the definition of T

∗. For example, if T
∗ refers to

calendar years, it will be assumed that age is measured in completed years.
We also assume a maximal age which will be denoted by τm.1

2. To formulate the model it is now helpful to use matrix notations.2 Clas-
sified by age, the male and female population will be represented, respec-
tively, by the vectors

nm
t :=






nm
t,1
...

nm
t,τm




 and n

f
t =






nf
t,1
...

nf
t,τm




 (17.1.1)

In addition, we represent the total population by the vector nt := nm
t +n

f
t .

Notice that the count of vector elements begins with 1, not with 0, so that
only persons who have reached an age of one time unit will be given an
explicit representation.

3. The purpose of a demographic model is to provide a conceptual frame-
work for thinking about possible developments of a population:

n0 −→ n1 −→ n2 −→ · · ·

1This is not a serious limitation because τm can be given an arbitrarily high value;
also, in practical applications, τm can be assumed to be an open-ended age class.

2For a brief introduction to matrix notations and elementary rules see Rohwer and
Pötter (2002a, Appendix A).
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that begin in some arbitrary temporal location with an initial population
Ω0, here represented by the vector n0. This requires the introduction of
rules that can be used to derive n1 from n0, n2 from n1, and so on. Since
we ignore migration (think of S as a closed region), it suffices to take into
account birth and death events. However, only women can give birth to
children, and so it is necessary to represent the process in the following
way:

nm
0 −→ nm

1 −→ nm
2 −→ · · ·

↗ ↗ ↗

n
f
0 −→ n

f
1 −→ n

f
2 −→ · · ·

4. In order to formulate rules we use age-specific birth and death rates.
Death rates for men and women at age τ in temporal location t will be
denoted, respectively, by

δm
t,τ and δf

t,τ

Given these rates, the number of men and women dying in t at age τ
is δm

t,τ nm
t,τ and δf

t,τnf
t,τ , respectively. Notice that the assumption of a

maximal age τm implies that δm
t,τm

= δf
t,τm

= 1.

5. Age-specific birth rates will be denoted by β∗
t,τ .3 In order to simplify

the formulation of the model these rates will be interpreted as follows:
β∗

t,τnf
t,τ is the number of children, born of women at age τ in temporal

location t, who survived the first time unit and are consequently members
of Ωt+1. Of course, since only women can bear children, these birth rates
need not be indexed with respect to sex. However, one has to take into
account differences in the percentages of male and female births. We use
σm and σf to denote the proportions (σm + σf = 1). Therefore, if nt+1,1

is the total number of children born in t, the number of male children is
nm

t+1,1 = σmnt+1,1 and the number of female children is nf
t+1,1 = σfnt+1,1.

To ease notations, we assume that the sex ratio at birth is independent of
mother’s age and constant over time.

6. Since we only consider children who survived the first time unit we
also do not explicitly model death rates of children during the temporal
location in which they are born. There is, however, a simple relationship
between β∗

t,τ and the birth rates βt,τ , introduced in Section 11.1:

β∗
t,τ = βt,τ (1 − δt,0)

In this formulation, δt,0 = σmδm
t,0 + σfδf

t,0 is a weighted mean of the death
rates of male and female children during their first year of life.

3We assume that these birth rates are defined for all ages and have a value of zero at
ages outside the reproductive period of women.
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7. Assuming that birth and death rates are given, one can derive some
elementary rules for the development of the population. First, the total
number of children born in temporal location t and still alive in t + 1 can
be derived from n

f
t and the age-specific birth rates as follows:

nt+1,1 =

τm∑

τ=1

β∗
t,τnf

t,τ

Secondly, the relation between the number of men and women at ages
τ ≥ 1 in two successive temporal locations can be derived from death
rates:

nm
t+1,τ+1 = (1 − δm

t,τ ) nm
t,τ and nf

t+1,τ+1 = (1 − δf
t,τ ) nf

t,τ

Together, the three equations allow to derive nm
t and n

f
t from nm

0 and n
f
0

for all t > 0. Of course, this requires to think of the birth and death rates,
and also the proportions of male and female births, as given and known
parameters of the demographic process.

8. We now proceed with matrix notation. First, we define (τm, τm) matri-
ces

Bt :=








β∗
t,1 β∗

t,2 · · · β∗
t,τm

0 0 · · · 0
...

...
...

0 0 · · · 0








which comprise the age-specific birth rates. The number of male and
female children in t + 1 is then given, respectively, by








nm
t+1,1

0
...
0








= σm Bt n
f
t and








nf
t+1,1

0
...
0








= σf Bt n
f
t

Secondly, we define (τm, τm) matrices Dm,t and Df,t which comprise the
death rates of men and women:

Dm,t :=









0 0 · · · 0 0
1 − δm

t,1 0 · · · 0 0
0 1 − δm

t,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 − δm
t,τm−1 0









Df,t is of the same form but has δf
t,τ instead of δm

t,τ . Using these matrices,
the three equations derived in the previous paragraph can be written as

nm
t+1 = Dm,t n

m
t + σm Bt n

f
t

n
f
t+1 = Df,t n

f
t + σf Bt n

f
t

(17.1.2)
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17.2 The Stable Population

1. The model framework introduced in the previous section can be used
to speculate about possible population developments. This, of course,
requires additional assumptions about birth and death rates and how they
change over time. The simplest assumption is that the rates are constant
over time. This assumptions leads to the idea of a stable population, an
idea first developed by Alfred J. Lotka (1907, 1922). In the present section
we illustrate the idea by an example; some mathematical details will be
discussed in the next section.

2. To begin with, we distinguish between the size of a population and
its age distribution. Changes of size can be described by growth rates.
Denoting the size of the male and female population by nm

t := Στnm
t,τ and

nf
t := Στnf

t,τ , respectively, the growth rates are

ρm,t :=
nm

t+1 − nm
t

nm
t

and ρf,t :=
nf

t+1 − nf
t

nf
t

The growth rate of the whole population, nt := nm
t +nf

t , is then a weighted
mean, namely

ρt =
ρm,t nm

t + ρf,t nf
t

nm
t + nf

t

3. We now assume that birth and death rates are constant over time. This
implies that also the matrices Bt, Dm,t, and Df,t are independent of time
and may simply be denoted by B, Dm, and Df . Using the definition
F := Df + σfB, we get

n
f
t+1 = Fn

f
t (17.2.1)

Using this equation and starting with an initial female population n
f
0 , we

may write:

n
f
1 = Fn

f
0 , n

f
2 = Fn

f
1 = F2n

f
0 , n

f
3 = Fn

f
2 = F3n

f
0

and so on. This leads to the general equation

n
f
t = Ftn

f
0 (17.2.2)

which allows to calculate n
f
t from a knowledge of the initial population n

f
0

and the matrix F.

4. To investigate the development of n
f
t if n

f
0 and F are given, we begin
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Tab. 17.2-1 Development of n
f
t in our example.

t nf
t1 nf

t2 nf
t3 nf

t4 nf,p
t1 nf,p

t2 nf,p
t3 nf,p

t4 nf
t ρf,t

0 1.00 1.00 1.00 1.00 0.25 0.25 0.25 0.25 4.00 -0.0750
1 1.60 0.80 0.70 0.60 0.43 0.22 0.19 0.16 3.70 -0.0595
2 1.22 1.28 0.56 0.42 0.35 0.37 0.16 0.12 3.48 0.0989
3 1.62 0.98 0.90 0.34 0.42 0.25 0.23 0.09 3.82 0.0531
4 1.51 1.29 0.68 0.54 0.38 0.32 0.17 0.13 4.03 0.0500
5 1.70 1.21 0.91 0.41 0.40 0.29 0.21 0.10 4.23 0.0658
6 1.75 1.36 0.85 0.54 0.39 0.30 0.19 0.12 4.51 0.0509
7 1.87 1.40 0.95 0.51 0.39 0.30 0.20 0.11 4.74 0.0613
8 1.98 1.50 0.98 0.57 0.39 0.30 0.20 0.11 5.03 0.0551
9 2.09 1.58 1.05 0.59 0.39 0.30 0.20 0.11 5.30 0.0583

10 2.21 1.67 1.11 0.63 0.39 0.30 0.20 0.11 5.61 0.0568
11 2.33 1.77 1.17 0.66 0.39 0.30 0.20 0.11 5.93 0.0574
12 2.47 1.87 1.24 0.70 0.39 0.30 0.20 0.11 6.27 0.0573
13 2.61 1.97 1.31 0.74 0.39 0.30 0.20 0.11 6.63 0.0572
14 2.76 2.09 1.38 0.78 0.39 0.30 0.20 0.11 7.01 0.0573
15 2.92 2.21 1.46 0.83 0.39 0.30 0.20 0.11 7.41 0.0572
16 3.08 2.33 1.54 0.88 0.39 0.30 0.20 0.11 7.84 0.0573
17 3.26 2.47 1.63 0.93 0.39 0.30 0.20 0.11 8.28 0.0573
18 3.45 2.61 1.73 0.98 0.39 0.30 0.20 0.11 8.76 0.0573
19 3.64 2.76 1.83 1.04 0.39 0.30 0.20 0.11 9.26 0.0573
20 3.85 2.91 1.93 1.10 0.39 0.30 0.20 0.11 9.79

with a small example. We assume that there are only four age groups
(τm = 4), birth rates are given by

β∗
1 = 0, β∗

2 = 2, β∗
3 = 1.2, β∗

4 = 0

and female death rates are given by

δf
1 = 0.2, δf

2 = 0.3, δf
3 = 0.4, δf

4 = 1

Furthermore, it will be assumed that the proportion of female births is
σf = 0.5. From these assumptions one can calculate the matrix

F =







0 1 0.6 0
0.8 0 0 0
0 0.7 0 0
0 0 0.6 0







Now, assuming arbitrarily some initial female population n
f
0 = (1, 1, 1, 1)′,

one can use equation (17.2.2) to calculate n
f
t for all subsequent temporal

locations t > 0. Table 17.2-1 shows the result of the calculation for t =
1, . . . , 20. The total size of the female population is seen in the column
labeled nf

t and its growth rate in the last column. Obviously, the growth
rates converge to a fixed value, ρ∗

f ≈ 5.73 %, in this example. This is the
first remarkable result.
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5. A second result concerns the age distribution. This is seen if we ex-
plicitly distinguish between the population size and the age distribution.
Since the size of the population is given by nf

t , the age distribution can be
represented by the vector

n
f,p
t :=

1

nf
t

n
f
t

whose components show the relative frequencies of persons in the age
groups. As seen in Table 17.2-1, also these frequencies converge to some
fixed values, in our example:

n
f,p
t −→ nf,p ≈ (0.39, 0.30, 0.20, 0.11)′

6. To summarize the findings from this example, the demographic process
eventually reaches some kind of equilibrium which is fully described by a
time-independent growth rate, ρ∗

f , and a time-independent age distribu-

tion, nf,p. If this equilibrium is approximately reached in some temporal
location t, then

n
f
t+k ≈ (1 + ρ∗

f )k nf
t nf,p (for k = 1, 2, 3, . . .)

ρ∗f is then called the intrinsic growth rate of the demographic process, and

nf,p is called its stable (female) age distribution.

17.3 Mathematical Supplements

We now discuss under which conditions intrinsic growth rates and stable
age distributions do exist, and whether they depend on the initial popu-
lation vector n

f
0 or only on the matrix F.

Existence of a Stable Population

1. We begin with the first question, whether one can construct an intrinsic
growth rate and a stable age distribution for some given matrix F. This
depends on the coefficients of F. As introduced in the previous section, F

has the following structure:4

F =










σf β∗
1 σfβ∗

2 · · · σf β∗
τm−1 σf β∗

τm

1 − δf
1 0 · · · 0 0

0 1 − δf
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 − δf
τm−1 0










4Matrices having this structure are often called Leslie matrices to remind of P.H.
Leslie who has first provided an extensive discussion with demographic applications,
see Leslie (1945).
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One can be sure that F ≥ 0, meaning that all coefficients of F are non-
negative. One can also safely assume that 0 < δf

τ < 1, for τ = 1, . . . , τm−1,
and consequently all entries in the subdiagonal of F are greater than zero.
But a question concerns the birth rates β∗

τ . Since the reproductive period
of women is limited and, in general, τb < τm, we can assume that β∗

τb
> 0

but need to observe that β∗
τ = 0 for τ > τb, implying that F has less than

full rank.

2. We can proceed, however, in two steps. In a first step we consider only
the first τb rows and and columns of F, that is, the matrix

F̃ :=










σf β∗
1 σfβ∗

2 · · · σfβ∗
τb−1 σfβ∗

τb

1 − δf
1 0 · · · 0 0

0 1 − δf
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 − δf
τb−1 0










This is now a non-negative matrix which has full rank.5 Furthermore, F̃

is an irreducible matrix.6 This allows to apply a famous mathematical
theorem by G. Frobenius.7 The theorem guarantees that F̃ has at least
one real positive eigenvalue, say λ∗, also called a dominant eigenvector
of F̃, with a corresponding eigenvector, say v∗ = (v∗1 , . . . , v∗τb

)′, whose
coefficients are all real and positive. So we can write the equation

F̃ v∗ = λ∗ v∗ (17.3.1)

A further implication of the theorem that will be used below in the discus-
sion of our second question is that all eigenvalues of F̃ have an absolute
value (modulus) which is less than, or equal to, λ∗.

3. We can now derive a stable age distribution and an intrinsic growth
rate. The intrinsic growth rate can be simply defined by ρ∗

f := λ∗−1. The
derivation of the stable age distribution is in two steps. In a first step we
define components of a vector nf,∗ by

nf,∗
τ :=

{
v∗τ for τ = 1, . . . , τb

1−δf
τ−1

λ∗ v∗τ−1 for τ = τb + 1, . . . , τm

5This is seen by the determinant of F̃ which is

det(F̃) = ± σf β∗
τb

τb−1
Y

τ=1

(1 − δf
τ ) 6= 0

The sign depends on whether τb is even or odd.

6By this is meant that, for any two indices i and j (1 ≤ i < j ≤ τb), one can find
further indices, say k1, . . . , km, such that aik1

ak1k2
· · · akmj > 0.

7We refer to Gantmacher (1971, ch. xxiii).
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From equation (17.3.1) and the structure of F it then follows that

Fnf,∗ = λ∗ nf,∗ = (1 + ρ∗
f )nf,∗ (17.3.2)

showing that the age distribution which is represented by nf,∗ will not
change when multiplied by F; all components of nf,∗ will grow, or shrink,
with the same rate, ρ∗

f . Therefore, to get the stable age distribution one

only has to transform nf,∗ into proper proportions:

nf,p
τ := nf,∗

τ

/
τm∑

j=1

nf,∗
j

4. To illustrate the argument we use the example of the previous section.
In this example the matrix F̃ is given by

F̃ =





0 1 0.6
0.8 0 0
0 0.7 0





Calculating eigenvalues and eigenvectors can be done with the following
TDA script:8

mdef(F,3,3) = 0.0,1.0,0.6,

0.8,0.0,0.0,

0.0,0.7,0.0;

mev(F,ER,EI,EVR,EVI);

mpr(ER);

mpr(EI);

mpr(EVR);

mpr(EVI);

One finds that the dominant eigenvalue is λ∗ = 1.0573 and the correspond-
ing eigenvector is

v∗ = (0.7405, 0.5603, 0.3710)′

The eigenvalue provides the intrinsic growth rate, ρ∗
f = 0.0573, which is

identical with the value found in the previous section. The eigenvector can
be used to calculate the components of nf,p:

nf,∗
1 = 0.7405, nf,∗

2 = 0.5603, nf,∗
3 = 0.3710, and

nf,∗
4 =

0.6

1.0573
0.3710 = 0.2105

8More detailed explanations of the practical calculations will be given in Section 17.5.1.
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Of course, equation (17.3.2) does not change if nf,∗ is multiplied by an ar-
bitrary scalar value. So we can rescale nf,∗ to get a frequency distribution
with components adding to unity. The result is

nf,p = (0.39, 0.30, 0.20, 0.11)′

and equals the age distribution found in the previous section.

5. It would suffice to calculate the dominant eigenvalue of F̃ because the
corresponding eigenvector, and consequently the stable age distribution,
can be derived from the death rates. Let the dominant eigenvalue, λ∗, be
given. Since the corresponding eigenvector, v∗, is determined only up to
an arbitrary multiplicative factor, we can set v∗

1 = 1. All further elements
of v∗ can be calculated recursively with the formula

v∗τ =
1 − δf

τ−1

λ∗
v∗τ−1 (for τ = 2, . . . , τm)

The argument also shows that, if λ∗ = 1, the stable age distribution de-
pends only on the death rates, not on the birth rates. But, of course, λ∗

also depends on birth rates.

Convergence to a Stable Age Distribution

6. We now turn to the second question, whether, beginning with an ar-
bitrary initial female population n

f
0 , the sequence n

f
t = Ftn

f
0 finally con-

verges to an equilibrium defined by the intrinsic growth rate, ρ∗
f , and the

stable age distribution, nf,p.9 As will be shown, the answer is positive
under quite general conditions. To develop the argument, we first consider
the sub-matrix F̃ which consists of the first τb rows and columns of F.
Correspondingly, we refer to the first τb elements of n

f
t by the vector n

f,a
t .

Since F̃ is an upper block-diagonal matrix, it follows that

n
f,a
t = F̃tn

f,a
0 (17.3.3)

We now show that, given an additional assumption to be explained be-
low, n

f,a
t converges to a vector which is proportional to v∗, that is, the

eigenvector corresponding to the dominant eigenvalue of F̃.

7. This requires to refer to all eigenvalues of F̃ which will be denoted by
λj , with corresponding eigenvectors vj , for j = 1, . . . , τb. One of these
eigenvalues, say λj∗ = λ∗, is the dominant one and has the corresponding
eigenvector vj∗ = v∗. So we can write the equations

F̃vj = λjvj (for j = 1, . . . , τb)

9It will be assumed that there is at least one woman of an age under, or equal to, τb.
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which, by defining Λ := diag (λ1, . . . , λτb
) and V := (v1, . . . ,vτb

), may
also be written as a single matrix equation

F̃V = VΛ

As mentioned above, F̃ has full rank and its eigenvectors are therefore
linear independent. This implies that V is an invertible matrix and we
may write F̃ = VΛV−1, from which it follows that

F̃t = VΛt V−1

This then allows to write

n
f,a
t = F̃t n

f,a
0 = VΛtV−1n

f,a
0 = VΛtu

where, for the last equation, we have used the abbreviation u := V−1n
f,a
0 .

In a next step this equation can be written in the following way:

n
f,a
t = (v1, . . . ,vτb

)






λt
1u1

...
λt

τb
uτb




 =

τb∑

j=1

(λt
juj)vj

which shows that n
f,a
t is a weighted mean of the eigenvectors of F̃. Finally,

dividing by λt
j∗ , we get

1

λt
j∗

n
f,a
t =

τb∑

j=1

( λt
j

λt
j∗

uj

)

vj = uj∗vj∗ +
∑

j 6=j∗

(
λj

λj∗

)t

uj vj (17.3.4)

8. This equation can be used to think about the convergence problem.
From the theorem of Frobenius we already know that λj∗ ≥ |λj | for all
j = 1, . . . , τb. We now introduce a further assumption, to be discussed be-
low, that λj∗ > |λj | for all j 6= j∗. Given this assumption, it follows that
the second term on the right-hand side of equation (17.3.4) will converge
to zero and this, in turn, implies the convergence

1

λt
j∗

n
f,a
t −→ uj∗ vj∗

This shows that, for sufficiently large t,

n
f,a
t+1 ≈ λj∗n

f,a
t

and n
f,a
t will be approximately proportional to the eigenvector v∗. More-

over, also the remaining components of n
f
t will converge to a stable age

distribution. This is seen from the fact that these remaining components
only depend on the growth of the female population at age τb and the
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death rates at ages greater than, or equal to, τb. Therefore, if eventually
the number of women at age τb grows, or shrinks, with a constant (intrin-
sic) rate, this will propagate to all higher ages. The stable age distribution
for all ages may then be calculated as shown in the first part of this section.

9. It remains to discuss the assumption that the dominant eigenvalue of F̃

is greater, in magnitude, than all other eigenvalues. This is not necessarily
the case. For example, the matrix

F̃ :=

[
0 1

0.8 0

]

has two real eigenvalues, 0.8944 and -0.8944, having the same magnitude.
In this example, as shown by equation (17.3.4), nf,a

t will not converge to a
unique stable age distribution but oscillate between two different distribu-
tions. Such cases are, however, exceptional. A sufficient condition for the
existence of a dominant eigenvalue which is greater, in magnitude, than
all other eigenvalues is that there are at least two successive ages with a
positive birth rate.10 Therefore, cyclical solutions will only occur if one
uses a highly aggregated Leslie matrix; for instance, a matrix that only
distinguishes three age groups, below τa, between τa and τb, and above τb.
If one distinguishes at least two age groups in the reproductive period one
can safely assume the existence of a stable age distribution.

17.4 Female and Male Populations

1. So far we have only considered the development of a female population.
Assuming time-constant birth and death rates, it was shown that the devel-
opment of a female population eventually reaches an equilibrium which is
characterized by a constant growth rate, ρ∗, and a stable age distribution,
nf,p. So the question remains how a corresponding male population will
develop. To find an answer one can begin with equations (17.1.2) which
have been derived at the end of Section 17.1. Assuming time-constant
birth and death rates, they can be written as follows:

nm
t+1 = Dm nm

t + σm Bn
f
t and n

f
t+1 = Df n

f
t + σf Bn

f
t

If σm = σf and the age-specific death rates were identical for men and
women, both the male and female population would eventually reach the
same stable age distribution. However, as we have seen in Part II, both
assumptions are not valid. Instead, most often σm > σf , and in most of
the age groups death rates are higher for men than for women.

10This is mentioned by Anton and Rorres (1991, p. 654) where one can also find a good
introduction to much of the mathematics behind the model. For a statement, and proof,
of sufficient and necessary conditions see Demetrius (1971).
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2. Since only women can bear children it is easy, however, to derive the
development of the male population from the development of the female
population. The argument goes in two steps. The first step concerns
newborn male children. As shown in Section 17.1, their number is given
by

nm
t+1,1 = σm

τb∑

τ=τa

β∗
τ nf

t,τ

and therefore only depends on the number and age distribution of women in
the reproductive period. Consequently, if the female population eventually
has a stable age distribution and grows, or shrinks, with a constant rate
ρ∗, also the number of newborn male children will grow, or shrink, with
the same rate, that is, we can write

nm
t+1,1 = (1 + ρ∗) nm

t,1

But this will then propagate to all further ages, and the age distribution of
the male population will only depend on male death rates. For example,
nm

t+2,2 = nm
t+1,1(1 − δm

1 ), and

nm
t+3,3 = nm

t+2,2(1 − δm
2 ) = nm

t+1,1(1 − δm
1 )(1 − δm

2 )

So we may write for all ages τ > 1 the equation

nm
t+τ,τ = nm

t+1,1

τ−1∏

j=1

(1 − δm
j )

Therefore, if nm
t+1,1 grows, or shrinks, with a constant rate ρ∗, the same

will be true for the number of men at all ages. Consequently, also the
male population will eventually reach a stable age distribution which can
be derived from male death rates in the same way as was shown in the
previous section for females. To repeat the method of calculation, one
begins with an arbitrary value for the number of males in age 1, say v∗

1 = 1.
Then one can calculate recursively

v∗τ =
1 − δm

τ−1

1 + ρ∗
v∗τ−1 (17.4.1)

for τ = 2, . . . , τm. The frequencies in the stable age distribution are then
simply nm,p

τ = v∗τ/Σjv
∗
j .
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17.5 Practical Calculations

In the present section we discuss how one can practically calculate intrinsic
growth rates and stable age distributions with real data.

17.5.1 Two Calculation Methods

1. For the calculations we use matrix commands available in the computer
program TDA.11 There are two possible approaches. The first one relies
on a direct calculation of the eigenvalues (and eigenvectors) of the matrix
F̃ introduced in Section 17.3. For an illustration we use the example from
Section 17.2. The TDA script is shown in Box 17.5-1. The mdef command
is used to define the matrix

F̃ =





0 1 0.6
0.8 0 0
0 0.7 0





called F in the script. Then the mev command is used to calculate eigen-
values and eigenvectors of this matrix. The command gets F as input and
creates two vectors (ER and EI) and two matrices (EVR and EVI) as out-
put. ER and EI contain, respectively, the real and imaginary parts of the
eigenvalues, and EVR and EVI contain, respectively, the real and imaginary
parts of the eigenvectors. Their contents are shown in the lower part of
Box 17.5-1. Most important is the dominant eigenvalue which is 1.0573 in
this example. As shown in Section 17.3, one can immediately derive the
intrinsic growth rate and the stable age distribution.

2. An alternative calculation method relies on the fact that, beginning with
an arbitrary female population vector n

f
0 , one can iteratively calculate new

population vectors

n
f
t = Fn

f
0

which finally converge to a stable population vector. Compared with the
first method, there are two advantages. One does not need to use the
reduced matrix F̃ but can directly work with the complete Leslie matrix
F. And one gets, in addition, information about the number of iterations
required to approximately reach the stable distribution.

3. To ease the application of this method TDA provides the mpit com-
mand. As input, the command requires information about the matrix
F, the initial population vector n

f
0 , and the number of iterations to be

performed, say tn. The command has the following syntax:

mpit(A,N,T,R)

11This program is freely available via www.stat.ruhr-uni-bochum.de/tda.html.
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Box 17.5-1 TDA script to create the matrix F̃ and calculate its eigenvalues

and eigenvectors.

silent = -1; # echo commands

mfmt = 7.4; # set the print format

mdef(F,3,3) = 0.0,1.0,0.6, # define the matrix F

0.8,0.0,0.0,

0.0,0.7,0.0;

mev(F,ER,EI,EVR,EVI); # calculate eigenvalues and eigenvectors

# of F

mpr(ER); # print real part of eigenvalues

mpr(EI); # print imaginary part of eigenvalues

mpr(EVR); # print real part of eigenvectors

mpr(EVI); # print imaginary part of eigenvectors

ER EI EVR EVI

------- ------- ----------------------- -----------------------

-0.5286 0.1958 0.4305 0.4305 0.7405 -0.3697 0.3697 0.0000

-0.5286 -0.1958 -0.7552 -0.7552 0.5603 0.2798 -0.2798 0.0000

1.0573 0.0000 1.0000 1.0000 0.3710 -0.0000 0.0000 0.0000

T is a scalar that provides the number of iterations, tn. N is a column vector
with τm components (equal to the number of rows of the Leslie matrix F)
and contains the initial population vector. A is a matrix with τm rows and
two columns; the first column contains the age-specific birth rates and the
second column contains the age-specific survivor rates. Using notations
introduced in Section 17.1, the matrix A and the vector N are assumed to
be defined as follows:

A =






σfβ∗
1 1 − δf

1
...

...
σfβ∗

τm
1 − δf

τm




 and N =






nf
0,1
...

nf
0,τm






As output, the command creates the matrix R with tn + 1 rows and τm

columns. The t-th row (for t = 0, . . . , tn) contains the elements of the

vector n
f
t .

4. The TDA script in Box 17.5-2 illustrates the mpit command with the
same example used above. In order to replicate the values shown in Table
17.2-1 in Section 17.2, the initial population vector N has all components
set to 1. The mpit command then performs 20 iterations and saves the
result in the matrix R. By adding the rows of R one gets the vector NT

containing the population sizes which can be used, then, to calculate age
distributions (in D) and the growth rates (in RT). Of course, the value in
the last component of RT is not a valid growth rate.
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Box 17.5-2 TDA script to illustrate the mpit command.

silent = -1; # echo commands

mfmt = 5.2; # print format

mdef(A,4,2) = 0, 0.8, # define matrix A containing birth

1, 0.7, # rates in the first column and

0.6, 0.6, # survivor rates in the second column

0, 0.0;

mdefc(4,1,1,N); # define unit vector N (initial population)

mpit(A,N,20,R); # perform 20 iterations, save result in R

mpr(R); # print the resulting matrix R

mmul(R,N,NT); # sum rows of R, save result in vector NT

mpr(NT); # print NT

mexpr(R/NT,D); # calculate age distributions in D

mpr(D); # print age distributions

mexpr((lag(NT,1) - NT) / NT,RT); # calculate growth rates in RT

mfmt = 7.4; # new print format

mpr(RT); # print growth rates

R NT D RT

---------------------- ---- ---------------------- -------

1.00 1.00 1.00 1.00 4.00 0.25 0.25 0.25 0.25 -0.0750

1.60 0.80 0.70 0.60 3.70 0.43 0.22 0.19 0.16 -0.0595

1.22 1.28 0.56 0.42 3.48 0.35 0.37 0.16 0.12 0.0989

1.62 0.98 0.90 0.34 3.82 0.42 0.26 0.23 0.09 0.0531

1.51 1.29 0.68 0.54 4.03 0.38 0.32 0.17 0.13 0.0500

1.70 1.21 0.90 0.41 4.23 0.40 0.29 0.21 0.10 0.0658

1.75 1.36 0.85 0.54 4.51 0.39 0.30 0.19 0.12 0.0509

1.87 1.40 0.95 0.51 4.74 0.40 0.30 0.20 0.11 0.0613

1.98 1.50 0.98 0.57 5.03 0.39 0.30 0.20 0.11 0.0551

2.09 1.58 1.05 0.59 5.30 0.39 0.30 0.20 0.11 0.0583

2.21 1.67 1.11 0.63 5.61 0.39 0.30 0.20 0.11 0.0568

2.33 1.77 1.17 0.66 5.93 0.39 0.30 0.20 0.11 0.0574

2.47 1.87 1.24 0.70 6.27 0.39 0.30 0.20 0.11 0.0573

2.61 1.97 1.31 0.74 6.63 0.39 0.30 0.20 0.11 0.0572

2.76 2.09 1.38 0.78 7.01 0.39 0.30 0.20 0.11 0.0573

2.92 2.21 1.46 0.83 7.41 0.39 0.30 0.20 0.11 0.0572

3.08 2.33 1.54 0.88 7.84 0.39 0.30 0.20 0.11 0.0573

3.26 2.47 1.63 0.93 8.28 0.39 0.30 0.20 0.11 0.0573

3.45 2.61 1.73 0.98 8.76 0.39 0.30 0.20 0.11 0.0573

3.64 2.76 1.83 1.04 9.26 0.39 0.30 0.20 0.11 0.0573

3.85 2.91 1.93 1.10 9.79 0.39 0.30 0.20 0.11 -1.0000
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17.5.2 Calculations for Germany 1999

1. The intrinsic growth rate and stable female and male age distributions
pertaining to Germany in the year 1999 can be calculated from Tables 7.1-
1 and 11.1-1. In order to prepare the required data, shown in Table 17.5-1,
we assumed that the reproductive age of women begins at τa = 14 and
ends at τb = 51.12 Since in 1999 the number of male and female births was
396292 and 374448,13 one gets σm = 0.514 and σf = 0.486. The survivor
rate during the first year of life can then be calculated as

1 − (0.514 · 0.004952 + 0.486 · 0.004010) = 0.9955

and this can be used to calculate the birth rates β∗
τ , which are used for

our model, from the birth rates βτ which are shown in Table 17.5-1:

β∗
τ = 0.9955 βτ

2. Beginning with the first of the two calculation methods discussed in
the previous section, the next step is to create the matrix F̃ which, in the
current application, has 51 rows and columns, and calculate its dominant
eigenvalue. We have done this with the TDA script shown in Box 17.5-3.
Input is a data file, spm1.dat, that contains the data shown in Table 17.5-
1.14 The dominant eigenvalue is approximately λ∗ = 0.985 corresponding
to a negative intrinsic growth rate of ρ∗ = −1.5 %. The interpretation is:
If the birth and death rates of 1999 would remain constant in the future,
and if migration would not take place, the population would eventually
decline with a rate of -1.5% per year.

3. In order to calculate the stable age distribution we use the method
described at the end of Section 17.4 for the male population but, of course,
can also be applied to find the stable female age distribution. We begin
with v∗1 := 1 and then recursively apply formula (17.4.1). For example,

v∗2 =
1 − 0.000421

0.985
v∗1 = 1.0148, v∗

3 =
1 − 0.000304

0.985
v∗2 = 1.0299

and so on, will result in a vector that is proportional to the stable age distri-
bution of men. Using the female death rates instead will produce a vector

12The number of 80 births at age 14 or below has been related to the midyear number
of women at age 14, which was 437300 in 1999, and the number of 16 births at age 51 or
above has been related to the midyear number of women at age 51, which was 483000
in 1999.

13Fachserie 1, Reihe 1, 1999 (p. 42).

14In addition, the data file contains two more columns containing, respectively, age-
specific numbers of men and women in 1999 in Germany, taken from Table 7.1-1 in
Section 7.1. The female population vector will be used below to illustrate the second
calculation method.



268 17 AN ANALYTICAL MODELING APPROACH

Table 17.5-1 Birth and death rates in Germany in 1999, calculated from
Tables 7.1-1 and 11.1-1.

τ δm
τ δf

τ βτ τ δm
τ δf

τ βτ

0 0.004952 0.004010 0 46 0.003603 0.001953 0.000290

1 0.000421 0.000352 0 47 0.003927 0.002034 0.000104

2 0.000304 0.000212 0 48 0.004295 0.002198 0.000086

3 0.000223 0.000165 0 49 0.004574 0.002407 0.000046

4 0.000198 0.000143 0 50 0.005180 0.002618 0.000023

5 0.000127 0.000106 0 51 0.005445 0.002928 0.000033

6 0.000166 0.000107 0 52 0.006376 0.003213 0

7 0.000152 0.000126 0 53 0.006121 0.003275 0

8 0.000163 0.000100 0 54 0.007317 0.003737 0

9 0.000115 0.000117 0 55 0.007989 0.004061 0

10 0.000137 0.000090 0 56 0.008473 0.004049 0

11 0.000144 0.000090 0 57 0.009509 0.004582 0

12 0.000157 0.000118 0 58 0.009642 0.004596 0

13 0.000168 0.000112 0 59 0.011211 0.005307 0

14 0.000247 0.000149 0.000183 60 0.012309 0.005793 0

15 0.000313 0.000192 0.000778 61 0.013351 0.006136 0

16 0.000410 0.000242 0.002762 62 0.014959 0.006751 0

17 0.000654 0.000327 0.006807 63 0.016750 0.007453 0

18 0.001012 0.000348 0.013850 64 0.018706 0.008709 0

19 0.000959 0.000372 0.024724 65 0.020027 0.009375 0

20 0.000941 0.000310 0.035231 66 0.022121 0.010193 0

21 0.001015 0.000353 0.044585 67 0.025004 0.011762 0

22 0.000895 0.000283 0.054319 68 0.028132 0.013154 0

23 0.000879 0.000270 0.062574 69 0.030690 0.014562 0

24 0.000961 0.000308 0.069394 70 0.033592 0.016121 0

25 0.000803 0.000345 0.078996 71 0.035825 0.017972 0

26 0.000885 0.000300 0.083525 72 0.038527 0.020385 0

27 0.000849 0.000320 0.085854 73 0.042586 0.022606 0

28 0.000883 0.000352 0.092532 74 0.047512 0.024907 0

29 0.000820 0.000354 0.093590 75 0.051429 0.028595 0

30 0.000895 0.000366 0.093382 76 0.056174 0.032308 0

31 0.000880 0.000394 0.089946 77 0.063623 0.037003 0

32 0.000909 0.000448 0.082654 78 0.070017 0.041655 0

33 0.000989 0.000495 0.072578 79 0.086292 0.051891 0

34 0.001067 0.000517 0.061521 80 0.077474 0.048273 0

35 0.001145 0.000606 0.050843 81 0.093884 0.061502 0

36 0.001428 0.000618 0.040948 82 0.103886 0.071132 0

37 0.001479 0.000784 0.030625 83 0.111364 0.075476 0

38 0.001583 0.000828 0.022808 84 0.134642 0.094869 0

39 0.001882 0.000959 0.017015 85 0.140858 0.100747 0

40 0.002010 0.001059 0.011966 86 0.155596 0.113830 0

41 0.002212 0.001178 0.007599 87 0.171477 0.129769 0

42 0.002506 0.001315 0.004957 88 0.184898 0.146592 0

43 0.002818 0.001467 0.002769 89 0.208687 0.164650 0

44 0.003008 0.001549 0.001371 90 1.000000 1.000000 0

45 0.003426 0.001729 0.000603
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Box 17.5-3 TDA script to calculate the intrinsic growth rate corresponding to

data for Germany 1999.

silent = -1; # echo commands

mfmt = 7.4; # set print format

nvar( # read the data file spm1.dat

dfile = spm1.dat,

AGE [2.0] = c1,

DF<8>[8.6] = 1 - c3,

B1<8>[8.6] = c4,

BF<8>[8.6] = 0.486 * 0.9955 * B1,

);

tsel = AGE[1,,51]; # select ages

mdef(BRF) = BF; # birth rates of female children

tsel = AGE[1,,50]; # select ages

mdef(DRF) = DF; # survivor rates of women

mdiag(DRF,A); # create diagonal matrix

mdefc(50,1,0,N); # create a null vector

mcath(A,N,A); # concatenate with A

mtransp(BRF,BRFT); # make BRF a row vector

mcatv(BRFT,A,F); # concatenate with A to get F

mev(F,ER,EI,EVR,EVI); # calculate eigenvalues and eigenvectors

mpr(ER); # print real part of eigenvalues

mpr(EI); # print imaginary part of eigenvalues

that is proportional to the stable age distribution of women. Finally, one
only needs to normalize these vectors in order to get distributions, i.e., pro-
portions adding to unity. The resulting stable age distributions are shown
in Figures 17.5-1 and 17.5-2 and compared with the actual age distribu-
tions of men and women in Germany 1999.15 It is seen that a prolongation
of the current birth and death rates would result in a substantial increase
in the proportion of older people.

4. We now use TDA’s mpit command to perform the calculations. The
script is shown in Box 17.5-4. The input data are again taken from the
data file spm1.dat. Survivor rates and adjusted birth rates are created
as explained above. In addition, we use column 6 of the data file to get
the female population in 1999, classified by age. The script then creates
the matrix A and the vector N to be used as input for the mpit command.
The vector U is used to get the row sums of R. The result, the vector NT,
contains the female population size at the 200 iterations. This vector is
finally used to calculate the growth rates. Investigating the output, one

15The data are taken from Table 7.1-1 in Section 7.1.
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Fig. 17.5-1 Frequency curves (restricted to ages less than 90) repre-
senting the age distribution of men in Germany 1999 (solid line) and the
corresponding stable age distribution (dotted line).
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Fig. 17.5-2 Frequency curves (restricted to ages less than 90) represent-
ing the age distribution of women in Germany 1999 (solid line) and the
corresponding stable age distribution (dotted line).

finds that a stable growth rate of about -1.5% is reached in about 100
iterations.

5. How long it takes to approximately reach an equilibrium depends on the
extent to which the initial (current) and the final (stable) age distribution
differ. As shown by Figure 17.5-2, the differences are quite substantial
and it therefore requires many iterations to reach, at least approximately,
the stable distribution. In our application one would need about 50 –100
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Box 17.5-4 TDA script to calculate the intrinsic growth rate and stable female

age distribution corresponding to data for Germany 1999.

silent = -1; # echo commands

mfmt = 8.4; # set print format

nvar( # read the data file spm1.dat

dfile = spm1.dat,

AGE [2.0] = c1,

DF<8>[8.6] = 1 - c3,

B1<8>[8.6] = c4,

BF<8>[8.6] = 0.486 * 0.9955 * B1,

NF [5.1] = c6, # female population in 1999

);

tsel = AGE[1,,90]; # select ages

mdef(A) = BF,DF; # create the A matrix

mdef(N) = NF; # create population vector

mpit(A,N,200,R); # perform iterations

mpr(R); # show result

mdefc(90,1,1,U); # create a unit vector

mmul(R,U,NT); # calculate population size

mpr(NT); # print NT

mexpr((lag(NT,1) - NT) / NT,RT); # calculate growth rates

mpr(RT); # print growth rates
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0

Fig. 17.5-3 Year-to-year growth rates of the female population in Ger-
many resulting from 100 iterations of the current female age distribution,
based on birth and death rates in 1999.

iterations (years). This is illustrated in Figure 17.5-3 which shows the first
100 elements of the vector RT calculated by the script in Box 17.5-4. Cor-
respondingly, one might calculate how the population size would decrease.
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Of course, the results of these calculations should not be mistaken for a
population projection. They simply serve to investigate the implications
of the current birth and death rates under the fictitious assumption that
they will not change and that neither in- nor out-migration will take place.

Chapter 18

Conditions of Population Growth

The previous chapter has introduced a general framework for analytical
models and, as one application, has discussed the question how the pop-
ulation in Germany would develop if current birth and death rates would
not change and migration would not take place. Of course, the question
is hypothetical, and so is the answer. In the present chapter we continue
with this kind of hypothetical question but try to get a somewhat closer
understanding of how the intrinsic growth rate depends on birth and death
rates. In Section 18.6 we also take into account migration.

18.1 Reproduction Rates

1. We begin with a discussion of reproduction rates. The total birth rate
[zusammengefasste Geburtenziffer] in the year t, introduced in Section
11.1, is defined as1

TBR t :=

τb∑

τ=τa

βt,τ (multiplied by 1000)

where the age-specific birth rates are denoted by βt,τ . It is simply the sum
of the age-specific birth rates and shows how many children would be born
of 1000 women if their childbearing would conform to the current birth
rates and mortality would not take place until the end of the reproductive
period. Table 18.1-1 shows values for both territories of Germany, Figure
18.1-1 provides a graphical illustration.2 Obviously, since about 1970, the
number of births is below a replacement level which would require a total
birth rate of about 2000.

2. Reproduction rates are modifications of the total birth rate which re-
fer to only female births and take into account the mortality of women
until the end of the reproductive period. The first variant, called gross
reproduction rate [Bruttoreproduktionsrate], is defined as

GRR t := σt,f TBR t

where σt,f is the proportion of female births in year t. The idea behind this

1In the literature, the total birth rate is also termed ‘total fertility rate’ and accordingly
abbreviated by TFR.

2Calculation of total birth rates for the territory of the former FRG is based on a
reproductive period from 15 to 49 years. For the territory of the former GDR, the age
range is 15 – 45 until 1988, 15 – 44 in 1989, and 15 – 40 since 1990.
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Table 18.1-1 Total birth rates in the territory of the former FRG (TBR a)
and in the territory of the former GDR (TBR b). Source: Fachserie 1, Reihe 1,
1999 (pp. 50 -51).

t TBR a TBR b t TBR a TBR b t TBR a TBR b

1950 2100.2 1967 2489.6 2337.9 1984 1290.6 1735.4
1951 2067.7 1968 2382.1 2296.8 1985 1280.8 1734.2
1952 2078.8 2398.5 1969 2214.0 2235.7 1986 1345.3 1699.9
1953 2053.5 2369.8 1970 2016.3 2192.5 1987 1368.0 1739.9
1954 2101.8 2350.3 1971 1920.8 2131.0 1988 1412.5 1670.2
1955 2108.4 2346.7 1972 1712.9 1786.0 1989 1395.4 1572.3
1956 2204.3 2262.3 1973 1543.5 1576.8 1990 1450.1 1517.7
1957 2300.9 2208.2 1974 1512.5 1539.7 1991 1421.8 977.2
1958 2290.1 2205.4 1975 1451.3 1541.7 1992 1401.6 830.4
1959 2368.1 2346.9 1976 1454.8 1636.8 1993 1392.6 774.9
1960 2365.7 2328.3 1977 1404.6 1850.6 1994 1347.2 772.2
1961 2456.8 2397.0 1978 1380.7 1899.0 1995 1339.3 838.2
1962 2440.7 2415.1 1979 1379.1 1894.6 1996 1395.9 947.7
1963 2518.4 2469.5 1980 1444.9 1941.8 1997 1440.6 1039.0
1964 2542.5 2507.6 1981 1435.2 1853.9 1998 1413.1 1086.7
1965 2507.5 2483.4 1982 1407.2 1858.2 1999 1405.8 1148.4
1966 2534.6 2424.4 1983 1330.9 1789.8

definition is that only female births can contribute to further population
growth. However, since the proportion of female births is close to 0.5
without much variation, the development of the gross reproduction rate is
most often quite similar to the development of the total birth rate.

3. A next step is to take into account mortality of women until the end of
the reproductive period. The idea is that the age-specific birth rate βt,τ

only refers to women who are still alive at age τ . To formally introduce
the definition, we use Gf

t,τ to denote the proportion of women who reach
at least age τ . These proportions can be derived from period life tables
or directly from female death rates in the year t. While the Statistisches
Bundesamt uses data from life tables,3 we prefer to use the female death
rates, δf

t,τ .4 The proportion of women still alive at age τ is then calculated
as

Gf
t,τ =

τ−1∏

j=0

(1 − δf
t,j)

This leads to the definition of a net reproduction rate [Nettoreproduktions-
rate] :

NRR t := σt,f

τb∑

τ=τa

βt,τ Gf
t,τ = σt,f

τb∑

τ=τa

βt,τ

τ−1∏

j=0

(1 − δf
t,j)

3See, e.g., Fachserie 1, Reihe 1, 1999 (p. 53).

4As will be shown in the next section, this allows to easily connect the calculations
with the modeling framework introduced in Chapter 17.
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Fig. 18.1-1 Total birth rates in the territory of the former FRG (solid
line) and in the territory of the former GDR (dotted line). Data are taken
from Table 18.1-1.

Its value provides the mean number of female births per women assuming
that the current birth and death rates apply until the end of the repro-
ductive period.

4. Based on the general life table 1986/88 and assuming a reproductive
period from 15 to 50 years, the Statistisches Bundesamt has calculated a
value of 0.651 for the net reproduction rate in Germany in the year 1999.5

Since, in Germany, female mortality until the end of the childbearing pe-
riod is very low, the net reproduction rate is only slightly lower than the
gross reproduction rate:

GRR 1999 = σ1999,f TBR 1999/1000 = 0.486 · 1360.9/1000 = 0.661

In fact, a plot of the net reproduction rates would be very similar to the
total birth rates shown in Figure 18.1-1.

18.2 Relationship with Growth Rates

1. Reproduction rates are hypothetical constructs. Their interpretation is
based on the assumption that the current birth and death rates prevail for
an indefinite period of time. This is similar to the model introduced in
Chapter 17 and, in fact, there is a close relationship between the net repro-
duction rate and the intrinsic growth rate that derives from this model. In
order to discuss this relationship we refer to the matrix F = Df +σfB that

5Fachserie 1, Reihe 1, 1999 (p. 53). Using the definition given above, one can derive a
value of 0.645 from the data in Table 17.5-1 in Section 17.5.2.
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was defined in Section 17.2. The first row of this matrix contains adjusted
age-specific birth rates, β∗

τ , and the subdiagonal contains the age-specific
female survivor rates (1− δf

τ ).6 The intrinsic growth rate, ρ∗, depends on
these rates. In fact, as shown in Section 17.3, it suffices to consider the
sub-matrix F̃ which consists of the first τb rows and columns of F and has
the following structure:

F̃ =










σf β∗
1 σfβ∗

2 · · · σf β∗
τb−1 σfβ∗

τb

1 − δf
1 0 · · · 0 0

0 1 − δf
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 − δf
τb−1 0










The intrinsic growth rate is ρ∗ = λ∗−1, λ∗ being the dominant eigenvalue
of F̃. So we have to investigate how λ∗ depends on the elements of F̃.

2. We first mention that the elements of F̃ can be used to calculate the net
reproduction rate. As shown in Section 17.1, the relationship between the
rates β∗

τ , which are used for the model formulation, and the age-specific
birth rates βt,τ is given by

β∗
τ := β∗

t,τ = βt,τ (1 − δf
t,0)

So we get the net reproduction rate in the following way:

NRR t = σt,f

τb∑

τ=τa

βt,τ Gf
t,τ = σt,f

τb∑

τ=τa

β∗
t,τ Gf

t,τ/(1 − δf
t,0)

= σt,f

τb∑

τ=τa

β∗
t,τ

τ−1∏

j=1

(1 − δf
t,j)

Using the fact that β∗
t,τ = 0 for τ < τa, and omitting the period index t,

one arrives at the formulation7

NRR = σf

τb∑

τ=τa

β∗
τ

τ−1∏

j=1

(1 − δf
j )

This then shows how the net reproduction rate is related to the elements
of the matrix F̃.

3. For the next step we need a mathematical fact which will be stated
without proof: For any (n, n) matrix A, its eigenvalues are the roots of
the so-called characteristic equation

det (λI −A) = 0

6As in the previous chapter, in order to simplify notations we omit the period index t.

7For τ = 1 the product term is assumed to be 1.
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In this formulation, I is an identity matrix and det (λI − A) is the de-
terminant of (λI − A) considered as a polynomial in λ, also called the
characteristic polynomial of A. We further state without proof that

det (λI − F̃) = λτb − σf

τb∑

τ=τa

β∗
τ λτb−τ

τ−1∏

j=1

(1 − δf
j )

We can find, therefore, the eigenvalues of F̃ as the solutions of the equation

λτb − σf

τb∑

τ=τa

β∗
τ λτb−τ

τ−1∏

j=1

(1 − δf
j ) = 0

Writing this equation in the form

σf

τb∑

τ=τa

β∗
τ λτb−τ

τ−1∏

j=1

(1 − δf
j ) = λτb

and dividing both sides by λτb , we get, for λ 6= 0,

g(λ) := σf

τb∑

τ=τa

β∗
τ λ−τ

τ−1∏

j=1

(1 − δf
j ) = 1 (18.2.1)

4. In general, the equation g(λ) = 1 has τb, possibly complex, roots. How-
ever, we are only interested in the dominant eigenvalue of F̃ which is real
and positive. Its existence is guaranteed by the theorem of Frobenius
that was invoked in Section 17.3 but can also be shown directly.8 Be-
cause β∗

τ ≥ 0 and also (1 − δf
τ ) ≥ 0, g(λ) is a monotonically decreasing,

continuous function for all λ > 0. A possible graph of g is shown below:

1PSfrag replacements

λ

g(λ)

λ∗

Furthermore, g(λ) → ∞ if λ → 0 and g(λ) → 0 if λ → ∞. It follows that
there is a unique real and positive value, λ∗, where g(λ∗) = 1 and, since
no larger positive root exists, this is the dominant eigenvalue of F̃.

8See also Anton and Rorres (1991, p. 653).
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5. Equation (18.2.1) also shows how the dominant eigenvalue depends on
the birth and death rates: If one or more of the birth rates increase, or
one or more of the death rates decrease, the dominant eigenvalue, and
consequently the intrinsic growth rate, increases. A special case occurs
if the net reproduction rate equals 1. This implies that the dominant
eigenvalue also has the value 1, and the intrinsic growth rate will be zero.
Of course, this argument concerns the intrinsic growth rate. The value
of the actual growth rate also depends on the current age distribution
and so it can happen that a population might well grow for some time
although the net reproduction rate is already less than 1. However, if
the net reproduction rate is below 1 and there is no immigration, the
population eventually declines.

18.3 The Distance of Generations

1. In general, there is no simple and direct relationship between the net
reproduction rate and the intrinsic growth rate. An exception is the case
when the NRR has a value of 1. The intrinsic growth rate is then zero and
also independent of the distribution of the age-specific birth rates. Except
for this special case, the growth rate also depends on the timing of births.
In particular, in the case of a positive net reproduction rate: if the mean
age at childbearing increases the growth rate will decline and, conversely,
if the mean age at childbearing decreases the growth rate will increase.

2. To illustrate this argument we consider the two matrices where, for
simplicity, we assume zero death rates:

F̃a :=







0 0.5 0.7 0
1 0 0 0
0 1 0 0
0 0 1 0







and F̃b :=







0 0.7 0.5 0
1 0 0 0
0 1 0 0
0 0 1 0







In both cases the net reproduction rate is 1.2, the difference is in the timing
of births. In case (a) more children are born at an older age, in case (b)
more children are born at a younger age of their mothers. Calculating the
dominant eigenvalues, we find λ∗

a = 1.0734 and λ∗
b = 1.0787 which shows

that the intrinsic growth rate is higher in the second case.

3. One should notice, however, that this depends on whether the net repro-
duction rate is above or below 1. If less than 1, the relationship becomes
reversed as shown by the following example:

F̃c :=







0 0.5 0.3 0
1 0 0 0
0 1 0 0
0 0 1 0







and F̃d :=







0 0.3 0.5 0
1 0 0 0
0 1 0 0
0 0 1 0






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In both cases the net reproduction rate has now a value of 0.8, implying a
negative intrinsic growth rate. Calculating the dominant eigenvalues, we
find λ∗

c = 0.9107 and λ∗
d = 0.9188. So case (d) has actually a relatively

higher growth rate ρ∗
d = −8.12 %, compared with ρ∗

c = −8.93 % in case
(c). This can be explained by referring to the stable age distribution. If
the population growth is positive, as in cases (a) and (b), there will be
relatively more women in younger age classes and a shift of birth rates to
these younger age classes will increase the growth rate. On the other hand,
if the population growth is negative, there will be relatively more women
in older age classes and a shift of birth rates to these older age classes will
increase the growth rate.

4. The argument can also be formulated in terms of a mean generational
distance, which is formally identical to the mean childbearing age of
women, restricted to women who give birth to at least one child, and
can be defined as

∑τb

τ=τa
τ βτ Gf

τ
∑τb

τ=τa
βτ Gf

τ

It is often argued that, if this mean generational distance increases, the
population growth rate will decrease. But this is actually only true if
the net reproduction rate is greater than 1. Otherwise, if the population
growth is negative, an increase in the mean generational distance will result
in a less negative growth rate.

18.4 Growth Rates and Age Distributions

1. The argument in the previous section has shown that age distributions
play a significant role in the analysis of population growth. On the other
hand, the age distribution also depends on population growth. This is
most easily shown by referring to the stable female age distribution. As
has been discussed in Section 17.3, this age distribution is proportional to
the eigenvector, v∗, that corresponds to the dominant eigenvalue λ∗ and,
if λ∗ is known, can easily be computed from the age-specific death rates:
one begins with an arbitrary positive value for v∗

1 and then recursively
applies the formula

v∗τ =
1 − δf

τ−1

λ∗
v∗τ−1 (for τ = 2, . . . , τm)

If the net reproduction rate is 1 (λ∗ = 1), the formula shows that the
age distribution only depends on the age-specific death rates.9 But if

9In this case the age distribution would equal the life table age distribution discussed
in Section 7.4.4.
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Fig. 18.4-1 Solid line: Female age distribution in Germany 1999. Dotted
lines: (a) Stable age distribution calculated from current birth and death
rates. (b) Stable age distribution if the net reproduction rate would be 1.

population growth is positive, or negative, this is no longer the case. To
show this we rewrite the formula in the following way (assuming that

v∗1 = 1 − δf
0 ):

v∗τ = v∗1

(
1

λ∗

)τ−1 τ−1∏

j=1

(1 − δf
j ) =

(
1

λ∗

)τ−1

Gf
τ

This shows that, if λ∗ > 1, the frequencies of the higher age classes are
multiplied by a factor that decreases with age and consequently become
relatively smaller. Conversely, if λ∗ < 1, the multiplicative factor increases
with age, and this then implies that frequencies of the higher age classes
become relatively larger.

2. As an illustration we consider again the stable female age distribution
that was calculated in Section 17.5.2 for Germany in 1999. Two of the three
frequency curves shown in Figure 18.4-1 are identical with the curves shown
in Figure 17.5-2. The solid line depicts the actual female age distribution in
1999, the dotted curve (a) is the stable age distribution calculated from the
birth and death rates in 1999. Since these rates imply a net reproduction
rate which is far below 1, there is a huge shift towards the older age classes.
The dotted curve (b) is calculated from the assumption that the female
death rates have their actual values but the birth rates have values to
ensure a net reproduction rate of 1. The age distribution is then solely
determined by the current death rates.
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18.5 Declining Importance of Death Rates

1. In general, the intrinsic growth rate depends both on birth and death
rates. However, death rates are only important until the end of the re-
productive period. Furthermore, in modern societies these death rates are
already very low. For example, referring to the period life table for the
year 1999 (see Table 7.3-1 in Section 7.3.2), out of 1000 women only 23
died until an age of 45. One can expect, therefore, that further progress
in diminishing death rates will not have any substantial consequences for
the intrinsic growth rate.

2. To illustrate the argument we refer again to the year 1999. As was
shown in Section 13.3.2, the birth and death rates of that year imply an
intrinsic growth rate of -1.51%. We now assume that death rates were
zero until the end of the reproductive period. The corresponding intrinsic
growth rate would then be -1.48%.

18.6 Population Growth with Immigration

1. A further question concerns the effects of immigration on population
growth. To provide a brief discussion we extend the female population
model introduced in Chapter 17 to include female net immigration. Re-
member the original model formulation: n

f
t+1 = Fn

f
t , where n

f
t is a female

population vector for the year t, and F is the Leslie matrix assumed to be
time-independent. We now consider an additional vector

m
f
t :=






mf
t,1
...

mf
t,τm






where mf
t,τ is the net immigration of women aged τ in the year t. Of course,

components might be negative if out-migration exceeds in-migration. Us-
ing this vector, an extended model can be written as follows:

n
f
t+1 = Fn

f
t + m

f
t (18.6.1)

The formulation assumes that there is a single Leslie matrix F that pro-
vides the birth and death rates both for native and immigrant women.10

2. A simple solution is possible if we assume a time-constant immigration
vector mf ≥ 0. Beginning with a base year t = 0, we find:

n
f
1 = Fn

f
0 + mf

n
f
2 = Fn

f
1 + mf = F2n

f
0 + Fmf + mf

10For a similar approach to include migration into a Leslie model see Lilienbecker (1991),
further possibilities have been discussed by Sivamurthy (1982).
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Fig. 18.6-1 Age distribution of female immigrants and emigrants in
Germany 1999. Data are taken from Table 18.6-1.

and so on, in general:11

n
f
t = Ftn

f
0 +

t−1∑

j=0

Fjmf

This equation can be used to think about equilibrium conditions. A suffi-
cient condition is that the intrinsic growth rate implied by F is negative.
Then, if t becomes larger, Ftn

f
0 converges to zero, and the population

vector n
f
t converges to

n̄f := (I − F)−1 mf

This also implies that, in the long run, the growth rate becomes zero and
the time-constant population n̄f only depends on the net immigration and
the parameters of the Leslie matrix F.

3. For an illustration we continue with the data used in Section 17.5.2 pro-
viding the Leslie matrix F and the initial female population vector n

f
0 for

the year 1999. In addition, we use the data shown in Table 18.6-1 about
female immigration and emigration in Germany in the same year. The
age class 75∗ is open-ended and covers also all higher ages. Altogether,
369049 women immigrated and 248108 women emigrated during the year
1999 resulting in a net immigration of 120941 women. As shown in Fig-
ure 18.6-1, both in- and out-migration mainly take place in younger ages.
For the net immigration vector mf we therefore only use the figures from
Table 18.6-1 until the age 74 (mf

τ = 0 for τ ≥ 75), in total about 121000

11By convention, F
0 equals the identity matrix I.
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Table 18.6-1 Female in-migration (mf,i
t,τ ), out-migration (mf,o

t,τ ), and net

immigration (mf
t,τ ), classified according to age τ , in the year t = 1999 in

Germany. Source: Fachserie 1, Reihe 1, 1999 (pp. 116 -117).

τ mf,i
t,τ mf,o

t,τ mf
t,τ τ mf,i

t,τ mf,o
t,τ mf

t,τ

0 2942 1131 1811 38 5024 3983 1041
1 5123 2823 2300 39 5121 4006 1115
2 4609 3061 1548 40 4652 3583 1069
3 4428 3117 1311 41 4290 3150 1140
4 4342 2978 1364 42 3932 2825 1107
5 4266 2814 1452 43 3768 2832 936
6 4181 3184 997 44 3641 2646 995
7 4296 3245 1051 45 3416 2410 1006
8 4083 2680 1403 46 3103 2274 829
9 3975 2441 1534 47 2966 2180 786

10 3841 2287 1554 48 2805 2021 784
11 3826 2269 1557 49 2739 2041 698
12 3853 2058 1795 50 2686 1924 762
13 3785 2033 1752 51 2490 1877 613
14 3796 1937 1859 52 2260 1779 481
15 4015 1971 2044 53 1828 1551 277
16 4661 2166 2495 54 1466 1415 51
17 5231 2570 2661 55 1497 1466 31
18 7577 3263 4314 56 1419 1387 32
19 12043 4957 7086 57 1576 1399 177
20 15172 7095 8077 58 1787 1458 329
21 16383 9280 7103 59 1899 1422 477
22 16788 9766 7022 60 1915 1668 247
23 15885 9796 6089 61 1843 1548 295
24 14811 9393 5418 62 1863 1385 478
25 13025 8615 4410 63 1610 1301 309
26 11514 7953 3561 64 1410 1072 338
27 10679 7416 3263 65 1262 1070 192
28 9600 7119 2481 66 1036 898 138
29 9199 7023 2176 67 1057 814 243
30 8495 6842 1653 68 920 712 208
31 7724 6360 1364 69 1071 754 317
32 7035 6102 933 70 918 626 292
33 6518 5674 844 71 960 626 334
34 6381 5470 911 72 851 513 338
35 6101 4923 1178 73 726 514 212
36 5710 4650 1060 74 740 447 293
37 5559 4348 1211 75∗ 5050 3721 1329

persons. According to the model (18.6.1), we assume that the same female
in-migration takes place also in all years following 1999. Then, after 51 it-
erations of the model, one finds the projected female population vector for
the year 2050. The total female population would then be about 41.3 mil-
lion, instead of 34.4 million as projected by a model without immigration.
Since mainly young women immigrate, also the age distribution would be
quite different. This is illustrated in Figure 18.6-2. The solid line shows
the female age distribution in 1999; the two other lines show, respectively,
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Fig. 18.6-2 Age distribution of the female population in 1999 (solid line)
and of the projections for the year 2050 with and without immigration
(dotted lines). The ordinate refers to absolute frequencies.
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Fig. 18.6-3 Projected development of female old age dependency ratios
until the year 2050, with and without immigration.

the age distribution of the projected female population in the year 2050
with and without immigration. A simple summary measure is the female
old age dependency ratio [Altenquotient] defined as12

number of women aged 65 and over

number of women aged 20 to 64

In our example, we can calculate this measure with a numerator that refers

12We mention that there is no general convention where to beginn the “old ages”.
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Fig. 18.6-4 Age distribution, in absolute frequencies, of the female
population in Germany 1999 (solid line) and stable age distribution
derived from the 1999 Leslie matrix and a constant net immigration
according to Table 18.6-1 (dotted line).

to women aged 65 to 89. Figure 18.6-3 compares the development of this
ratio in models with and without immigration.

4. Since the Leslie matrix for Germany in 1999 implies a negative intrinsic
growth rate of about -1.5%, without immigration the population would
vanish in the long run. On the other hand, a constant net immigration
would not only slow down the population shrinkage but eventually stabilize
the population at a constant level. In our model, this long-term level is
given by the population vector n̄f and can easily be calculated from the
Leslie matrix F and the net immigration vector mf . Using the data for
Germany in 1999, the total number of female persons aged 1 to 89 would
eventually stabilize at about 18.7 million. One should also note that the
equation

n̄ = (I − F)−1m

is linear; a proportional increase, or decrease, of the immigration vector
would result in the same proportional increase, or decrease, of the final
population size.

5. The long-run equilibrium also implies a stable age distribution. Figure
18.6.4 compares this stable age distribution with the actual age distribu-
tion of the female population in 1999. The female old age dependency
ratio would be 41% compared with 31% in 1999. However, to put these
figures into perspective one should compare the models with and without
immigration. This is done in Figure 18.6-5 that compares the stable age
distributions from models with and without immigration. The stable age
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Fig. 18.6-5 Stable age distributions (relative frequencies) implied by
the Leslie models with immigration (solid line) and without immigration
(dotted line).

distribution of the model without immigration would correspond to a fe-
male old age dependency ratio of 62%. Remarkably, only a small part
of the much lesser ratio of 41% in the model with immigration is due to
the fact that mainly young women immigrate. If, instead of the figures in
Table 18.6-1, we assume ages of immigrants equally distributed between
1 and 50 years, the final old age dependency ratio would only slightly
increase to 42.4%.

Appendix A

Appendix

This appendix has two sections. Section A.1 provides some hints about
how to find data and additional information from official statistics in Ger-
many. Section A.2 briefly summarizes some notation from set theory that
is used in the main text.

A.1 Data from Official Statistics

This section is not finished yet.
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A.2 Sets and Functions

Throughout the text we stressed the fact that statistical variables are to be
regarded as functions and that statistical distributions are functions on sets
of sets. Sets and functions thus play a fundamental role in all statistical
constructs. The following two sections summarize the basic notations for
sets and functions.

Notations from Set Theory

1. The basic idea is that people are able to comprehend arbitrary objects
into a set [Menge]. Georg Cantor (1845–1918), the originator of set theory,
gave the following explanation:

“Unter einer
”
Menge“ verstehen wir jede Zusammenfassung M von bestimmten

wohlunterschiedenen Objekten unsrer Anschauung oder unseres Denkens (welche
die

”
Elemente“ von M genannt werden) zu einem Ganzen.” (Cantor 1962, p. 282)

In accordance with this explanation, the construction of a set is a mental
operation without any specific implication for the ontological status of the
resulting set. Furthermore, there is no restriction in the kinds of objects
that can be considered to be elements of a set.

2. We generally use capital letters to denote sets. The elements of the set,
i.e. the entities belonging to the set, are written in small letters.1 Thus,
A := {a1, a2, a3} defines the set A to be the collection made up by the
elements a1, a2 and a3.

3. Most of the sets that appear in this text have a finite number of ele-
ments. For a set A with a finite number of elements we use the abbreviation
|A | for ‘the number of elements of A’. If A := {a1, a2, a3}, then |A | = 3.

4. We us the symbol ∈ as an abbreviation for “belongs to”. Thus we write
a ∈ A. Similarly, we use the symbol /∈ as an abbreviation for “does not
belong to”. Two sets are equal if both sets have the same elements. In
other words, for two sets A and B, A = B if each element of A is also
an element of B and each element of B is also an element of A. Sets are
therefore completely determined when its elements are given, while the
order in which elements are given is irrelevant: {a1, a2, a3} = {a2, a3, a1}.

5. When the order of elements in a collection is of importance we write

(a1, a2, a3)

In this case, the order of the three elements makes a difference, i.e.

(a1, a2, a3) 6= (a2, a1, a3)

1We try to follow this convention throughout the text. But occasionally we will have
to refer to sets whose members are themselves sets.
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We call such an ordered collection a pair if it has two elements. If the
collection contains three elements, we call it a triple. Generally, we call an
ordered collection of n elements (a1, . . . , an) an n-tuple.

6. When a set, say B, has been defined one can build a new set by the
construction

C := {b ∈ B | b has the property . . . }

Here, C is the name of the set consisting of all those elements of B which
have the property given after the vertical line. The new set is a subset of
the set B. We write C ⊆ B if C is a subset of B, i.e. if each element of
C is also an element of B. Consequently, B ⊆ B is always true. We write
C ⊂ B if there are elements of B that do not belong to C.

7. Given two sets A and B, one can define new sets by the operations of
union and intersection: The union A ∪ B is the set of elements belonging
to at least one of the sets A and B. The intersection A ∩ B is the set of
elements belonging both to A and B. It might happen that the intersection
contains no elements at all. If this happens we call the two sets mutually
exclusive or disjoint . We call a set with no elements empty. But according
to our definition of the equality of sets there is only one empty set. We
call it the empty set and denote it by ∅.

8. As a direct consequence of the definitions, union and intersection are
commutative

A ∪ B = B ∪ A

A ∩ B = B ∩ A

and distributive

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

9. If B is a subset of A then Bc := {a ∈ A | a /∈ B} is the complement of
B in A. In general, if A and B are sets, A \ B := {a ∈ A | a /∈ B} is the
complement of A ∩ B in A.

10. Given a set A, a partition of A is a set of subsets of A with elements
A1, . . . , Am, such that the union of all these sets is equal to A (A1 ∪ . . . ∪
Am = A) and such that all distinct pairs Ai, Aj are mutually exclusive
(Ai ∩Aj = ∅ for all i, j ∈ {1, . . . , m} provided that i 6= j). For example, if
A := {a1, a2, a3}, then

{{a1}, {a2, a3}}

is a partition of A.
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11. The power set of a set A is the set of all its subsets. We use the
symbol P(A). Both the empty set ∅ and the set A itself are elements of
the power set. Using once again A := {a1, a2, a3} we have

P(A) = {∅, {a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3}, {a1, a2, a3}}

The number of elements belonging to a power set is |P(A)| = 2|A|.

12. Another elementary notion is that of a Cartesian product of two or
more sets. Given two sets A and B, the Cartesian product A × B is the
set of all ordered pairs that can be constructed from elements of A and B.
As an example, if

A := {1, 2} and B := {3, 4, 5}

then

A × B = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}

The Cartesian product of three and more sets is constructed similarly. For
example, if C := {6} then

A × B × C = {(1, 3, 6), (1, 4, 6), (1, 5, 6), (2, 3, 6), (2, 4, 6), (2, 5, 6)}

One might also construct the Cartesian product of a set with itself:

A × A × A = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}

In this case we use the following abbreviation

An := A × · · · × A
︸ ︷︷ ︸

n times

13. The Cartesian product operates distributively on unions and intersec-
tions:

A × (B ∪ C) = (A × B) ∪ (A × C)

A × (B ∩ C) = (A × B) ∩ (A × C)

In particular,

A × ∅ = ∅ × A = ∅

But the Cartesian product is not, in general, commutative:

B × A = {(3, 1), (4, 1), (5, 1), (3, 2), (4, 2), (5, 2)} 6= A × B
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The Notion of Function

1. The notion of function is fundamental to statistics. We use the word in
the same sense as it is now used in mathematics. Given two sets A and B,
a function relates to each element of A a unique element of B. We write

f : A −→ B

where f is the name of the function, A is called the domain of the function,
and B is the counterdomain of the function. If a ∈ A is an element of the
domain of the function f , we write f(a) for the unique element of B which
is related to a through the function f . We call f(a) the value of the
function evaluated at the argument a.

2. Given the two sets A := {1, 2} and B := {3, 4, 5} we might define a
function f : A −→ B by defining f(1) = 3, f(2) = 4, that is by giving its
values for all the arguments. Next we must say when two functions are
to be regarded as equal. We will say that two functions f : A −→ B and
g : C −→ D are equal if A = C, B = D, and f(a) = g(a) for all a ∈ A.
For example, if

g : {1, 2} −→ {3, 4}

with g(1) = 3 and g(2) = 4, then f 6= g.

3. With a function f : A −→ B we can associate a further function,
called a set function, that takes subsets of the domain as its argument. In
a slight abuse of notation we will denote that function by the same symbol
f . Thus we write

f : P(A) −→ P(B)

where the set function relates a subset C ⊆ A to the unique subset

f(C) := {b ∈ B | there is an a ∈ C such that f(a) = b}

of B. In shorter notation,

f(C) = {f(a) | a ∈ C}

We call f(C) the image of C under f . Especially, the image of A is called
the range of the function. Obviously, f(A) ⊆ B; but as in the example
above we may have f(A) 6= B.

4. The set function associated with a function f : A −→ B always has
an inverse set function defined by

f−1 : P(B) −→ P(A)
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which to each subset of the counterdomain of f relates a unique subset
according to

f−1(C) := {a ∈ A | f(a) ∈ C}

where C is an arbitrary element of P(B). We call f−1(C) the preimage of
C with respect to f . For example, if f : {1, 2} −→ {3, 4, 5} is defined by
f(1) = 3 and f(2) = 4, then

f−1({3}) = {1}, f−1({4}) = {2}, f−1({5}) = ∅,

f−1({3, 4}) = {1, 2}, f−1({3, 5}) = {1}, f−1({4, 5}) = {2},

f−1({3, 4, 5}) = {1, 2}, f−1(∅) = ∅

The union and intersection operations are preserved under inverse set func-
tions:

f−1(C ∪ D) = f−1(C) ∪ f−1(D)

f−1(C ∩ D) = f−1(C) ∩ f−1(D)

where C and D are arbitrary subsets of B.

5. It should be clear that the mathematical notion of a function is funda-
mentally different from the use of the word in connection with purposes
and aims. Even if this is fairly obvious from the definitions, we should
stress, first, that functions are created by the human mind. It is the sci-
entist who conceptualizes sets, and the scientist who constructs relations
and functions between sets. Neither functions nor sets are empirical facts.
Secondly, however, there is a difference between the uses of the concepts
in mathematics and in statistics. In mathematics, one might create sets
and functions without regard to empirical facts. In contrast, statistical
methods are constructed in order to support reflections on empirical facts.
Thus, in statistics, the usefulness of sets and functions will not only de-
pend on their formal properties as such but much more on the intended
meaning of the sets and functions.
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