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Introduction

The central research questions of the POLIS project are how life courses
have changed across successive birth cohorts, and whether part of these
changes can be attributed to changes in institutional frameworks. What-
ever the final approach to these questions will be, as a first step one
needs suitable tools for describing life courses. Surprisingly enough, such
tools are not well developed yet. Most sociological research in the event-
history framework has its focus on specific types of events and individual
transitions, not on the finally resulting life courses and trajectories.

From a methodological point of view, the dominating focus on tran-
sitions 1s quite understandable. Individual life courses are the result of
going sequentially through time; metaphorically spoken, the tracks that
are left behind when people grow older. Consequently, trying to explain
the development of life courses one needs to investigate the transitions
which might occur during life courses.

On the other hand, this approach easily runs into the danger of loos-
ing sight of the final result, the life courses as resulting from a continu-
ous stream of currently happening events, and providing a continuously
changing identity to its individual ,,bearers®. Given their sequential de-
velopment it is, of course, questionable whether whole life courses can
be reasonably taken as ,dependent variables“ (suggested, for instance,
by Abbott 1995, p.105). However, given that there is already a broad
sociological literature taking life courses as the subject of its discourse, it
should be an important task to develop empirical and statistical meth-
ods that not only allow to investigate individual transitions but can
contribute to analytically useful descriptions of whole life courses. This
seems to be particularly important in order to establish an empirical
basis for the POLIS project.

In this paper we try to contribute to a discussion of methods for de-
scribing life courses which might be useful for the POLIS project.

e In section1 we propose a simple data structure for representing life
courses as sequences of states.

e In section 2 we illustrate this proposal by using life history data from
the National Longitudinal Study of Youth (NLSY).

o It follows in section 3 a short discussion of cross-sectional distributions
for describing the evolution of life courses. It is shown that this approach,
although often used, can easily be misleading.

e A somewhat broader view, focusing on the question of how to estab-

lish longitudinal classifications, is taken in section 4. We investigate two
methods for assessing the stability of group membership over time.

e We then begin with a discussion of describing life courses on an indi-
vidual level. One simple approach, focusing on the occurrence of events,
is treated in section 5. We discuss how this approach can also be used for
repeatable and complex events (e.g., transition from education to work).

e Section 6 then raises the question whether we can hope to find typical
careers and begins a discussion of some problems connected with this
idea. The discussion is continued in Section 7 where we use a simple
clustering procedure to illustrate the difficulties in searching for typical
careers.

1 Representing Life Courses

We begin with shortly describing a formal framework for representing life
courses. The basic idea is to represent individual life courses as sequences
of states. We assume a basic unit of time, say weeks or months, and a
state space providing a set of different states such that each individual
is in exactly one of these states during each of the basic time periods.’

This immediately leads to a simple formal representation of life courses.
Let Y denote the state space, and t = 1,2,3,... be an index for the
sequence of time units. The sample of individuals will be indexed by
i = 1,..., N, and Vit will be used to denote the state of individual i
during the time unit t. We then get representations of the individual life
courses by the sequences

Vi = (Y1, Yiz, Yiss .. )

What can be represented depends on the definition of the state space
and the time axis. However, the framework is quite flexible. There are
no theoretical limits in making the state space more and more differen-
tiated. Alternatively, we can define two or more separate state spaces.
For instance, a state space ) can be used for education and labor mar-
ket activities, and a state space Z can be used to record partnerships

1 This approach is somewhat different from the conventional view of event-history
data as sequences of episodes, or spells. However, when based on the same time
units as used for measuring the dates of events, both approaches provide identical
information. This becomes different only if the definition of sequence data uses more
aggregated time units. As an example, see Gershuny (1993, p.141) who has used se-
quences generated by observing life courses once per year. This might be sufficient for
investigating occupational mobility, but not, for instance, for investigating transitions
into and out of unemployment.



and family affairs. Representation of individual life courses is then by
two-dimensional sequences

Yi,z) = (Yi1. 1, Yiz, Z2, Yis» Zs, - . )

While it would be possible to combine both dimensions into a single
state space (the cartesian product of Y and Z), keeping distinct state
spaces provides an opportunity for investigating temporal relationships
between events in the marginal processes.?

In our view, this formal framework for representing life courses is par-

ticularly well suited for the POLIS project.

e It provides a general and flexible framework for representing most
aspects of life courses which seem important for the research questions
of the POLIS project.

o While the representation of life courses as sequences of states directly
draws attention to whole life courses, the same framework can be used
to investigate specific transitions with conventional methods of event
history analysis.

e The representation of life courses as sequences of states not only
provides a unifying data structure for cross-country comparison of life
courses, but also creates a direct link to the theoretical questions of the
POLIS project regarding the existence of ,typical® life courses and their
changing features across cohorts.

In the following sections we use this sequence data structure as a frame-
work for discussing methods for describing life courses. All calculations
and plots have been done with the computer program TDA that supports
this data structure (see Rohwer, 1996).

2 TIllustration with NLSY Data

To illustrate the sequence data structure introduced in the previous
section, we use data from the National Longitudinal Study of Youth
(NLSY). This is a nationally representative sample for the birth cohorts
between 1957 and 1964 in the United States, consisting of 12,686 young
women and men who were first surveyed in 1979. Interviews with NLSY
respondents have been conducted yearly since 1979 (panel study). The
NLSY sampling design enables researchers to study in detail the longi-
tudinal experiences of not only this particular age group of young Amer-

2 See Blossfeld and Rohwer (1995) for a discussion of this ,causal approach® to
modeling interdependent processes.

icans but to analyze the disparate life course experiences of such groups
as women, hispanics, blacks, and the economically disadvantaged (see
Center for Human Resource Research, 1994).

To illustrate the mainly methodological discussion in this paper, we
focus on respondents born in 1964, that is, we use only a single birth
cohort. As a consequence, we do not explicitly discuss questions of cohort
comparison. However, many of the methods discussed below can be used
for this purpose.

In our data set, the last interview is in 1990. There are 1106 respon-
dents born in 1964, most of them with an interview in 1990.3 For these
respondents we create sequence data based on a monthly time axis be-
ginning for each respondent with the month of his or her 15th birthday:
t=0,1,2,... (t =0 is month of 15th birthday, t = 1 is the following
month, and so on until the month of the last interview). The time axis
runs until t = 142, that is, the longest possible observation period is 143
months (about 12 years, = age 27).

For our illustratory purposes we focus on education and labor market
activities. The state space distinguishes the following states:

0 not working

full-time work

part-time work (< 35 hours per week)
unemployed

military service

education

vocational training

missing information

— O O s W N =

For each individual, i =1, ..., 1106, we then get a sequence

(yi.OH Vit ..o, yi.142)

with Vit the state in month t. Of course, there is a certain amount of
missing values. In fact, for seven individuals the sequences consist of
only missing values. Missing values in the remaining sequences belong to
one of the following types:

1. Missing values at the beginning of a sequence do not pose a special
problem but only mean that, for some individuals, observation does
not begin with the 15th birthday but some months later. In our sam-
ple, for 99 % of the respondents the observation periods does not begin

3 There is a relatively small amount of attrition that will be shown below.
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Fig. 2.1 Distribution (survivor function) of age at first marriage (left) and age at
first child (right), for men and women born 1964.

later than the 16th birthday.

2. Also missing values at the end of a sequence do not pose a special
problem and only mean that, for some individuals, the observation
period ends before age 27. This will be illustrated below, see Figures
3.1 and 3.2.

3. There remains the problem of ,,internal gaps“, that is, missing values
in between two valid states. This obviously creates specific difficulties
and, in general, one would need suitable assumptions to fill these gaps.
Fortunately, in our sample only 42 sequences have internal gaps and
so we have decided to use only sequences without internal gaps (and
at least one valid state).

The remaining sample used in the illustrations below consists of 1057
individuals (sequences), 550 men and 507 women.

In all illustrations we use only the simple state space described above,
focusing on education and work careers. A more complete investigation
should also take family events into account. As shown in Figure 2.1, at
the end of our observation period (about age 27), almost two third of
the respondents are married and almost one half has a first child.

3 Cross-Sectional Distributions

In order to arrive at informative descriptions of a set of sequences one
can follow different routes. A basic distinction 1s:

e We can investigate how the state distribution, that is, the distribution
of individual units over the state space, evolves in time. This provides
a compact description of the aggregate distributions but is basically a
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Fig. 3.1 Evolution of state distribution for 550 men. From bottom to
top: in education (incl. vocational training), working, unemployed, not
working, and missing information.
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Fig. 3.2 Evolution of state distribution for 507 women. From bottom
to top: in education (incl. vocational training), working, unemployed,
not working, and missing information.



cross-sectional approach.

e Alternatively, we can be interested in getting information about the
behavior of the individual sequences. This will be called an ndividual-
level approach.

In this section we illustrate the first approach. In order to provide a
general impression, we use an aggregated state space as follows:

0 not working
1 full-time or part-time work, or military service
3 unemployed
5 education or vocational training
—1 missing information

Figures 3.1 and 3.2 show the resulting state distributions for men and
women during the observation period (age 15 to 27). The grey-scaled
regions indicate the missing observations. We see that there are very
little missing values at the beginning, and most sample members can be
observed until age 26.

One also sees that the picture is surprisingly similar for men and
women. Women are somewhat more often in the non-working state. But,
as will be shown in the next section, this is only a gradual difference.

As shown by the two figures, plotting a sequence of cross-sectional state
distributions provides a compact view of the structure of a sample of
sequences. However, the information is actually very limited and, in fact,
might be misleading. As the figures suggest: at the beginning most people
are in education or vocational training and then gradually change to
some other state, mainly working. However, all our states are repeatable
and the figures do not tell us anything about re-entering a previously
exited state. The figures do not tell anything about individual mobility
between different states and, in fact, there is a risk of interpreting the
different regions of the plots as indicating an evolution of ,groups of
people“.* To avoid this risk one needs an individual-level approach.

* Tt seems really difficult to avoid interpreting a sequence of state distribution as
showing the development of life courses. For instance, Blossfeld et al. (1993, p. 117)
interpret a plot of state distributions similar to Figure 3.1 as showing how ,,a cohort
gradually left the general educational system.“ The problem is that the same se-
quence of cross-sectional distributions is compatible with a broad variety of different
individual careers implying that we cannot draw reliable conclusions about individual
careers. And consequently, we cannot draw reliable conclusions about cohorts, given
that we should be able to translate statements about cohorts into statements about
their individual members.

4 Longitudinal Classifications

The problem indicated in the last section can be generalized: How to
find sensible classifications when membership in the classes can change?
Given that classifying people into different categories is a main business
of sociologists, this is obviously an important problem.

Gershuny (1993), for instance, was interested in the development of
occupational careers in Britain and, in order to characterize these ca-
reers, he classified his sample members according to the occupation they
had at a specific point in time (the year 1986, in his application). He
then described the resulting occupational classes by using information
about the occupational careers of their members. In particular, he tried
to describe these classes by ,,the proportions of the aggregate working
life-times of those in each 1986 occupation who have been in those occu-
pations throughout their careers (‘immobile’), and the proportions spent
in those occupations by people who have had some other work at some
point® (Gershuny 1993, p. 156). Tt is questionable, however, whether this
construction of occupational classes makes sense. Given that there is
some substantive amount of occupational mobility, classifying people ac-
cording to their occupation at some specific point in time seems highly
arbitrary.

In our view, it is generally no good idea to classify people according
to their characteristics at only one single point in time. If one wants to
define (longitudinal) classes based on time-varying characteristics, one
must take into account that people can enter and leave the class, often
repeatedly.® In a first step, the class should be defined as consisting of all
people who were a member of the class at some point in their lives. It is
simple, then, to construct a class stability indicator. For each individual
i, let Dj denote the potential time that this individual could have been
a member of the class, say C, and let D{ denote the time during which
individual i actually has been a member of C. Then DF/D; indicates the
degree of class membership for this individual; and the distribution of

this indicator shows the degree of class stability over time.°

5 Since sociological research is based more and more on longitudinal data, many
researchers have recognized this problem; see, e.g., Myles et al. 1993, p.175. There
remains, however, a lack of suitable methods to assess the problem empirically.

6 One should be aware of the shape of this distribution. In most applications, we
will not be able to make a clear distinction between ,,stable classes* and ,transitory
pseudo-classes”. For example (Myles et al. 1993, p.175): ,Traditionally, most male
blue-collar workers got their jobs as young men and spent all or a good part of their
lives in the same job or circulating between a limited set of similar jobs. [...] The
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Fig. 4.1 Distribution (survivor functions) of group membership indi-
cator for the ,not working“ group. Indicator runs from 0 to 1 on the
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Fig. 4.3 Probability (frequency) of belonging to the ,group of part-
time working people® as a function of age (abscissa).

To illustrate this idea, we use the group of people who are ,,not work-
ing“ as suggested by Figures 3.1 and 3.2. For each individual, we calculate
the proportion of time (observation period) where the individual belongs
to this group. Figure 4.1 shows the distribution, separately for men and
women. While women obviously belong somewhat longer to this group
compared with men, the plot clearly shows that, neither for men nor
for women, there is a stable group membership. Without further qual-
ification, the ,group of non-working people® seems to be an ill-defined
concept.

Figure 4.2 shows the distribution of a group membership indicator
for the ,,group of part-time working people®. The conclusion is basically
the same and, in this example, there seems to be almost no difference
between men and women.

However, this seemingly obvious conclusion provides a starting point
for discussing another limitation of longitudinal classifications. While
Figure 4.2 seems to suggest that men’s and women’s careers are quite
similar with respect to part-time work, this is actually not the case.

question then is whether the post-industrial working class is like this. Or are the
low-skilled, low-wage service jobs ‘stop-gap’ jobs, places which people ‘pass through’
on their way to somewhere else?“ Most probably, this is not an alternative.

10



This impression is simply the result of ignoring the distribution of part-
time work in different ages. We see this when calculating the probability
(frequency) of belonging to the , group of part-time working people“ as
a function of time (age). This is shown in Figure 4.3. The plot clearly
shows that the probability of part-time work is similar for men and
women only until about age 19, that is, in a period with mainly ,,stop-
gap® jobs; but afterwards women have a significantly higher probability
of working part-time.

As this examples demonstrates, whenever defining longitudinal clas-
sifications, this should be supplemented by (a) an investigation of the
stability of group membership over time, and (b) an investigation of the
probability of belonging to a group as a function of time (age).

5 Characterizing Individual Sequences

We now turn to individual-level approaches to describe life courses. A
simple approach calculates the proportion of time (observation period)
each individual spent in the possible states. Figure 5.1 shows distribution
functions for these proportions. If a functions begins with a value less
than 1, the remaining proportion of sample members never experienced
the corresponding state.

Another approach is based on the view of life courses as sequences of
events. It seems possible, then, to characterize each individual sequence
by reporting dates and frequencies for the occurrence of specific events.
The distributions of these indicators can then be used to compare, for in-
stance, life courses of men and women, or across different birth cohorts.”
However, while this approach is straightforward for simple, non-repeat-
able events like first marriage, there are other events which are more
difficult to describe: (a) repeatable events, like becoming unemployed,
and (b) complex events as, for instance, the transition from education
and vocational training to work.

Repeatable events. A useful approach to describing the occurrence
of repeatable events is to calculate the probabilities (or rates) for the
occurrence of such events as a function of time. Based on a sequence
representation of life courses this can be done easily. One just needs to
calculate, for each point in time, a risk set containing the individuals who
might experience the event, and the number of individuals who actually
experienced the event. Dividing the latter by the former provides a simple

7 See Mayer (1993) for an application of this approach to cohort comparison.
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Fig. 5.1 Distribution (survivor functions) for proportion of time (ob-
servation period) spent in different states.

estimate of the probability.

This calculation can be done separately for each type of event that
seems interesting. In a more general approach, one can also calculate the
probability for the occurrence of any event, that is, for any change in the
current state. This would then provide an overall measure for the degree

12
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Fig. 5.2 Probability (frequency) of the occurrence of any events, based
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Fig. 5.3 Probability (frequency) of the occurrence of any events, based
on an aggregated state space with four different states.
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of mobility, as a function of time. We take this latter approach for an
illustration. Figure 5.2 shows how the probability (frequency) of events
depends on age, based on our standard state space with seven different
states. As just mentioned, this can be viewed as an overall indicator of
time-varying mobility. In this example, mobility reaches its highest values
in the period where young men and women are moving from education
to vocational training and work. Interestingly, the degree of mobility is
basically the same for men and women.

In general, the degree of mobility will depend on the number of different
states and, consequently, the number of possible events. However, in this
example we find very little difference when using the aggregated state
space that only distinguishes four different states (see the definition in
Section 3). Comparing Figure 5.3 with Figure 5.2 shows almost the same
amount of mobility.

Complex events. We use the word , complex events® to denote events
which do not necessarily happen in a single time unit but may take the
form of a transition period. A typical example is the transition from
education to work where we assume that a person is ,mainly in edu-
cation®, for a certain period, and then ,mainly working“ for another
period. However, there might be another period in between these two
situations where the individual is in a certain mix of different states.
We will use this example for an illustration. We first define, somewhat
arbitrarily, two time points, separately for each individual in our sample:

ti1 the earliest time point t such that individual i is in education
at t and is not in education for at least 12 months following
t

tio the earliest time point t > tj; such that individual i is not
working at t and is working for at least 12 months following

t

We can then use tj o — tj; as indicating the duration of the transition
period from education to work. Table 5.1 shows the distribution. For
125 men and 102 women we cannot find a transition from education
to work. 212 men and 172 women change immediately from education
to a period of mainly working. For 213 men and 233 women we find
a transition period having a duration of at least one month but may
extend to several years.

Figures 5.4 and 5.5 show the distribution of the length of the transition
period for the men and women, respectively, where this length is at least
one month. In addition, the figures show the kinds of activities (states)

14



Tab. 5.1 Transition period from education to work

Transition period Men Women
no event 125 102
immediate transition 212 172
1 — 12 months 134 131
13 — 24 months 23 36
more than 24 months 56 66

during this transition period; from bottom to top: not working, education
(incl. vocational training), military service, unemployed, and working.

Searching for Patterns. The idea underlying our description of a
transition period from education to work can be generalized into a gen-
eral search for patterns. Given a sequence of states, a pattern is simply
a predefined subsequence of states. For instance, in our sequence data,
the pattern

p=(,55,55,5,6,6,6,1,1,1,1,1,1)

would consist of six months in education, followed first by three months
in vocational training and then by six month in full-time work. Of course,
it 1s quite unlikely to find exactly this pattern in our sample; in fact, it
does not occur in any of our sequences. The idea of pattern matching
can be saved, however. One possibility is to use only partly specified
patterns, for instance

p=(@,x*,6,%,1)

This would mean: at least one month in education, followed by an arbi-
trary (possibly empty) sequence of states, followed by at least one month
in vocational training, followed again by an arbitrary (possibly empty)
sequence of states; and finally at least one month working. Then we find
already 95 sequences containing this pattern at least once. Table 5.2
presents a few examples.

Another approach would be to search for approzimate pattern matches.
This would require the definition of a similarity measure for comparing
patterns with sequences and to find those parts of a sequence which
are most similar to the predefined pattern. However, we have not yet
explored whether this could lead to a useful method for describing se-
quences.
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Tab. 5.2 Occurrence of patterns in sequences

Men Women
Pattern yes no yes no
EDU,*,VT,* WORK 44 506 51 456
EDU/VT,* WORK,* EDU/VT 364 186 324 183
WORK,*,VT,*, WORK 8 542 11 496
WORK,* EDU/VT,* WORK 375 175 332 175
WORK, *, UNEMP, *, WORK 356 194 354 153

6 Searching for Typical Careers

In the literature surrounding the POLIS project, the notion of ,life course
regimes® plays a central role. While it would be difficult to provide a
clear definition of this concept, it certainly implies the idea of typical
careers and the assumption that real people’s life courses are in some
sense similar to the typical careers constructed by sociologists. Are there
any chances to investigate this idea empirically?

The problem is obviously complex. Given a state space with q different
states, there are q' different sequences of length |. This number gets easily
very large, exceeding not only normal sample sizes but also the size of
all known populations. In our sample, = 7 and | = 143 resulting in
about 1023 different sequences. Trying to find the most often occurring
sequences is certainly not a good idea. In fact, in our sample, not two
sequences are identical.

Whatever the appropriate way to defining typical careers, one can-
not expect to find exactly this career very often in an empirically given
sample of sequences. There are two kinds of strategies to cope with this
problem. First, one can follow a strategy of aggregation. One possibility
would be to consider broader time units, say years, instead of months and
the predominating states during these broader time units. This would
then substantially diminish the degree of heterogeneity in the sequences
and may finally lead to more easily comprehensible frequency distri-
butions. Another possibility would be to only consider the ordering of
states, while ignoring their duration. This has been tried, for instance,
by Rindfuss et al. (1987) and Berger et al. (1993). In our view, these ag-
gregating approaches are questionable because they count states without
considering their duration, or simply ignore potentially important events.
Moreover, what is left out by the aggregation procedure 1s practically not
controllable.
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An alternative strategy tries to systematically face the problem of het-
erogeneity in each given sample of careers. The basic requirement is then
to define, in a first step, a measure of proximity that can be used to as-
sess the degree of similarity or dissimilarity between careers. There are
basically two different approaches.

a) The first approach can be called cross-sectional. Given two sequences,
Vi = (¥ir) and yj = (¥jt) (for two individuals, i and j), the approach be-
gins by defining a cross-sectional distance measure d(Vit, Yjt) that allows
to calculate the distance of the two sequences for each point in time, t.
The overall distance of the two sequences is then calculated by aggre-
gating the cross-sectional distances over a certain range of the time axis.
This approach has been used, for instance, by Buchmann and Sacchi
(1995) to find a classification of occupational careers. Also, when using
correspondence analysis to find ,structure” in a set of sequences, the un-
derlying distance measure is basically cross-sectional; for an application
of this approach see, e.g., Martens (1994).

This cross-sectional approach has two drawbacks. First, it can only be
used to compare sequences of equal length. Second and more important,
it cannot appropriately cope with situations where only the timing of
events is different in the sequences. Assume, for instance, two sequences
which both have one month of unemployment and which are identical
in all respects except that the unemployment occurs one month later
in the second sequence. A sensible distance measure should make both
sequences quite similar, but the cross-sectional approach would count a
difference in two months.

b) To avoid the shortcomings of the cross-sectional approach, some so-
ciologists have tried an optimal matching approach to comparing se-
quences.® This approach provides the possibility to compare individual
sequences simultaneously at different points in time. Although there isn’t
much experience with this approach in sociological research, we should
expect it to provide proximity measures which are better suited to the
dynamical nature of life courses.

While the availability of a suitable proximity measure for sequences is
a basic prerequisite, it does not automatically provide a definition of
typical careers. Again, different approaches are possible.

e One can simply define idealized careers, based on whatever evidence

8 See, e.g., Abbott 1983, 1995; Abbott and Hrycak 1990; Wing 1995; Stovel et al.
1996.
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Fig.6.1 Typical careers constructed by using the most frequent state
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the typical state in the current month.

and prejudices are available. Then one can investigate the degree of sim-
ilarity between these idealized careers and the sequences in a given sam-
ple. Based on the distribution of the resulting similarity indices, one
might be able to answer the question whether the predefined careers
provide a useful representation of the empirically given sequences.

e Another approach begins with calculating a similarity index for each
pair of sequences in the given sample. The resulting distance matrix can
then be used as input for some clustering procedure in order to find a
set of sequence clusters. Finally, one can try to represent each cluster by
a typical sequence.

In the remainder of this section we shortly illustrate the first approach.
The problem of classifying careers will be discussed in the next section.

One way of defining a (potentially) typical career is based on using
the most frequent state in each time unit (month). If we follow this way
with our sample of sequences, we find the sequences shown in Figure
6.1. For men, the sequence is 22 months mainly in education, then 120
months mainly working; for women it is 30 months mainly in education,
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then 113 months mainly working.® While the plot looks fine, the impor-
tant question 1s, of course, whether and to what degree the individual
careers actually follow these sequences. Are they, in some sense, ,,typical
careers“?

To approach this question, Figure 6.1 also shows the proportion of se-
quences that are not in the most frequent state in each current month.
For instance, at age 17, more than 50 % of the sequences are not in their
most frequent state; and at least 20% of the sequences are always, i.e.
in each month, different from the most frequent state. It is questionable,
therefore, whether the idealized careers shown in Figure 6.1 provide a
useful summary of the actual variety of careers in our sample. In particu-
lar, while these idealized careers suggest a clear transition from education
to work, we have already seen in section 5 that there is, in fact, a highly
complex transition period characterized by an extremely high amount of
individual heterogeneity.

Moreover, the method used in Figure 6.1 to assess the amount of non-
typical careers is basically cross-sectional and somewhat misleading. We
have simply calculated the percentage of sequences that were not in
the most frequent state for each month separately. To investigate the
question correctly, we need to calculate an explicitly defined distance
between each individual sequence and the idealized careers. To illustrate
this approach, we use optimal matching distances in their canonical defi-
nition, that 1s, insertion and deletion weights are both 1, and substitution
weights are 2.0 Each comparison between a sequence and an idealized
career uses the longest common sequence length, and the resulting dis-
tance is normalized by dividing through the common sequence length.
The resulting distances can then vary in the range 0 (identical) to 2
(most dissimilar).

Figure 6.2 shows the distribution of these distance measures and sug-
gests the conclusion that most sequences in our sample are not very
similar to the 1dealized careers shown in Figure 6.1. It is, of course, dif-
ficult to justify any threshold such that a distance below the threshold
can reasonably being interpreted as ,,being similar to the idealized ca-
reer”. A potentially useful method to provide additional evidence is to
calculate distances simultaneously with respect to two or more reference
sequences. Figure 6.3 illustrates this idea by showing simultaneously the
distance of men’s sequences to the idealized sequence (Y-axis) and a zero

9 The construction is based on the aggregated state space described in Section 3.

10 This amounts to using the length of the longest common substring as a measure
of similarity between sequences; see, e.g., Kruskal, 1983.
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sequence consisting of always not working (X-axis). We see a substantial
part of the sequences being similar to the idealized career and not simi-
lar to the zero sequence. However, the main conclusion is again that one
single sequence cannot represent the broad diversity of actual sequences.

7 Classifying Careers

Given that we cannot expect to find a single typical career which appro-
priately summarizes a given sample of sequences, it seems reasonable to
search for a small set of different career types. Given also that we do not
have good a priori reasons for defining these career types, we could try
some clustering procedure to empirically investigate the question.

To illustrate this approach we use again the optimal matching dis-
tances introduced in the previous section. Instead of comparing each
sequence with a predefined idealized career, we now calculate a distance
matrix that provides a distance between each pair of sequences. For the
illustration we begin with using the 550 sequences of men, resulting in
a symmetrical (550, 550) matrix with (up to) 150,975 different distances
in its lower triangle.

Several different algorithms are available for clustering a distance ma-
trix. We do not try to find an optimal algorithm but choose a particularly
simple one to discuss some general problems. The algorithm is a binary
split procedure which, beginning with the whole sample, sequentially
tries to find optimal subclasses. The first steps of the split procedure are
shown in Table 7.1, the resulting classification tree is shown in Figure
7.1.1

The algorithm begins with the whole sample consisting of 550 se-
quences for men; this is level 0 and the class ID is 1. It then finds two
sequences which are maximally different to become the seed points for
two subclasses on level 1. All sequences which are more similar to the
first than to the second of these sequences will become members of the
first subclass (class ID 2), the remaining sequences become members of
the second subclass (class ID 3). In our example, the first subclass has
452, the second subclass has 98 members.

The procedure is then repeated for each previously created subclass
having at least two members. The algorithm finds two maximally dif-
ferent elements (sequences) to become the seed points for two further

11 For plotting this tree we used the radial drawing algorithm proposed by Barthelemy
and Guenoche 1991, p. 27.
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Tab. 7.1 First steps of binary split procedure

Level Classes Class ID Elements Max Distance Mean Distance

0 1 1 550 2.00 0.83
1 2 2 452 2.00 0.73
1 2 3 98 2.00 0.85
2 4 4 350 1.77 0.52
2 4 5 102 1.96 0.94
2 4 6 72 1.83 0.72
2 4 7 26 1.63 0.85
3 8 8 170 1.28 0.38
3 8 9 180 1.43 0.48
3 8 10 38 1.50 0.80
3 8 11 64 1.43 0.76
3 8 12 40 1.55 0.67
3 8 13 32 1.08 0.48
3 8 14 11 1.34 0.78
3 8 15 15 1.05 0.63
4 16 16 163 1.08 0.33
4 16 17 7 0.92 0.51
4 16 18 173 1.12 0.47
4 16 19 7 0.83 0.63
4 16 20 27 1.24 0.63
4 16 21 11 1.28 0.86
4 16 22 35 1.22 0.72
4 16 23 29 1.10 0.63
4 16 24 28 0.92 0.54
4 16 25 12 1.17 0.58
4 16 26 3 0.81 0.64
4 16 27 29 1.00 0.40
4 16 28 5 0.94 0.71
4 16 29 6 1.00 0.63
4 16 30 8 0.85 0.65
4 16 31 7 0.91 0.46

subclasses. Table 7.1 documents this process up to level 4 with 16 sub-
classes.

The question remains, of course, where to stop the procedure. Figure
7.1 shows the final classification tree but provides no clear idea about
the number of classes. (A similar classification tree for women is shown
in Figure 7.2.) The plot seems to suggest that we should distinguish at
least 11 different classes. But we need additional information to assess
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Fig.7.1 Classification tree resulting from a binary split procedure ap-
plied to optimal matching distances between sequences of 550 men.

their homogeneity. Table 7.1 records the maximal distance between two
sequences in each of the subclasses but this is not a very good indicator
of subclass homogeneity. A somewhat better measure is provided by the
mean of all pairwise distances in a subclass. Using this measure, also
shown in Table 7.1, seems to suggest that even 16 classes may not be
sufficient to approach an acceptable degree of homogeneity.

Assessing Longitudinal Diversity. The problem of finding useful
classifications of sequences (careers) can certainly not be solved on purely
formal and statistical grounds. We should recognize, however, that clus-
tering sequences brings us back to the general problem, already discussed

24



Fig.7.2 Classification tree resulting from a binary split procedure ap-
plied to optimal matching distances between sequences of 507 women.

in section 4, how to define longitudinal classifications. The approach
taken in section 4 was based on a fundamental assumption: that any
reasonable classification should allow people to change their class mem-
bership. This assumption provides the opportunity to define classes on
theoretical grounds and then investigate class membership as a function
of time. If classifying whole sequences, this assumption is no longer valid
and homogeneity of classes becomes an essentially problematic claim.

An important part of the problem follows from the fact that classifying
whole careers contradicts, in a sense, a dynamical view of life courses
as sequentially developing in time. We have no good idea how to cope
with this contradiction. In any case, it seems worthwhile also directly
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investigating the question how the diversity of life courses evolves over
time (age).

There are basically two different approaches. First, a cross-sectional
approach where we calculate an indicator of diversity (inequality) for
each time unit separately and then plot this indicator as a function of
time. This approach is directly related to the sequences of state distri-
butions discussed in section 3. To illustrate this approach, we calculate
separately for each month the entropy of these distributions which can be
interpreted as a measure of homogeneity.'? Using our basic state space
with seven different states, the entropy can vary in the range from 0
(all sequences are in the same state) up to log(7) = 1.95 (all sequences
are equally distributed across the different states). Figure 7.3 shows the
entropy as a function of time. It begins with a very low values since most
sample members are then in the same state (education). The sequences
then become rapidly more differentiated and the entropy reaches almost
its maximum at about 19 years; and then the entropy slowly decreases.

Cross-sectional measures of diversity are questionable, however, since
they assume that life courses do not have a memory. These measures
only take into account the currently realized state and completely ignore
what has happened before. Taking this objection seriously, we should se-
quentially compare our sequences. This can be done by generalizing the
optimal matching approach discussed above. Instead only calculating a
single distance for each two sequences, we now do this sequentially for
each month t, djj; being the distance of the sequences of individuals i
and | up to the tth month. The result is a sequence of distance matri-
ces, a separate distance matrix for each month reflecting the inequality
structure of the sequences up to that month. Since we do not yet have
a good idea how to explore the structure of this sequence of distance
matrices, Figure 7.4 only shows the mean values of the distances as a
function of time.

8 Concluding Remarks

As mentioned at the beginning, statistical methods for describing life
courses are not well developed yet. The preceding sections reflect this
state of affairs. While it seems possible to find useful descriptions for
certain aspects of life courses, we soon reach limits when trying to de-
scribe whole trajectories. This is partly a consequence of the inherent

12 The entropy in month t is calculated as E;y = % pjt log(pjt) where pjt is the pro-
portion of sequences being in state j in month t.
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Fig.7.4 Mean values of optimal matching distances djj;, calculated

fort=1,...,120.

complexity of life courses. Possibly more important is the requirement
that appropriate methods for describing life courses should always follow
the view that life courses evolve sequentially in time. Our preliminary
conclusions are as follows.

e When trying to describe life courses we should avoid any form of
cross-sectional approach and, in particular, we should avoid aggregating
individuals on a cross-sectional basis. Appropriate descriptions should
always be interpretable in terms of individual trajectories.

e This does not exclude the possibility of useful classifications. However,
we should make an important distinction between classifying individuals
and classifying possible states of individual life courses. Taking the life
course approach seriously, only the latter type of classification is poten-
tially sensible. Then, whenever trying to establish some classification,
this should be supplemented by an investigation of class membership as
a function of time.

e Trying to classify whole life courses seems to be an essentially problem-
atic endeavor. While we easily admit that more sophisticated methods
can be developed to find potentially useful classifications of whole tra-
jectories, there remains a basic contradiction with a dynamical view of
sequentially evolving life courses. In our view, the basic task is to reach
an appropriate description of the development of diversity (and inequal-
ity) of life courses over time. Trying to find better methods for classifying
whole trajectories should be seen as a secondary task.
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