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IntroductionThe central research questions of the polis project are how life courseshave changed across successive birth cohorts, and whether part of thesechanges can be attributed to changes in institutional frameworks. What-ever the �nal approach to these questions will be, as a �rst step oneneeds suitable tools for describing life courses. Surprisingly enough, suchtools are not well developed yet. Most sociological research in the event-history framework has its focus on speci�c types of events and individualtransitions, not on the �nally resulting life courses and trajectories.From a methodological point of view, the dominating focus on tran-sitions is quite understandable. Individual life courses are the result ofgoing sequentially through time; metaphorically spoken, the tracks thatare left behind when people grow older. Consequently, trying to explainthe development of life courses one needs to investigate the transitionswhich might occur during life courses.On the other hand, this approach easily runs into the danger of loos-ing sight of the �nal result, the life courses as resulting from a continu-ous stream of currently happening events, and providing a continuouslychanging identity to its individual "bearers\. Given their sequential de-velopment it is, of course, questionable whether whole life courses canbe reasonably taken as "dependent variables\ (suggested, for instance,by Abbott 1995, p. 105). However, given that there is already a broadsociological literature taking life courses as the subject of its discourse, itshould be an important task to develop empirical and statistical meth-ods that not only allow to investigate individual transitions but cancontribute to analytically useful descriptions of whole life courses. Thisseems to be particularly important in order to establish an empiricalbasis for the polis project.In this paper we try to contribute to a discussion of methods for de-scribing life courses which might be useful for the polis project.
ž In section 1 we propose a simple data structure for representing lifecourses as sequences of states.

ž In section 2 we illustrate this proposal by using life history data fromthe National Longitudinal Study of Youth (NLSY).
ž It follows in section 3 a short discussion of cross-sectional distributionsfor describing the evolution of life courses. It is shown that this approach,although often used, can easily be misleading.

ž A somewhat broader view, focusing on the question of how to estab-1
lish longitudinal classi�cations, is taken in section 4. We investigate twomethods for assessing the stability of group membership over time.

ž We then begin with a discussion of describing life courses on an indi-vidual level. One simple approach, focusing on the occurrence of events,is treated in section 5. We discuss how this approach can also be used forrepeatable and complex events (e.g., transition from education to work).

ž Section 6 then raises the question whether we can hope to �nd typicalcareers and begins a discussion of some problems connected with thisidea. The discussion is continued in Section 7 where we use a simpleclustering procedure to illustrate the di�culties in searching for typicalcareers.1 Representing Life CoursesWe begin with shortly describing a formal framework for representing lifecourses. The basic idea is to represent individual life courses as sequencesof states. We assume a basic unit of time, say weeks or months, and astate space providing a set of di�erent states such that each individualis in exactly one of these states during each of the basic time periods.1This immediately leads to a simple formal representation of life courses.Let Y denote the state space, and t D 1; 2; 3; : : : be an index for thesequence of time units. The sample of individuals will be indexed by

i D 1; : : : ; N , and yit will be used to denote the state of individual iduring the time unit t . We then get representations of the individual lifecourses by the sequences
yi D .yi1; yi2; yi3; : : :/What can be represented depends on the de�nition of the state spaceand the time axis. However, the framework is quite 
exible. There areno theoretical limits in making the state space more and more di�eren-tiated. Alternatively, we can de�ne two or more separate state spaces.For instance, a state space Y can be used for education and labor mar-ket activities, and a state space Z can be used to record partnerships1 This approach is somewhat di�erent from the conventional view of event-historydata as sequences of episodes, or spells. However, when based on the same timeunits as used for measuring the dates of events, both approaches provide identicalinformation. This becomes di�erent only if the de�nition of sequence data uses moreaggregated time units. As an example, see Gershuny (1993, p. 141) who has used se-quences generated by observing life courses once per year. This might be su�cient forinvestigating occupationalmobility, but not, for instance, for investigating transitionsinto and out of unemployment. 2



and family a�airs. Representation of individual life courses is then bytwo-dimensional sequences
.yi; zi/ D .yi1; zi1; yi2; zi2; yi3; zi3; : : :/While it would be possible to combine both dimensions into a singlestate space (the cartesian product of Y and Z), keeping distinct statespaces provides an opportunity for investigating temporal relationshipsbetween events in the marginal processes.2In our view, this formal framework for representing life courses is par-ticularly well suited for the polis project.

ž It provides a general and 
exible framework for representing mostaspects of life courses which seem important for the research questionsof the polis project.
ž While the representation of life courses as sequences of states directlydraws attention to whole life courses, the same framework can be usedto investigate speci�c transitions with conventional methods of eventhistory analysis.
ž The representation of life courses as sequences of states not onlyprovides a unifying data structure for cross-country comparison of lifecourses, but also creates a direct link to the theoretical questions of thepolis project regarding the existence of "typical\ life courses and theirchanging features across cohorts.In the following sections we use this sequence data structure as a frame-work for discussing methods for describing life courses. All calculationsand plots have been done with the computer programTDA that supportsthis data structure (see Rohwer, 1996).2 Illustration with NLSY DataTo illustrate the sequence data structure introduced in the previoussection, we use data from the National Longitudinal Study of Youth(NLSY). This is a nationally representative sample for the birth cohortsbetween 1957 and 1964 in the United States, consisting of 12,686 youngwomen and men who were �rst surveyed in 1979. Interviews with NLSYrespondents have been conducted yearly since 1979 (panel study). TheNLSY sampling design enables researchers to study in detail the longi-tudinal experiences of not only this particular age group of young Amer-2 See Blossfeld and Rohwer (1995) for a discussion of this "causal approach\ tomodeling interdependent processes. 3

icans but to analyze the disparate life course experiences of such groupsas women, hispanics, blacks, and the economically disadvantaged (seeCenter for Human Resource Research, 1994).To illustrate the mainly methodological discussion in this paper, wefocus on respondents born in 1964, that is, we use only a single birthcohort. As a consequence, we do not explicitly discuss questions of cohortcomparison. However, many of the methods discussed below can be usedfor this purpose.In our data set, the last interview is in 1990. There are 1106 respon-dents born in 1964, most of them with an interview in 1990.3 For theserespondents we create sequence data based on a monthly time axis be-ginning for each respondent with the month of his or her 15th birthday:

t D 0; 1; 2; : : : (t D 0 is month of 15th birthday, t D 1 is the followingmonth, and so on until the month of the last interview). The time axisruns until t D 142, that is, the longest possible observation period is 143months (about 12 years, = age 27).For our illustratory purposes we focus on education and labor marketactivities. The state space distinguishes the following states:0 not working1 full-time work2 part-time work (< 35 hours per week)3 unemployed4 military service5 education6 vocational training
�1 missing informationFor each individual, i D 1; : : : ; 1106, we then get a sequence
.yi;0; yi;1; : : : ; yi;142/with yit the state in month t . Of course, there is a certain amount ofmissing values. In fact, for seven individuals the sequences consist ofonly missing values. Missing values in the remaining sequences belong toone of the following types:1. Missing values at the beginning of a sequence do not pose a specialproblem but only mean that, for some individuals, observation doesnot begin with the 15th birthday but some months later. In our sam-ple, for 99% of the respondents the observation periods does not begin3 There is a relatively small amount of attrition that will be shown below.4
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womenFig. 2.1 Distribution (survivor function) of age at �rst marriage (left) and age at�rst child (right), for men and women born 1964.later than the 16th birthday.2. Also missing values at the end of a sequence do not pose a specialproblem and only mean that, for some individuals, the observationperiod ends before age 27. This will be illustrated below, see Figures3.1 and 3.2.3. There remains the problem of "internal gaps\, that is, missing valuesin between two valid states. This obviously creates speci�c di�cultiesand, in general, one would need suitable assumptions to �ll these gaps.Fortunately, in our sample only 42 sequences have internal gaps andso we have decided to use only sequences without internal gaps (andat least one valid state).The remaining sample used in the illustrations below consists of 1057individuals (sequences), 550 men and 507 women.In all illustrations we use only the simple state space described above,focusing on education and work careers. A more complete investigationshould also take family events into account. As shown in Figure 2.1, atthe end of our observation period (about age 27), almost two third ofthe respondents are married and almost one half has a �rst child.3 Cross-Sectional DistributionsIn order to arrive at informative descriptions of a set of sequences onecan follow di�erent routes. A basic distinction is:
ž We can investigate how the state distribution, that is, the distributionof individual units over the state space, evolves in time. This providesa compact description of the aggregate distributions but is basically a5

15 16 17 18 19 20 21 22 23 24 25 26 27
0

10

20

30

40

50

60

70

80

90

100

Fig. 3.1 Evolution of state distribution for 550 men. From bottom totop: in education (incl. vocational training), working, unemployed, notworking, and missing information.
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Fig. 3.2 Evolution of state distribution for 507 women. From bottomto top: in education (incl. vocational training), working, unemployed,not working, and missing information.6



cross-sectional approach.
ž Alternatively, we can be interested in getting information about thebehavior of the individual sequences. This will be called an individual-level approach.In this section we illustrate the �rst approach. In order to provide ageneral impression, we use an aggregated state space as follows:0 not working1 full-time or part-time work, or military service3 unemployed5 education or vocational training

�1 missing informationFigures 3.1 and 3.2 show the resulting state distributions for men andwomen during the observation period (age 15 to 27). The grey-scaledregions indicate the missing observations. We see that there are verylittle missing values at the beginning, and most sample members can beobserved until age 26.One also sees that the picture is surprisingly similar for men andwomen. Women are somewhat more often in the non-working state. But,as will be shown in the next section, this is only a gradual di�erence.As shown by the two �gures, plotting a sequence of cross-sectional statedistributions provides a compact view of the structure of a sample ofsequences. However, the information is actually very limited and, in fact,might be misleading.As the �gures suggest: at the beginning most peopleare in education or vocational training and then gradually change tosome other state, mainly working. However, all our states are repeatableand the �gures do not tell us anything about re-entering a previouslyexited state. The �gures do not tell anything about individual mobilitybetween di�erent states and, in fact, there is a risk of interpreting thedi�erent regions of the plots as indicating an evolution of "groups ofpeople\.4 To avoid this risk one needs an individual-level approach.4 It seems really di�cult to avoid interpreting a sequence of state distribution asshowing the development of life courses. For instance, Blossfeld et al. (1993, p. 117)interpret a plot of state distributions similar to Figure 3.1 as showing how "a cohortgradually left the general educational system.\ The problem is that the same se-quence of cross-sectional distributions is compatible with a broad variety of di�erentindividual careers implying that we cannot draw reliable conclusions about individualcareers. And consequently, we cannot draw reliable conclusions about cohorts, giventhat we should be able to translate statements about cohorts into statements abouttheir individual members. 7
4 Longitudinal Classi�cationsThe problem indicated in the last section can be generalized: How to�nd sensible classi�cations when membership in the classes can change?Given that classifying people into di�erent categories is a main businessof sociologists, this is obviously an important problem.Gershuny (1993), for instance, was interested in the development ofoccupational careers in Britain and, in order to characterize these ca-reers, he classi�ed his sample members according to the occupation theyhad at a speci�c point in time (the year 1986, in his application). Hethen described the resulting occupational classes by using informationabout the occupational careers of their members. In particular, he triedto describe these classes by "the proportions of the aggregate workinglife-times of those in each 1986 occupation who have been in those occu-pations throughout their careers (`immobile'), and the proportions spentin those occupations by people who have had some other work at somepoint\ (Gershuny 1993, p. 156). It is questionable, however, whether thisconstruction of occupational classes makes sense. Given that there issome substantive amount of occupational mobility, classifying people ac-cording to their occupation at some speci�c point in time seems highlyarbitrary.In our view, it is generally no good idea to classify people accordingto their characteristics at only one single point in time. If one wants tode�ne (longitudinal) classes based on time-varying characteristics, onemust take into account that people can enter and leave the class, oftenrepeatedly.5 In a �rst step, the class should be de�ned as consisting of allpeople who were a member of the class at some point in their lives. It issimple, then, to construct a class stability indicator. For each individual

i, let Di denote the potential time that this individual could have beena member of the class, say C, and let Dc
i denote the time during whichindividual i actually has been a member of C. Then Dc

i =Di indicates thedegree of class membership for this individual; and the distribution ofthis indicator shows the degree of class stability over time.65 Since sociological research is based more and more on longitudinal data, manyresearchers have recognized this problem; see, e.g., Myles et al. 1993, p. 175. Thereremains, however, a lack of suitable methods to assess the problem empirically.6 One should be aware of the shape of this distribution. In most applications, wewill not be able to make a clear distinction between "stable classes\ and "transitorypseudo-classes\. For example (Myles et al. 1993, p. 175): "Traditionally, most maleblue-collar workers got their jobs as young men and spent all or a good part of theirlives in the same job or circulating between a limited set of similar jobs. [: : : ] The8
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Fig. 4.1 Distribution (survivor functions) of group membership indi-cator for the "not working\ group. Indicator runs from 0 to 1 on theabscissa.
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Fig. 4.2 Distribution (survivor functions) of group membership indi-cator for the "working part-time\ group. Indicator runs from 0 to 1 onthe abscissa. 9
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Fig. 4.3 Probability (frequency) of belonging to the "group of part-time working people\ as a function of age (abscissa).To illustrate this idea, we use the group of people who are "not work-ing\ as suggested by Figures 3.1 and 3.2. For each individual, we calculatethe proportion of time (observation period) where the individual belongsto this group. Figure 4.1 shows the distribution, separately for men andwomen. While women obviously belong somewhat longer to this groupcompared with men, the plot clearly shows that, neither for men norfor women, there is a stable group membership. Without further qual-i�cation, the "group of non-working people\ seems to be an ill-de�nedconcept.Figure 4.2 shows the distribution of a group membership indicatorfor the "group of part-time working people\. The conclusion is basicallythe same and, in this example, there seems to be almost no di�erencebetween men and women.However, this seemingly obvious conclusion provides a starting pointfor discussing another limitation of longitudinal classi�cations. WhileFigure 4.2 seems to suggest that men's and women's careers are quitesimilar with respect to part-time work, this is actually not the case.question then is whether the post-industrial working class is like this. Or are thelow-skilled, low-wage service jobs `stop-gap' jobs, places which people `pass through'on their way to somewhere else?\ Most probably, this is not an alternative.10



This impression is simply the result of ignoring the distribution of part-time work in di�erent ages. We see this when calculating the probability(frequency) of belonging to the "group of part-time working people\ asa function of time (age). This is shown in Figure 4.3. The plot clearlyshows that the probability of part-time work is similar for men andwomen only until about age 19, that is, in a period with mainly "stop-gap\ jobs; but afterwards women have a signi�cantly higher probabilityof working part-time.As this examples demonstrates, whenever de�ning longitudinal clas-si�cations, this should be supplemented by (a) an investigation of thestability of group membership over time, and (b) an investigation of theprobability of belonging to a group as a function of time (age).5 Characterizing Individual SequencesWe now turn to individual-level approaches to describe life courses. Asimple approach calculates the proportion of time (observation period)each individual spent in the possible states. Figure 5.1 shows distributionfunctions for these proportions. If a functions begins with a value lessthan 1, the remaining proportion of sample members never experiencedthe corresponding state.Another approach is based on the view of life courses as sequences ofevents. It seems possible, then, to characterize each individual sequenceby reporting dates and frequencies for the occurrence of speci�c events.The distributions of these indicators can then be used to compare, for in-stance, life courses of men and women, or across di�erent birth cohorts.7However, while this approach is straightforward for simple, non-repeat-able events like �rst marriage, there are other events which are moredi�cult to describe: (a) repeatable events, like becoming unemployed,and (b) complex events as, for instance, the transition from educationand vocational training to work.Repeatable events. A useful approach to describing the occurrenceof repeatable events is to calculate the probabilities (or rates) for theoccurrence of such events as a function of time. Based on a sequencerepresentation of life courses this can be done easily. One just needs tocalculate, for each point in time, a risk set containing the individuals whomight experience the event, and the number of individuals who actuallyexperienced the event. Dividing the latter by the former provides a simple7 See Mayer (1993) for an application of this approach to cohort comparison.11
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Fig. 5.1 Distribution (survivor functions) for proportion of time (ob-servation period) spent in di�erent states.estimate of the probability.This calculation can be done separately for each type of event thatseems interesting. In a more general approach, one can also calculate theprobability for the occurrence of any event, that is, for any change in thecurrent state. This would then provide an overall measure for the degree12
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Fig. 5.3 Probability (frequency) of the occurrence of any events, basedon an aggregated state space with four di�erent states.13
of mobility, as a function of time. We take this latter approach for anillustration. Figure 5.2 shows how the probability (frequency) of eventsdepends on age, based on our standard state space with seven di�erentstates. As just mentioned, this can be viewed as an overall indicator oftime-varyingmobility. In this example, mobility reaches its highest valuesin the period where young men and women are moving from educationto vocational training and work. Interestingly, the degree of mobility isbasically the same for men and women.In general, the degree of mobilitywill depend on the number of di�erentstates and, consequently, the number of possible events. However, in thisexample we �nd very little di�erence when using the aggregated statespace that only distinguishes four di�erent states (see the de�nition inSection 3). Comparing Figure 5.3 with Figure 5.2 shows almost the sameamount of mobility.Complex events. We use the word "complex events\ to denote eventswhich do not necessarily happen in a single time unit but may take theform of a transition period. A typical example is the transition fromeducation to work where we assume that a person is "mainly in edu-cation\, for a certain period, and then "mainly working\ for anotherperiod. However, there might be another period in between these twosituations where the individual is in a certain mix of di�erent states.We will use this example for an illustration. We �rst de�ne, somewhatarbitrarily, two time points, separately for each individual in our sample:

ti;1 the earliest time point t such that individual i is in educationat t and is not in education for at least 12 months following
t

ti;2 the earliest time point t ½ ti;1 such that individual i is notworking at t and is working for at least 12 months following
tWe can then use ti;2 � ti;1 as indicating the duration of the transitionperiod from education to work. Table 5.1 shows the distribution. For125 men and 102 women we cannot �nd a transition from educationto work. 212 men and 172 women change immediately from educationto a period of mainly working. For 213 men and 233 women we �nda transition period having a duration of at least one month but mayextend to several years.Figures 5.4 and 5.5 show the distribution of the length of the transitionperiod for the men and women, respectively, where this length is at leastone month. In addition, the �gures show the kinds of activities (states)14



Tab. 5.1 Transition period from education to workTransition period Men Womenno event 125 102immediate transition 212 1721 { 12 months 134 13113 { 24 months 23 36more than 24 months 56 66during this transition period; from bottom to top: not working, education(incl. vocational training), military service, unemployed, and working.Searching for Patterns. The idea underlying our description of atransition period from education to work can be generalized into a gen-eral search for patterns. Given a sequence of states, a pattern is simplya prede�ned subsequence of states. For instance, in our sequence data,the pattern
p D .5; 5; 5; 5; 5; 5; 6; 6;6; 1; 1;1; 1;1; 1/would consist of six months in education, followed �rst by three monthsin vocational training and then by six month in full-timework. Of course,it is quite unlikely to �nd exactly this pattern in our sample; in fact, itdoes not occur in any of our sequences. The idea of pattern matchingcan be saved, however. One possibility is to use only partly speci�edpatterns, for instance
p D .5; Ł; 6; Ł; 1/This would mean: at least one month in education, followed by an arbi-trary (possibly empty) sequence of states, followed by at least one monthin vocational training, followed again by an arbitrary (possibly empty)sequence of states, and �nally at least one month working. Then we �ndalready 95 sequences containing this pattern at least once. Table 5.2presents a few examples.Another approach would be to search for approximate pattern matches.This would require the de�nition of a similarity measure for comparingpatterns with sequences and to �nd those parts of a sequence whichare most similar to the prede�ned pattern. However, we have not yetexplored whether this could lead to a useful method for describing se-quences. 15
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Fig. 5.4 Distribution (survivor function) of the length of the transi-tion period from education to work for 213 men; and distribution ofstates during this transition periods.
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Fig. 5.5 Distribution (survivor function) of the length of the transi-tion period from education to work for 233 women; and distribution ofstates during this transition periods.16



Tab. 5.2 Occurrence of patterns in sequencesMen WomenPattern yes no yes noedu,*,vt,*,work 44 506 51 456edu/vt,*,work,*,edu/vt 364 186 324 183work,*,vt,*,work 8 542 11 496work,*,edu/vt,*,work 375 175 332 175work,*,unemp,*,work 356 194 354 1536 Searching for Typical CareersIn the literature surrounding the polis project, the notion of "life courseregimes\ plays a central role. While it would be di�cult to provide aclear de�nition of this concept, it certainly implies the idea of typicalcareers and the assumption that real people's life courses are in somesense similar to the typical careers constructed by sociologists. Are thereany chances to investigate this idea empirically?The problem is obviously complex. Given a state space with q di�erentstates, there are q l di�erent sequences of length l. This number gets easilyvery large, exceeding not only normal sample sizes but also the size ofall known populations. In our sample, q D 7 and l D 143 resulting inabout 10123 di�erent sequences. Trying to �nd the most often occurringsequences is certainly not a good idea. In fact, in our sample, not twosequences are identical.Whatever the appropriate way to de�ning typical careers, one can-not expect to �nd exactly this career very often in an empirically givensample of sequences. There are two kinds of strategies to cope with thisproblem. First, one can follow a strategy of aggregation. One possibilitywould be to consider broader time units, say years, instead of months andthe predominating states during these broader time units. This wouldthen substantially diminish the degree of heterogeneity in the sequencesand may �nally lead to more easily comprehensible frequency distri-butions. Another possibility would be to only consider the ordering ofstates, while ignoring their duration. This has been tried, for instance,by Rindfuss et al. (1987) and Berger et al. (1993). In our view, these ag-gregating approaches are questionable because they count states withoutconsidering their duration, or simply ignore potentially important events.Moreover, what is left out by the aggregation procedure is practically notcontrollable. 17
An alternative strategy tries to systematically face the problem of het-erogeneity in each given sample of careers. The basic requirement is thento de�ne, in a �rst step, a measure of proximity that can be used to as-sess the degree of similarity or dissimilarity between careers. There arebasically two di�erent approaches.a) The �rst approach can be called cross-sectional. Given two sequences,

yi D .yit / and yj D .yjt/ (for two individuals, i and j ), the approach be-gins by de�ning a cross-sectional distance measure d.yit ; yjt/ that allowsto calculate the distance of the two sequences for each point in time, t .The overall distance of the two sequences is then calculated by aggre-gating the cross-sectional distances over a certain range of the time axis.This approach has been used, for instance, by Buchmann and Sacchi(1995) to �nd a classi�cation of occupational careers. Also, when usingcorrespondence analysis to �nd "structure\ in a set of sequences, the un-derlying distance measure is basically cross-sectional; for an applicationof this approach see, e.g., Martens (1994).This cross-sectional approach has two drawbacks. First, it can only beused to compare sequences of equal length. Second and more important,it cannot appropriately cope with situations where only the timing ofevents is di�erent in the sequences. Assume, for instance, two sequenceswhich both have one month of unemployment and which are identicalin all respects except that the unemployment occurs one month laterin the second sequence. A sensible distance measure should make bothsequences quite similar, but the cross-sectional approach would count adi�erence in two months.b) To avoid the shortcomings of the cross-sectional approach, some so-ciologists have tried an optimal matching approach to comparing se-quences.8 This approach provides the possibility to compare individualsequences simultaneously at di�erent points in time. Although there isn'tmuch experience with this approach in sociological research, we shouldexpect it to provide proximity measures which are better suited to thedynamical nature of life courses.While the availability of a suitable proximity measure for sequences isa basic prerequisite, it does not automatically provide a de�nition oftypical careers. Again, di�erent approaches are possible.
ž One can simply de�ne idealized careers, based on whatever evidence8 See, e.g., Abbott 1983, 1995; Abbott and Hrycak 1990; Wing 1995; Stovel et al.1996. 18
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Fig. 6.1 Typical careers constructed by using the most frequent statein each month. In addition: percentage of sequences that were not inthe typical state in the current month.and prejudices are available. Then one can investigate the degree of sim-ilarity between these idealized careers and the sequences in a given sam-ple. Based on the distribution of the resulting similarity indices, onemight be able to answer the question whether the prede�ned careersprovide a useful representation of the empirically given sequences.
ž Another approach begins with calculating a similarity index for eachpair of sequences in the given sample. The resulting distance matrix canthen be used as input for some clustering procedure in order to �nd aset of sequence clusters. Finally, one can try to represent each cluster bya typical sequence.In the remainder of this section we shortly illustrate the �rst approach.The problem of classifying careers will be discussed in the next section.One way of de�ning a (potentially) typical career is based on usingthe most frequent state in each time unit (month). If we follow this waywith our sample of sequences, we �nd the sequences shown in Figure6.1. For men, the sequence is 22 months mainly in education, then 120months mainly working; for women it is 30 months mainly in education,19

then 113 months mainly working.9 While the plot looks �ne, the impor-tant question is, of course, whether and to what degree the individualcareers actually follow these sequences. Are they, in some sense, "typicalcareers\?To approach this question, Figure 6.1 also shows the proportion of se-quences that are not in the most frequent state in each current month.For instance, at age 17, more than 50% of the sequences are not in theirmost frequent state; and at least 20% of the sequences are always, i.e.in each month, di�erent from the most frequent state. It is questionable,therefore, whether the idealized careers shown in Figure 6.1 provide auseful summary of the actual variety of careers in our sample. In particu-lar, while these idealized careers suggest a clear transition from educationto work, we have already seen in section 5 that there is, in fact, a highlycomplex transition period characterized by an extremely high amount ofindividual heterogeneity.Moreover, the method used in Figure 6.1 to assess the amount of non-typical careers is basically cross-sectional and somewhat misleading. Wehave simply calculated the percentage of sequences that were not inthe most frequent state for each month separately. To investigate thequestion correctly, we need to calculate an explicitly de�ned distancebetween each individual sequence and the idealized careers. To illustratethis approach, we use optimal matching distances in their canonical de�-nition, that is, insertion and deletion weights are both 1, and substitutionweights are 2.10 Each comparison between a sequence and an idealizedcareer uses the longest common sequence length, and the resulting dis-tance is normalized by dividing through the common sequence length.The resulting distances can then vary in the range 0 (identical) to 2(most dissimilar).Figure 6.2 shows the distribution of these distance measures and sug-gests the conclusion that most sequences in our sample are not verysimilar to the idealized careers shown in Figure 6.1. It is, of course, dif-�cult to justify any threshold such that a distance below the thresholdcan reasonably being interpreted as "being similar to the idealized ca-reer\. A potentially useful method to provide additional evidence is tocalculate distances simultaneously with respect to two or more referencesequences. Figure 6.3 illustrates this idea by showing simultaneously thedistance of men's sequences to the idealized sequence (Y-axis) and a zero9 The construction is based on the aggregated state space described in Section 3.10 This amounts to using the length of the longest common substring as a measureof similarity between sequences; see, e.g., Kruskal, 1983.20
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Fig. 6.2 Distribution (survivor function) of the normalized distancesbetween individual sequences and the typical sequences shown in Fig-ure 6.1.
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Fig. 6.2 Scattergram of men's sequences. X-axis: distance to a zero se-quence (always not working), Y-axis: distance to the typical sequenceshown in Figure 6.1. 21
sequence consisting of always not working (X-axis). We see a substantialpart of the sequences being similar to the idealized career and not simi-lar to the zero sequence. However, the main conclusion is again that onesingle sequence cannot represent the broad diversity of actual sequences.7 Classifying CareersGiven that we cannot expect to �nd a single typical career which appro-priately summarizes a given sample of sequences, it seems reasonable tosearch for a small set of di�erent career types. Given also that we do nothave good a priori reasons for de�ning these career types, we could trysome clustering procedure to empirically investigate the question.To illustrate this approach we use again the optimal matching dis-tances introduced in the previous section. Instead of comparing eachsequence with a prede�ned idealized career, we now calculate a distancematrix that provides a distance between each pair of sequences. For theillustration we begin with using the 550 sequences of men, resulting ina symmetrical .550; 550/ matrix with (up to) 150,975 di�erent distancesin its lower triangle.Several di�erent algorithms are available for clustering a distance ma-trix. We do not try to �nd an optimal algorithm but choose a particularlysimple one to discuss some general problems. The algorithm is a binarysplit procedure which, beginning with the whole sample, sequentiallytries to �nd optimal subclasses. The �rst steps of the split procedure areshown in Table 7.1, the resulting classi�cation tree is shown in Figure7.1.11The algorithm begins with the whole sample consisting of 550 se-quences for men; this is level 0 and the class ID is 1. It then �nds twosequences which are maximally di�erent to become the seed points fortwo subclasses on level 1. All sequences which are more similar to the�rst than to the second of these sequences will become members of the�rst subclass (class ID 2), the remaining sequences become members ofthe second subclass (class ID 3). In our example, the �rst subclass has452, the second subclass has 98 members.The procedure is then repeated for each previously created subclasshaving at least two members. The algorithm �nds two maximally dif-ferent elements (sequences) to become the seed points for two further11 For plotting this treewe used the radial drawing algorithmproposed by Barthelemyand Guenoche 1991, p. 27. 22



Tab. 7.1 First steps of binary split procedureLevel Classes Class ID Elements Max Distance Mean Distance0 1 1 550 2.00 0.831 2 2 452 2.00 0.731 2 3 98 2.00 0.852 4 4 350 1.77 0.522 4 5 102 1.96 0.942 4 6 72 1.83 0.722 4 7 26 1.63 0.853 8 8 170 1.28 0.383 8 9 180 1.43 0.483 8 10 38 1.50 0.803 8 11 64 1.43 0.763 8 12 40 1.55 0.673 8 13 32 1.08 0.483 8 14 11 1.34 0.783 8 15 15 1.05 0.634 16 16 163 1.08 0.334 16 17 7 0.92 0.514 16 18 173 1.12 0.474 16 19 7 0.83 0.634 16 20 27 1.24 0.634 16 21 11 1.28 0.864 16 22 35 1.22 0.724 16 23 29 1.10 0.634 16 24 28 0.92 0.544 16 25 12 1.17 0.584 16 26 3 0.81 0.644 16 27 29 1.00 0.404 16 28 5 0.94 0.714 16 29 6 1.00 0.634 16 30 8 0.85 0.654 16 31 7 0.91 0.46subclasses. Table 7.1 documents this process up to level 4 with 16 sub-classes.The question remains, of course, where to stop the procedure. Figure7.1 shows the �nal classi�cation tree but provides no clear idea aboutthe number of classes. (A similar classi�cation tree for women is shownin Figure 7.2.) The plot seems to suggest that we should distinguish atleast 11 di�erent classes. But we need additional information to assess23
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Fig. 7.1 Classi�cation tree resulting from a binary split procedure ap-plied to optimal matching distances between sequences of 550 men.their homogeneity. Table 7.1 records the maximal distance between twosequences in each of the subclasses but this is not a very good indicatorof subclass homogeneity. A somewhat better measure is provided by themean of all pairwise distances in a subclass. Using this measure, alsoshown in Table 7.1, seems to suggest that even 16 classes may not besu�cient to approach an acceptable degree of homogeneity.Assessing Longitudinal Diversity. The problem of �nding usefulclassi�cations of sequences (careers) can certainly not be solved on purelyformal and statistical grounds. We should recognize, however, that clus-tering sequences brings us back to the general problem, already discussed24
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Fig. 7.2 Classi�cation tree resulting from a binary split procedure ap-plied to optimal matching distances between sequences of 507 women.in section 4, how to de�ne longitudinal classi�cations. The approachtaken in section 4 was based on a fundamental assumption: that anyreasonable classi�cation should allow people to change their class mem-bership. This assumption provides the opportunity to de�ne classes ontheoretical grounds and then investigate class membership as a functionof time. If classifying whole sequences, this assumption is no longer validand homogeneity of classes becomes an essentially problematic claim.An important part of the problem follows from the fact that classifyingwhole careers contradicts, in a sense, a dynamical view of life coursesas sequentially developing in time. We have no good idea how to copewith this contradiction. In any case, it seems worthwhile also directly25
investigating the question how the diversity of life courses evolves overtime (age).There are basically two di�erent approaches. First, a cross-sectionalapproach where we calculate an indicator of diversity (inequality) foreach time unit separately and then plot this indicator as a function oftime. This approach is directly related to the sequences of state distri-butions discussed in section 3. To illustrate this approach, we calculateseparately for each month the entropy of these distributions which can beinterpreted as a measure of homogeneity.12 Using our basic state spacewith seven di�erent states, the entropy can vary in the range from 0(all sequences are in the same state) up to log.7/ D 1:95 (all sequencesare equally distributed across the di�erent states). Figure 7.3 shows theentropy as a function of time. It begins with a very low values since mostsample members are then in the same state (education). The sequencesthen become rapidly more di�erentiated and the entropy reaches almostits maximum at about 19 years; and then the entropy slowly decreases.Cross-sectional measures of diversity are questionable, however, sincethey assume that life courses do not have a memory. These measuresonly take into account the currently realized state and completely ignorewhat has happened before. Taking this objection seriously, we should se-quentially compare our sequences. This can be done by generalizing theoptimal matching approach discussed above. Instead only calculating asingle distance for each two sequences, we now do this sequentially foreach month t , dij;t being the distance of the sequences of individuals iand j up to the tth month. The result is a sequence of distance matri-ces, a separate distance matrix for each month re
ecting the inequalitystructure of the sequences up to that month. Since we do not yet havea good idea how to explore the structure of this sequence of distancematrices, Figure 7.4 only shows the mean values of the distances as afunction of time.8 Concluding RemarksAs mentioned at the beginning, statistical methods for describing lifecourses are not well developed yet. The preceding sections re
ect thisstate of a�airs. While it seems possible to �nd useful descriptions forcertain aspects of life courses, we soon reach limits when trying to de-scribe whole trajectories. This is partly a consequence of the inherent12 The entropy in month t is calculated as Et D 6jpj t log.pj t / where pj t is the pro-portion of sequences being in state j in month t .26
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complexity of life courses. Possibly more important is the requirementthat appropriate methods for describing life courses should always followthe view that life courses evolve sequentially in time. Our preliminaryconclusions are as follows.

ž When trying to describe life courses we should avoid any form ofcross-sectional approach and, in particular, we should avoid aggregatingindividuals on a cross-sectional basis. Appropriate descriptions shouldalways be interpretable in terms of individual trajectories.

ž This does not exclude the possibility of useful classi�cations. However,we should make an important distinction between classifying individualsand classifying possible states of individual life courses. Taking the lifecourse approach seriously, only the latter type of classi�cation is poten-tially sensible. Then, whenever trying to establish some classi�cation,this should be supplemented by an investigation of class membership asa function of time.
ž Trying to classify whole life courses seems to be an essentially problem-atic endeavor. While we easily admit that more sophisticated methodscan be developed to �nd potentially useful classi�cations of whole tra-jectories, there remains a basic contradiction with a dynamical view ofsequentially evolving life courses. In our view, the basic task is to reachan appropriate description of the development of diversity (and inequal-ity) of life courses over time. Trying to �nd better methods for classifyingwhole trajectories should be seen as a secondary task.
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