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SummaryThe paper tries to show that, for explanatory purposes, multilevel ran-dom coe�cient models do not provide advantages not already availablewith standard regression models containing interaction terms. An alter-native interpretation is based on the idea that these models can be usedfor scaling a population of groups. Finally, the paper argues that exceptfor a few special cases, the general idea of interdependent individualscreates di�culties for any kind of regression models. IntroductionA basic argument for using multilevel models refers to the fact thatpeople do not behave independently from each other but are linked to-gether by a variety of social relations. This is certainly true, and as itis an important goal of statistical models in empirical social research toprovide insight into dependency relations, it is certainly a good idea todevelop models that can incorporate information about social relations.The question is, however, how to construct such models. The currentdiscussion focuses on random coe�cient models (e.g., Bryk and Rauden-bush 1992, Longford 1993, 1995, Goldstein 1995, Blien et al. 1994). Inour discussion, we shall try to raise some doubts about this approach.Section 1 tries to show that, from the point of view of explanatory modelconstruction, multilevel random coe�cient models do not provide advan-tages not already available with standard regression models containinginteraction e�ects. Section 2 considers the idea that these models canbe used, alternatively, for \scaling groups", that is, to estimate group-speci�c characteristics. Section 3 provides some critical remarks withregard to the often expressed opinion that the introduction of group-level variables conicts with assumptions required for OLS. The �nalSection 4 deals with the idea of interdependent individuals. It is arguedthat, except for some very special cases, this fact creates di�culties forany kind of regression models.1 Random Coe�cient ModelsConsider two variables,X and Y . Assuming a linear relationship, we canset up an ordinary regression modelY = �+X� + � (1)Given observations (xi; yi; i = 1; : : : ; n) and using some estimation strat-egy (e.g., OLS), we �nd parameter estimates, ^� and ^�, and correspondingresiduals ^�i. The observations might be the outcome of an experiment orof observing some aspects of social reality. We are primarily interestedin the latter situation. We can then imagine that the individual unitswho generated the data are connected by a set of social relations. Theliterature explaining multilevel models normally begins with the mostsimple situation where there is a single equivalence relation inducing apartition of the individual units into a set of groups, say, G1; : : : ;Gm.1



Let us assume that there is an additional variable, Z, characterizingin some way these groups. For the moment, we shall assume that Z isa single metric variable. A situation where we have, instead, a set ofdummy variables will be discussed below.The normal approach to use this information for an elaboration ofmodel (1) would be to include Z as an additional regressor variable.And, of course, it would also be possible to consider interaction e�ectsresulting in a modelY = �0 +X�x + Z�z +XZ�xz + � (2)As a direct implication, we get a di�erent model for each value of Z,namelyY = (�0 + z�z) +X(�x + z�xz) + �z (3)Given su�cient data, model (2) can be estimated with OLS or some otherestimation method. And it would be possible to partition the varianceof the estimated residuals according to the groups induced by Z.1In recent literature on multilevel random coe�cient models (ML-RCM) it has become popular to use a somewhat di�erent modeling ap-proach. The basic approach (see, e.g., Mason, Wong and Entwisle 1984,De Leeuw and Kreft 1986) does not directly include Z into (1) but fol-lows a two-step procedure. In a �rst step, the model parameters in (1)are interpreted as random variables. And in a second step Z is used toestablish additional regression models for these random variables:� = �0 + Z�z + �� (4)� = �x + Z�xz + �� (5)Having established these additional models, they can be combined with(1) and the �nal MLRCM becomesY = �0 +X�x + Z�z +XZ�xz + (�� +X�� + �) (6)This model is obviously identical with (2) except for a more complexerror term. One might ask, therefore, whether there are any reasons forusing (6) instead of (2).1 We mention this because some authors (e.g., DiPrete and Forristal 1994, p. 334)seem to believe that calculation of variance components is only possible with randomcoe�cient models. 2
1. We �rst note that referring to groups, in the sense of schools, oc-cupations, regions etc., is not essential, neither for (2) nor for (6). Asshown by (2), the model does not make any di�erence between X andZ. Calling Z a \group-level variable" might, in fact, be misleading be-cause what is important is not that Z characterizes some a priori givengroups but that Z induces a partition of observational units accordingto its possible values. But this is true for all kinds of regressor variables.Consequently, the distinction between individual-level and group-levelvariables becomes obscure. For example, the variable \sex" is commonlyinterpreted as an individual-level variable, but can equally well be viewedas a group-level variable because it simply distinguishes, and charac-terizes, two groups, men and women. On the other hand, all so-calledgroup-level variables can equally well be interpreted as individual-levelvariables simply by using these variables to characterize individuals. Forexample, sex ratio in school classes can be used to characterize their in-dividual members. In fact, a regression model treats all pupil having thesame value of this variable alike, regardless of their actual class member-ship. It is questionable, therefore, whether, in the context of regressionmodels, the multilevel rhetoric has established an important distinctionbetween di�erent types of variables.2. One argument given by MLRCM proponents for using (6) instead of(2) is that this model can provide additional information about how thee�ect of X on Y depends on the context. This is most often seen as themain advantage of multilevel models (see, e.g., Bryk and Raudenbush1992, p. 6; Goldstein 1995, p. 17). Mason et al. (1984, pp. 74-5) give thefollowing formulation:\Our fundamental assumption is that the micro values of theresponse variable in some way depend on context and thatthe e�ects of the micro determinantsmay vary systematicallyas a function of context."In a similar formulation, Blien et al. (1994, p. 270) say:\In the analysis of a two level structure we are mainly in-terested in the variation of the regression coe�cients acrossgroups."Leaving aside the multilevel rhetoric, both statements refer to the ques-tion how the e�ect of X on Y depends on Z. If we interpret this questionas referring to the conditional expectation of the outcome variable, both3



models, (2) and (6), give the same answer. Using E(Y jx; z) to denote theconditional expectation of Y on values of X and Z, we get@E(Y jx; z)=@x = �x + z�xz (7)3. A somewhat di�erent version of the argument is that we are not justinterested in how the e�ect of X on Y depends on the context, Z, butwe want to estimate a distribution of these varying e�ects (see, e.g.,Goldstein 1995, p. 17). There is, unfortunately, some ambiguity in thisword, \distribution", when referring to model parameters. If we �nallywant empirical information, the word \distribution" must refer to thegiven distribution of Z. Then, by substituting z by Z in (7) we get adistribution of the e�ects of X on Y as a linear function of Z. And givensu�cient data, this distribution can be estimated empirically.Therefore, this additional argument does also not provide a reasonwhy we should add an error term to (7). (5) makes � a random variable,namely a function of the random variable Z, already without adding��. This error term only adds confusion since we need then a conceptu-ally di�erent probability space for interpretation. At the beginning weare only given some probability space for (X;Y; Z). We are then freeto assume a model for some aspects of the relationship between thesevariables. This implies a de�nition of model parameters. Finally, whenusing a standard regression model, we get as an implication of the modelan additional random variable, the error term. This error term is de�nedthen with respect to the same probability space which is assumed for(X;Y; Z). However, such a view on model construction will not lead to(4) and (5). To make sense of these equations, one would need a concep-tually di�erent probability space.24. Assume that we are not given a single metric variable, Z, but instead,a set of dummyvariables indicating group membership, say,D1; : : : ; Dm.The analogue of (2) would then become3Y = �0 +X�x +Xj Dj�j +Xj XDj�x;j + � (8)2 This does not create any problems from a Bayesian point of view, see, e.g., Lind-ley and Smith (1972). However, this view is normally not followed in the MLRCMliterature.3 To ease the comparison of di�erent models we assume that the parameters for thedummy variables are deviations from some mean value, �0.4
and the analogue of (7) would become@E(Y jx)=@x = �x +XjDj�x;j (9)So far, also the interpretation would be the same. (9) can be interpretedas showing the distribution of the e�ects of X on Y , now given by theregression parameters for the set of dummy variables. To get a closecorrespondence between (8) and (2), we may also construct variables Dand Dx reecting the parameters �j and �x;j , respectively. (If an indi-vidual unit belongs to Gj, its values for D and Dx would be �j and �x;j,respectively.) Model (8) can then be written asY = �0 +X�x +D +XDx + � (10)showing a direct correspondence with (2).5. Here begins another argument to motivate the MLRCM approach.The argument refers to a situation where the number of groups is fairlylarge such that we cannot expect all groups represented in our samples.The standard example refers to schools. For instance, Goldstein (1995,p. 17) writes:\If we wish to focus not just on these schools [given in thesample], but on a wider `population' of schools, then we needto regard the chosen schools as giving us information aboutthe characteristics of all the schools in the population. Just aswe choose random samples of individuals to provide estimatesof population means etc., so a randomly chosen sample ofschools can provide information about the characteristics ofthe population of schools. In particular, such a sample canprovide estimates of the variation and covariation betweenschools in the slope and intercept parameters and will allowus to compare schools with di�erent characteristics."Of course, if the number of groups, m, becomes fairly large then alsothe number of parameters in (8) and this might result in estimationproblems. However, before dealing with estimation problems, the �rstquestion should be why we might be interested in estimating (8) if thereis a huge number of di�erent groups.� If the number of groups is small it makes sense to interpret groupmembership as an additional factor inuencing the outcome variable. A5



necessary condition for this interpretation is that we are able to distin-guish and identify the di�erent groups. In particular, this interpretationrequires that we can associate with each group a qualitatively di�erentsituation. For example, variables like sex, birth cohorts and region canbe used in this way. If we think, on the other hand, of typical clusteringsinto large number of di�erent groups (e.g., households or schools), theconditions for an interpretation as explanatory variables are not ful�lled.For explanatory purposes, the important factor is then not that an indi-vidual belongs to one speci�c group, and not to any of the other groups.Instead, one should try to �nd additional factors which can be used tocharacterize the di�erent groups. In general, this will then show that notthe original clustering (schools or households) is important but a quitedi�erent clustering induced by the additional explanatory variables.Therefore, if the number of groups becomes fairly large there is nor-mally no point in trying to estimate (8) if we are interested in an ex-planatory model.� We might be interested, nevertheless, in estimating a distribution ofregressor e�ects across groups. As shown in (10), the theoretical ideaof such a distribution can be given an empirical sense regardless of thenumber of di�erent groups. But in our argument, (10) was derived from(8), it simply summarizes a feature of model (8). The RCM approach goesthe other way around. (8) is discarded because of estimation problemsand, instead, one begins directly with a suitable parameterization of (10)by assumingD andDx to be random variables with a known distribution.However, what can be learned? In the standard linear MLRC modelswe will get, at best, some information about the variances of D and Dxsince the shape of their distributions is assumed to be already known.The resulting information is then that part of the variance of the resid-uals can be formally attributed to a clustering into groups. While thismight be interpreted as providing some information about the \popula-tion of groups", it clearly gives no information about individual groupcharacteristics (to be used for explanatory purposes).� The question remains why we should have any interest in the distri-bution of regressor e�ects across groups if we are not able to interpretthis distribution in terms of interaction e�ects. As we have noted, thisinterpretation depends in a crucial way on the possibility to interpretmembership in speci�c groups as a potential factor for the outcome vari-able. In fact, the RCM approach explicitly destroys such an interpreta-tion by assuming that group membership is random. This implies that6
we explicitly forget about the identity of groups.4 And, consequently,membership in speci�c groups cannot be used for explanatory purposes.2 Scaling GroupsOne might wonder why some authors are so worried by the task of esti-mating a distribution of regression parameters in a situation where thenumber of groups is so large that membership in speci�c groups can-not, by itself, be used for explanatory purposes. The following remarkby Goldstein (1995, p. 17) might throw some light on this question:\An important class of situations arises when we wish pri-marily to have information about each individual school ina sample, but where we have a large number of schools sothat (2.2) [our equation (8) without the interaction terms]would involve estimating a very large number of parameters.Furthermore, some schools may have rather small numbersof students and application of (2.2) would result in impreciseestimates. In such cases, if we regard the schools as membersof a population and then use our population estimates of themean and between-school variation, we can utilize this infor-mation to obtain more precise estimates for each individualschool [our emphasis]."If we understand correctly, the leading idea is to use a distribution ofgroup-speci�c parameters to compare individual groups. A typical ex-ample (see Bryk and Raudenbush 1992, p. 13) would be a regression ofsome achievement measure on socioeconomic status with groups de�nedas schools; interpreting the group-speci�c intercepts and slopes as indi-cating \e�ectiveness" and \equity", respectively, one might be interestedin comparing individuals schools with respect to these characteristics.The goal of model construction is then no longer directed towards anexplanation of an outcome variable but towards \scaling groups".We shall try to use this idea as an alternative motivation for usingRCM. For simplicity, we consider a model like (8) without interactionterms. The model provides group-speci�c intercepts, �j = �0+�j , whichcan be used to compare the groups. Now assume that the number of4 Longford (1993, p. 11) makes this point very clear when he writes: \In our setupthe focus is on a sample of clusters; the clusters can be thought of as anonymouslylabelled units, in the same way as can the elementary observations."7



groups becomes very large and (8) is no longer estimable. The RCMapproach proposes to substitute the set of �xed e�ects, �j , by a singlerandom variable, ��, resulting in a modelY = �0 +X�x + �� + � (11)Instead of the �xed intercepts, �j = �0 + �j , this model de�nes groupsby realizations of the random variable � = �0+��. Of course, (11) is notestimable without additional assumptions. Standard assumptions wouldbe �� � N (0; �2�); � � N (0; �2�); cov(��; �) = 0 (12)While this approach will not lead to a better explanation of the depen-dent variable (as we have tried to show in the previous section), thequestion now is what it implies for the task of scaling the groups. Wehave two remarks.1. The �rst one refers to the assumptions given in (12). The idea of \scal-ing groups" implies that we are interested in the distribution of group-speci�c model parameters. In our simple example, this is the distribu-tion of group-speci�c intercepts. If we intend to give this distributionan empirical interpretation we should think of a variable D, as de�nedin the previous section. Its distribution is the result of group-speci�cintercepts and the distribution of individuals across groups. Both areempirical facts, to be estimated, and there is, consequently, no reasonwhy we should expect a normal distribution as implied by (12). (If wecompare this with a situation where groups are induced by a metric vari-able, Z, then the assumption that �� is normally distributed would implythat also Z is normally distributed. But, of course, the distribution of Zshould be viewed as empirically given.)2. The second remark is concerned with the implications of the RCMapproach for scaling the groups. How can we �nd estimates of group-speci�c realizations of �� ? Goldstein (1995, p. 24) proposes to considerthe expectation of ��, given the data and all parameter estimates from(11). It is not clear, however, how to follow this proposal. The problemalready begins with the question how to speak of di�erent groups whenusing model (11). If we follow its formulation verbatim, groups are de-�ned by di�erent realizations of �� and do not exist prior to the datagenerating process behind the model's random variables. However, thewhole idea of scaling groups is, of course, based on the assumption that8
groups do exist in some sense as a real grouping of individuals in socialreality.a) In order to illuminate this incoherence, let us �rst assume that we areable to consider a speci�c group, Gj. We can then assume group-speci�cdata given by variables Xj and Yj and, conditional on model (11), ourdata become values of~Yj = Yj � �0 �Xj�xThe assumption that we are focusing on a speci�c group immediatelyimplies that there is a speci�c realized value of ��, say ��;j. Then, given~Yj, the only remaining random variation is induced by � and we have~Yj = ��;j + �. Consequently, we can view ��;j as the expectation of ~Yjwith respect to the distribution of �, that is��;j = E�( ~Yj) (13)establishing a direct correspondence to an approach that uses dummyvariables for group membership. In fact, if we had used (8) (withoutinteraction e�ects) instead of (11), we would get E�( ~Yj) = �j .b) A di�erent point of view is taken by most authors in the RCM lit-erature (see, e.g., Goldstein 1995, p. 24). In order to understand thisappraoch, we consider the following data generating process behind (11):��  X1; �1; : : : ; Xk; �k ~Y = (~Y1; : : : ; ~Yk); ~Yi = Yi � �0 �Xi�x = �� + �iIn a �rst step, one randomly selects a value of ��, meaning one memberof the \population of groups"; and in a second step, one randomly selectsk individuals out of this group. The idea is, that we have observationsfor ~Y , but do not know which value was drawn for ��. So we want topredict this value, given observations for ~Y . The proposal, most oftenconsidered in the RCM literature, is to use the conditional expectationP(��) = E(�� j ~Y = ~y) (14)to predict this value (~y denotes the observed values for the vector ~Y ).In order to �nd a solution, Goldstein (l.c.) proposes to consider theregression(��; : : : ; ��)0 = ~Y  + (�1; : : : ; �k)0 (15)9



Notice that ��, on the left-hand side, is not indexed by i in order toexpress the idea that there is a single realization for all individuals inthe same group. As a consequence, the covariance matrix becomes�cov( ~Y ; ~Y )�ii0 = � �2� + �2� if i = i0�2� otherwise (16)This then implies5E(�� j ~Y = ~y) = cov(��; ~Y ) cov( ~Y ; ~Y )�1 ~y (17)= k�2�k�2� + �2� kXi=1 ~yi=kand this formula is proposed by Goldstein (l.c.) to predict values of ��.Compared with (13), the di�erence is the \shrinkage factor"0 <  = k�2�=(k�2� + �2�) < 1 (18)Are there reasons to use this covariance matrix for scaling groups? Asa procedure for ranking, it posesses some formal optimality propertiesto recommend itself.6 However, Golstein's argument, namely that (13)provides \more precise estimates for each individual school" is only ten-able if \precision" refers to a statistical measure that averages possiblediscrepancies over all groups. So it is quite irrelevant for the judgementof a particular group.3 Regressors and ErrorsWhile scaling groups might be interesting in its own right, it does notcontribute to an explanation of the outcome variable. We therefore re-turn to the question in Section 1 whether we should use (6) instead of(2) to estimate an explanatory model. One often repeated argument isthat OLS estimation of (2) would be wrong because some of the \usualassumptions" of OLS are not satis�ed if observational units are clusteredinto groups. One argument refers to the \assumption" of stochastic inde-pendence between regressor variables and error term. Speci�cally, formu-lation (6) seems to suggest that the compound error term, ��+X�� + �,5 The formula for inverting cov(~Y ; ~Y ) can be found in Rao 1973, p. 67.6 See Searle et al. (1992, p. 268). Unfortunately they do not provide a proof.10
is correlated with regressor X. Another more general argument refers to\dependencies" among observational units when they are clustered intogroups. In this section we shortly comment on the �rst argument, thesecond one will be dealt with in Section 4.Let us begin with the simple model (1). The question whether X and� are correlated depends on our understanding of �. There are two possi-bilities. One is to assume that � does exist, in some way, in social realityindependent of our model formulation. This \platonistic" view allows toformulate assumptions about the error term, but has two serious impli-cations. First, since the error term is by de�nition unobservable, suchassumptions can never be tested. Second, if not only X and Y , but also� do exist as some facts in reality, there is not the slightest reason whywe should expect a linear relation between these variables. And again,since the error variables are not observable, there is no chance to checkthis assumption.An alternative view can avoid these implications by recognizing whatwe are really doing when constructing statistical models. We are givensome observable variables like X and Y and we then construct somemodel for the conditional distribution of Y given X. Many di�erentpossibilities are available. Regression models are a special type where weassume a relation between the expectation of Y and values of X. Thisthen creates the error variable, namely � = Y �E(Y jX). Error variablesare therefore derived from assuming a speci�c type of model.Now let us assume model (1). The error variable is then de�ned by� = Y ���X�. However, this de�nition is incomplete until we either �xthe values of the parameters, � and �, or �x the correlation between �and X at zero (or some other value). In order to learn something aboutthe conditional distribution of Y onX, the �rst approach would be sense-less. Consequently, to give � a precise meaning we need to �x su�cientdetails about the joint distribution of � and X. This then provides anopportunity to estimate the model parameters.Many di�erent methods are available in order to estimate them. If wedemand independence between � and regressors, we would normally useOLS or GLS. Both imply that estimated residuals and observed regressorvariables are uncorrelated. And this would also be true if these methodswere used to estimate (2) or (6).77 Whether, in fact, OLS or GLS estimation of (2) or (6) results in heteroskedasticresiduals should be viewed as an empirical question. The empirical results could thenbe used to re-evaluate the model speci�cation.11



4 Interdependent IndividualsA theoretically more interesting argument in the recent MLRCM litera-ture refers to the fact that, in social reality, observational units do notbehave independent from each other. For example, Blien et al. (1994,p. 268-9) say:\The assumption of stochastic independence may not be ful-�lled when the individuals are clustered within groups, suchas classes or schools in education or regions in the labor mar-ket. For the individuals that belong to the same cluster, theerrors may be correlated."This is then taken as a further argument against using OLS to estimate(2) or (6). In our view, the argument is somewhat more complicated and�nally leads to a principal limitation for the application of regressionmodels, including MLRCM, to model the behavior of interdependentindividuals.1. We �rst note that the formulation \correlated errors" has not, justfrom the beginning, a clear meaning. The term \correlation" refers tovariables, so we need at least two variables to speak of a correlation.However, consider model (1). There is only a single error variable, �,and, so far, it simply doesn't make sense to speak of correlated errors.2. This fact is somewhat obscured by the widespread habit to writealready the theoretical model in terms of observational units. Followingthis practice, (1) would becomeYi = �+Xi� + �i for i = 1; : : : ; n (19)with index i referring to observational units. Such a formulation ob-viously provides the opportunity to think of correlated errors, namelycov(�i; �i0) 6= 0. However, to make sense of the formulation we need tounderstand the meaning of the indexed variables.3. Let us �rst try to understand the meaning of (X;Y ) in the simplemodel (1). If we view this as a random variable we are referring toa chance situation, say S, that can create values for (X;Y ). We canalso think of a data generating process (DGP) that creates these val-ues. In social science applications this DGP takes place in social realityand should not be confused with \sampling data", meaning the processthrough which we get information about the results of the DGP.12
Model (1) is then understandable as a model for the chance situationS. And if we focus on the conditional distribution of Y on X, we canimagine that each value of X de�nes a somewhat di�erent chance situa-tion Sx. In any case, the model does not refer to any speci�c individual.If we want, nonetheless, think in terms of individuals then the modelrefers to the \population" of individuals who might be in the chancesituation S, or Sx, depending on the interpretation of the model.4. Now, why should we want to index our variables with i ? One possi-bility is to understand this as a convenient way to represent data, thatis, the result from observing a set of outcomes from the chance situationS. The set of indexed variables, (Xi; Yi), refers then by de�nition to thesame chance situation, S, and we should assume that all these indexedvariables have the same distribution as (X;Y ). If the sampling proce-dure is purely random we should also assume that the variables (Xi; Yi)are independent, again by de�nition. Of course, indexing the variableswith i provides an opportunity to think about correlations. However, thisquestion refers then to the sampling procedure and is quite independentof the question whether the individuals being in the chance situation Sare in some way related. In any case, as long as we are referring to asingle chance situation, S, there is no possibility to reect the notion ofinterdependent individuals in terms of correlated variables.5. What is required to think of two (or more) variables being correlated?There are two essential points. The �rst one is that the variables arede�ned on the same sample space. This then allows to think of a jointdistribution and, consequently, of a correlation. Think of two variables,X and Y . If they are de�ned on the same sample space, say 
, we canimagine a sequence of realization(X(!i); Y (!i)) i = 1; 2; 3; : : :This then creates the notion of a joint distribution and it would becomepossible to describe one aspect of this joint distribution in terms of acorrelation. If we interpret !i as representing randomly drawn individu-als, we can assume a joint distribution for any set of variables which arede�ned simultaneously for all individuals (being in the chance situationbehind 
). However, it does not make sense to think of a correlationbetween, say, X(!i) and X(!i0 ).Now, we can also view a sample as containing observations for nindividuals simultaneously. Assuming a single variable, sayX, the sample13



can be writtenfX(!1); : : : ; X(!n)gAlternatively, we can also think in terms of a separate variable for eachrandomly drawn individual, sayfX1(!1); : : : ; Xn(!n)gHowever, these variables are no longer de�ned on the same sample space,
, but on the product space, 
�� � ��
. While this does not, in general,exclude the possibility to think of a joint distribution for these variables,it requires that we are able to view ! = (!1; : : : ; !n) as an orderedn-tupel. Only then can we think of (X1; : : : ; Xn) as an n-dimensionalvariable with a joint distribution. This, then, is the second essentialrequirement for assumptions about correlated variables.A sampling unit ! = (!1; : : : ; !n) will be called structured if theordinal numbers i = 1; : : : ; n can be given some substantive meaning.A simple example would be couples, represented by (!1; !2) where !1always refers to the man and !2 always refers to the women (or the otherway around). Then it clearly makes sense to assume that two variables,X1 de�ned for men and X2 de�ned for women, might be correlated. Inthis example the structure on the sampling units is given by a structuralrelationship in couples. Another example would be panel data. The struc-tured observational unit is then ! = (!1; : : : ; !T ) where each !t refers tothe same individual observed for a sequence of time points, t = 1; : : : ; T .Again, it would make sense to assume that variables X1; : : : ; XT mightbe correlated.However, a standard random sample is, by de�nition, not structured.The individual observations in the sample are \anonymously labelled"and their order has no meaning. Consequently, although we can representthe data for each individual in the sample by a separate variable, it makesno sense to assume that these variables might be correlated.6. The conclusion is that there are severe limitations if one tries to cap-ture the notion of related and interdependent individuals in terms ofcorrelated variables representing in some way the individuals. The basicprecondition is that we can de�ne a structured observational unit. Ingeneral, this seems not possible if we directly refer to individuals. Weneed, instead, some notion of \social position."We are sceptical, therefore, whether it would be possible to capturethe idea of some relationship between individuals being in the same group14
(e.g., school) can be captured in terms of correlated variables. This wouldrequire that we can view the group as a structured unit. While this mightbe possible by explicitly referring to the social relations that constitutethe group, simply referring to the fact that individuals belong to thesame group is not su�cient.Of course, given groups Gj (directly, or induced by some variable, Z)we can de�ne for each individual a position by referring to the group theindividual belongs to. Each group is then a separate chance situation andwe can set up a separate model for each group, say Yj = �+Xj� + �j,and speculate about correlations between �j and �j0. But this possibilityis clearly not meant when people think of \correlated errors" becauseindividuals are clustered into groups.87. There remains the question how to reect the fact that individuals areconnected by social relations in the set up of statistical models. Standardregression models seem to provide only two possibilities.a) One can try to represent characteristics of each individual's socialposition by regressor variables. This simply means that we add variablesthat provide information about how an individual is related to otherpeople. But these variables have then the same logical status as all otherregressor variables. They cannot be used to give some meaning to thenotion of \correlated individuals".b) Another possibility is to set up regression models for structured ob-servational units. However, this then requires that we are able to de�nea set of related social positions (independent of the sampling procedure).We have already mentioned couples as a simple example. It should beobvious, however, that this approach is only applicable for very simplerelations and not suitable for approaching the general notion of socialrelations.ReferencesBlien, U., Wiedenbeck, M., Arminger, G. [1994]. Reconciling Macro and Mi-cro Perspectives by Multilevel Models: An Application to Regional WageDi�erences. In: I. Borg, P.P. Mohler (eds.), in: Trends and Perspectives inEmpirical Social Research, pp. 266 { 282. Berlin: de Gruyter 1994, 266 -2828 In fact, when estimatingMLRCM it is normally assumed that errors across groupsare not correlated, see, e.g., Blien et al. 1994, p. 270.15
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