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Summary

The paper tries to show that, for explanatory purposes, multilevel ran-
dom coefficient models do not provide advantages not already available
with standard regression models containing interaction terms. An alter-
native interpretation is based on the idea that these models can be used
for scaling a population of groups. Finally, the paper argues that except
for a few special cases, the general idea of interdependent individuals
creates difficulties for any kind of regression models.

Introduction

A basic argument for using multilevel models refers to the fact that
people do not behave independently from each other but are linked to-
gether by a variety of social relations. This is certainly true, and as it
is an important goal of statistical models in empirical social research to
provide insight into dependency relations, it is certainly a good idea to
develop models that can incorporate information about social relations.
The question is, however, how to construct such models. The current
discussion focuses on random coefficient models (e.g., Bryk and Rauden-
bush 1992, Longford 1993, 1995, Goldstein 1995, Blien et al. 1994). In
our discussion, we shall try to raise some doubts about this approach.
Section 1 tries to show that, from the point of view of explanatory model
construction, multilevel random coefficient models do not provide advan-
tages not already available with standard regression models containing
interaction effects. Section 2 considers the idea that these models can
be used, alternatively, for “scaling groups”, that is, to estimate group-
specific characteristics. Section 3 provides some critical remarks with
regard to the often expressed opinion that the introduction of group-
level variables conflicts with assumptions required for OLS. The final
Section 4 deals with the idea of interdependent individuals. It is argued
that, except for some very special cases, this fact creates difficulties for
any kind of regression models.

1 Random Coeflicient Models

Consider two variables, X and Y. Assuming a linear relationship, we can
set up an ordinary regression model

Given observations (#;,y;;¢ = 1,...,n) and using some estimation strat-
egy (e.g., OLS), we find parameter estimates, & and B, and corresponding
residuals €;. The observations might be the outcome of an experiment or
of observing some aspects of social reality. We are primarily interested
in the latter situation. We can then imagine that the individual units
who generated the data are connected by a set of social relations. The
literature explaining multilevel models normally begins with the most
simple situation where there is a single equivalence relation inducing a
partition of the individual units into a set of groups, say, G1,... ,Gn.
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Let us assume that there is an additional variable, Z, characterizing
in some way these groups. For the moment, we shall assume that Z is
a single metric variable. A situation where we have, instead, a set of
dummy variables will be discussed below.

The normal approach to use this information for an elaboration of
model (1) would be to include 7 as an additional regressor variable.
And, of course, it would also be possible to consider interaction effects
resulting in a model

As a direct implication, we get a different model for each value of 7,
namely

Y = (o + 23.) + X (By + 2802) + 15 (3)

Given sufficient data, model (2) can be estimated with OLS or some other
estimation method. And it would be possible to partition the variance
of the estimated residuals according to the groups induced by Z.!

In recent literature on multilevel random coefficient models (ML-
RCM) it has become popular to use a somewhat different modeling ap-
proach. The basic approach (see, e.g., Mason, Wong and Entwisle 1984,
De Leeuw and Kreft 1986) does not directly include 7 into (1) but fol-
lows a two-step procedure. In a first step, the model parameters in (1)
are interpreted as random variables. And in a second step Z is used to
establish additional regression models for these random variables:

a=ag+ 2B, + ¢cq (4)

Having established these additional models, they can be combined with
(1) and the final MLRCM becomes

Y =ao+ X8+ 78: + XZBe: + (€a + Xeg +¢) (6)

This model is obviously identical with (2) except for a more complex
error term. One might ask, therefore, whether there are any reasons for
using (6) instead of (2).

1 We mention this because some authors (e.g., DiPrete and Forristal 1994, p.334)
seem to believe that calculation of variance components is only possible with random
coefficient models.

1. We first note that referring to groups, in the sense of schools, oc-
cupations, regions etc., is not essential, neither for (2) nor for (6). As
shown by (2), the model does not make any difference between X and
7. Calling Z a “group-level variable” might, in fact, be misleading be-
cause what is important is not that Z characterizes some a priori given
groups but that Z induces a partition of observational units according
to its possible values. But this is true for all kinds of regressor variables.
Consequently, the distinction between individual-level and group-level
variables becomes obscure. For example, the variable “sex” is commonly
interpreted as an individual-level variable, but can equally well be viewed
as a group-level variable because it simply distinguishes, and charac-
terizes, two groups, men and women. On the other hand, all so-called
group-level variables can equally well be interpreted as individual-level
variables simply by using these variables to characterize individuals. For
example, sex ratio in school classes can be used to characterize their in-
dividual members. In fact, a regression model treats all pupil having the
same value of this variable alike, regardless of their actual class member-
ship. It is questionable, therefore, whether, in the context of regression
models, the multilevel rhetoric has established an important distinction
between different types of variables.

2. One argument given by MLRCM proponents for using (6) instead of
(2) is that this model can provide additional information about how the
effect of X on Y depends on the context. This is most often seen as the
main advantage of multilevel models (see, e.g., Bryk and Raudenbush
1992, p. 6; Goldstein 1995, p. 17). Mason et al. (1984, pp. 74-5) give the

following formulation:

“Qur fundamental assumption is that the micro values of the
response variable in some way depend on context and that
the effects of the micro determinants may vary systematically
as a function of context.”

In a similar formulation, Blien et al. (1994, p. 270) say:

“In the analysis of a two level structure we are mainly in-
terested in the variation of the regression coefficients across
groups.”

Leaving aside the multilevel rhetoric, both statements refer to the ques-
tion how the effect of X on Y depends on Z. If we interpret this question
as referring to the conditional expectation of the outcome variable, both
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models, (2) and (6), give the same answer. Using E(Y |z, z) to denote the
conditional expectation of Y on values of X and 7, we get

3. A somewhat different version of the argument is that we are not just
interested in how the effect of X on Y depends on the context, 7, but
we want to estimate a distribution of these varying effects (see, e.g.,
Goldstein 1995, p.17). There is, unfortunately, some ambiguity in this
word, “distribution”, when referring to model parameters. If we finally
want empirical information, the word “distribution” must refer to the
given distribution of Z. Then, by substituting z by Z in (7) we get a
distribution of the effects of X on Y as a linear function of Z. And given
sufficient data, this distribution can be estimated empirically.

Therefore, this additional argument does also not provide a reason
why we should add an error term to (7). (5) makes 8 a random variable,
namely a function of the random variable 7, already without adding
€¢3. This error term only adds confusion since we need then a conceptu-
ally different probability space for interpretation. At the beginning we
are only given some probability space for (X,Y, 7). We are then free
to assume a model for some aspects of the relationship between these
variables. This implies a definition of model parameters. Finally, when
using a standard regression model, we get as an implication of the model
an additional random variable, the error term. This error term is defined
then with respect to the same probability space which is assumed for
(X,Y, 7). However, such a view on model construction will not lead to
(4) and (5). To make sense of these equations, one would need a concep-
tually different probability space.?

4. Assume that we are not given a single metric variable, Z, but instead,
a set of dummy variables indicating group membership, say, Dy, ..., Dy,.
The analogue of (2) would then become?

Y:%+X@+Z;@@+§;X@%fm (8)

2 This does not create any problems from a Bayesian point of view, see, e.g., Lind-
ley and Smith (1972). However, this view is normally not followed in the MLRCM
literature.

3 To ease the comparison of different models we assume that the parameters for the
dummy variables are deviations from some mean value, ag.
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and the analogue of (7) would become
OE(Y|x)/0x = B¢ D;é, 9
(Yz)/0x = Bo + Zj JOz,j (9)

So far, also the interpretation would be the same. (9) can be interpreted
as showing the distribution of the effects of X on Y, now given by the
regression parameters for the set of dummy variables. To get a close
correspondence between (8) and (2), we may also construct variables D
and D, reflecting the parameters §; and d; ;, respectively. (If an indi-
vidual unit belongs to G;, its values for D and D, would be ¢; and 4, ;,
respectively.) Model (8) can then be written as

Y=a0+XB:+D+ XD, 41 (10)

showing a direct correspondence with (2).

5. Here begins another argument to motivate the MLRCM approach.
The argument refers to a situation where the number of groups is fairly
large such that we cannot expect all groups represented in our samples.
The standard example refers to schools. For instance, Goldstein (1995,
p. 17) writes:

“If we wish to focus not just on these schools [given in the
sample], but on a wider ‘population’ of schools, then we need
to regard the chosen schools as giving us information about
the characteristics of all the schools in the population. Just as
we choose random samples of individuals to provide estimates
of population means etc., so a randomly chosen sample of
schools can provide information about the characteristics of
the population of schools. In particular, such a sample can
provide estimates of the variation and covariation between
schools in the slope and intercept parameters and will allow
us to compare schools with different characteristics.”

Of course, if the number of groups, m, becomes fairly large then also
the number of parameters in (8) and this might result in estimation
problems. However, before dealing with estimation problems, the first
question should be why we might be interested in estimating (8) if there
is a huge number of different groups.

e If the number of groups is small it makes sense to interpret group
membership as an additional factor influencing the outcome variable. A
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necessary condition for this interpretation is that we are able to distin-
guish and identify the different groups. In particular, this interpretation
requires that we can associate with each group a qualitatively different
situation. For example, variables like sex, birth cohorts and region can
be used in this way. If we think, on the other hand, of typical clusterings
into large number of different groups (e.g., households or schools), the
conditions for an interpretation as explanatory variables are not fulfilled.
For explanatory purposes, the important factor is then not that an indi-
vidual belongs to one specific group, and not to any of the other groups.
Instead, one should try to find additional factors which can be used to
characterize the different groups. In general, this will then show that not
the original clustering (schools or households) is important but a quite
different clustering induced by the additional explanatory variables.

Therefore, if the number of groups becomes fairly large there is nor-
mally no point in trying to estimate (8) if we are interested in an ex-
planatory model.

e We might be interested, nevertheless, in estimating a distribution of
regressor effects across groups. As shown in (10), the theoretical idea
of such a distribution can be given an empirical sense regardless of the
number of different groups. But in our argument, (10) was derived from
(8), it simply summarizes a feature of model (8). The RCM approach goes
the other way around. (8) is discarded because of estimation problems
and, instead, one begins directly with a suitable parameterization of (10)
by assuming D and D, to be random variables with a known distribution.

However, what can be learned? In the standard linear MLRC models
we will get, at best, some information about the variances of D and D,
since the shape of their distributions is assumed to be already known.
The resulting information is then that part of the variance of the resid-
uals can be formally attributed to a clustering into groups. While this
might be interpreted as providing some information about the “popula-
tion of groups”, it clearly gives no information about individual group
characteristics (to be used for explanatory purposes).

e The question remains why we should have any interest in the distri-
bution of regressor effects across groups if we are not able to interpret
this distribution in terms of interaction effects. As we have noted, this
interpretation depends in a crucial way on the possibility to interpret
membership in specific groups as a potential factor for the outcome vari-
able. In fact, the RCM approach explicitly destroys such an interpreta-
tion by assuming that group membership is random. This implies that
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we explicitly forget about the identity of groups.* And, consequently,
membership in specific groups cannot be used for explanatory purposes.

2 Scaling Groups

One might wonder why some authors are so worried by the task of esti-
mating a distribution of regression parameters in a situation where the
number of groups is so large that membership in specific groups can-
not, by itself, be used for explanatory purposes. The following remark
by Goldstein (1995, p. 17) might throw some light on this question:

“An important class of situations arises when we wish pri-
marily to have information about each individual school in
a sample, but where we have a large number of schools so
that (2.2) [our equation (8) without the interaction terms]
would involve estimating a very large number of parameters.
Furthermore, some schools may have rather small numbers
of students and application of (2.2) would result in imprecise
estimates. In such cases, if we regard the schools as members
of a population and then use our population estimates of the
mean and between-school variation, we can utilize this infor-
mation to obtain more precise estimates for each individual
school [our emphasis].”

If we understand correctly, the leading idea is to use a distribution of
group-specific parameters to compare individual groups. A typical ex-
ample (see Bryk and Raudenbush 1992, p.13) would be a regression of
some achievement measure on socioeconomic status with groups defined
as schools; interpreting the group-specific intercepts and slopes as indi-
cating “effectiveness” and “equity”, respectively, one might be interested
in comparing individuals schools with respect to these characteristics.
The goal of model construction is then no longer directed towards an
explanation of an outcome variable but towards “scaling groups”.

We shall try to use this idea as an alternative motivation for using
RCM. For simplicity, we consider a model like (8) without interaction
terms. The model provides group-specific intercepts, a; = ap+d;, which
can be used to compare the groups. Now assume that the number of

4 Longford (1993, p.11) makes this point very clear when he writes: “In our setup
the focus is on a sample of clusters; the clusters can be thought of as anonymously
labelled units, in the same way as can the elementary observations.”
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groups becomes very large and (8) is no longer estimable. The RCM
approach proposes to substitute the set of fixed effects, d;, by a single
random variable, €,, resulting in a model

Y=ao+ X8 +ea+7n (11)

Instead of the fixed intercepts, a; = ag + ¢;, this model defines groups
by realizations of the random variable & = o+ ¢€4. Of course, (11) is not
estimable without additional assumptions. Standard assumptions would

be
€a ~ N(0,02), 1 ~ ./\/(0,0'2), cov(eq,n) =0 (12)

While this approach will not lead to a better explanation of the depen-
dent variable (as we have tried to show in the previous section), the
question now is what it implies for the task of scaling the groups. We
have two remarks.

1. The first one refers to the assumptions given in (12). The idea of “scal-
ing groups” implies that we are interested in the distribution of group-
specific model parameters. In our simple example, this is the distribu-
tion of group-specific intercepts. If we intend to give this distribution
an empirical interpretation we should think of a variable D, as defined
in the previous section. Its distribution is the result of group-specific
intercepts and the distribution of individuals across groups. Both are
empirical facts, to be estimated, and there is, consequently, no reason
why we should expect a normal distribution as implied by (12). (If we
compare this with a situation where groups are induced by a metric vari-
able, Z, then the assumption that ¢, is normally distributed would imply
that also 7 is normally distributed. But, of course, the distribution of 7
should be viewed as empirically given.)

2. The second remark is concerned with the implications of the RCM
approach for scaling the groups. How can we find estimates of group-
specific realizations of ¢, ? Goldstein (1995, p. 24) proposes to consider
the expectation of ¢, given the data and all parameter estimates from
(11). Tt is not clear, however, how to follow this proposal. The problem
already begins with the question how to speak of different groups when
using model (11). If we follow its formulation verbatim, groups are de-
fined by different realizations of ¢, and do not exist prior to the data
generating process behind the model’s random variables. However, the
whole idea of scaling groups is, of course, based on the assumption that

8

groups do exist in some sense as a real grouping of individuals in social
reality.

a) In order to illuminate this incoherence, let us first assume that we are
able to consider a specific group, G;. We can then assume group-specific
data given by variables X; and Y; and, conditional on model (11), our
data become values of

Yj =Y — a0~ X;f

The assumption that we are focusing on a specific group immediately
implies that there is a specific realized value of ¢, say ¢, ;. Then, given
f/j, the only remaining random variation is induced by 7 and we have
EN/j = €q,; + 1. Consequently, we can view ¢, ; as the expectation of EN/J
with respect to the distribution of 7, that is

€a,j = Eq(Yj) (13)
establishing a direct correspondence to an approach that uses dummy

variables for group membership. In fact, if we had used (8) (without
interaction effects) instead of (11), we would get E, (Y;) = §;.

b) A different point of view is taken by most authors in the RCM lit-
erature (see, e.g., Goldstein 1995, p.24). In order to understand this
appraoch, we consider the following data generating process behind (11):

€aq Xlanla"' anﬂ]k
~ z:(?la”'a?k)a ?i:Yi_ao_Xiﬁngoc'i'ni

In a first step, one randomly selects a value of ¢,, meaning one member
of the “population of groups”; and in a second step, one randomly selects
k individuals out of this group. The idea is, that we have observations
for Y, but do not know which value was drawn for e,. So we want to
predict this value, given observations for Y. The proposal, most often
considered in the RCM literature, is to use the conditional expectation

Plca) = E(ca | Y = 9) (14)

to predict this value (y denotes the observed values for the vector z)
In order to find a solution, Goldstein (l.c.) proposes to consider the
regression

(ea,...,ea)':z'y—l—(m,...,nk)/ (15)
9



Notice that ¢, on the left-hand side, is not indexed by ¢ in order to
express the idea that there is a single realization for all individuals in
the same group. As a consequence, the covariance matrix becomes

-~ ol 4o if i=¢
— o 7
<COV(Z’ Z))“’ - { o2 otherwise (16)
This then implies®
E(eq |z =y) = cov(ea,z) cov(z, z)_lg (17)

ko? k
ko? + 0'% Z o/

i=1

and this formula is proposed by Goldstein (l.c.) to predict values of ¢,.
Compared with (13), the difference is the “shrinkage factor”

0<vy=kol/(ked +02) <1 (18)

Are there reasons to use this covariance matrix for scaling groups? As
a procedure for ranking, it posesses some formal optimality properties
to recommend itself. However, Golstein’s argument, namely that (13)
provides “more precise estimates for each individual school” is only ten-
able if “precision” refers to a statistical measure that averages possible
discrepancies over all groups. So it is quite irrelevant for the judgement
of a particular group.

3 Regressors and Errors

While scaling groups might be interesting in its own right, it does not
contribute to an explanation of the outcome variable. We therefore re-
turn to the question in Section 1 whether we should use (6) instead of
(2) to estimate an explanatory model. One often repeated argument is
that OLS estimation of (2) would be wrong because some of the “usual
assumptions” of OLS are not satisfied if observational units are clustered
into groups. One argument refers to the “assumption” of stochastic inde-
pendence between regressor variables and error term. Specifically, formu-
lation (6) seems to suggest that the compound error term, €, + Xeg + ¢,

5 The formula for inverting COV(z, z) can be found in Rao 1973, p.67.
6 See Searle et al. (1992, p.268). Unfortunately they do not provide a proof.
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is correlated with regressor X. Another more general argument refers to
“dependencies” among observational units when they are clustered into
groups. In this section we shortly comment on the first argument, the
second one will be dealt with in Section 4.

Let us begin with the simple model (1). The question whether X and
€ are correlated depends on our understanding of €. There are two possi-
bilities. One is to assume that € does exist, in some way, in social reality
independent of our model formulation. This “platonistic” view allows to
formulate assumptions about the error term, but has two serious impli-
cations. First, since the error term is by definition unobservable, such
assumptions can never be tested. Second, if not only X and Y, but also
€ do exist as some facts in reality, there is not the slightest reason why
we should expect a linear relation between these variables. And again,
since the error variables are not observable, there is no chance to check
this assumption.

An alternative view can avoid these implications by recognizing what
we are really doing when constructing statistical models. We are given
some observable variables like X and Y and we then construct some
model for the conditional distribution of Y given X. Many different
possibilities are available. Regression models are a special type where we
assume a relation between the expectation of ¥ and values of X. This
then creates the error variable, namely ¢ = Y — E(Y| X). Error variables
are therefore derived from assuming a specific type of model.

Now let us assume model (1). The error variable is then defined by
€ =Y —a— X 3. However, this definition is incomplete until we either fix
the values of the parameters, o and [, or fix the correlation between ¢
and X at zero (or some other value). In order to learn something about
the conditional distribution of Y on X, the first approach would be sense-
less. Consequently, to give € a precise meaning we need to fix sufficient
details about the joint distribution of ¢ and X. This then provides an
opportunity to estimate the model parameters.

Many different methods are available in order to estimate them. If we
demand independence between € and regressors, we would normally use
OLS or GLS. Both imply that estimated residuals and observed regressor
variables are uncorrelated. And this would also be true if these methods
were used to estimate (2) or (6).”

7 Whether, in fact, OLS or GLS estimation of (2) or (6) results in heteroskedastic
residuals should be viewed as an empirical question. The empirical results could then
be used to re-evaluate the model specification.
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4 Interdependent Individuals

A theoretically more interesting argument in the recent MLRCM litera-
ture refers to the fact that, in social reality, observational units do not
behave independent from each other. For example, Blien et al. (1994,

p. 268-9) say:

“The assumption of stochastic independence may not be ful-
filled when the individuals are clustered within groups, such
as classes or schools in education or regions in the labor mar-
ket. For the individuals that belong to the same cluster, the
errors may be correlated.”

This is then taken as a further argument against using OLS to estimate
(2) or (6). In our view, the argument is somewhat more complicated and
finally leads to a principal limitation for the application of regression
models, including MLRCM, to model the behavior of interdependent
individuals.

1. We first note that the formulation “correlated errors” has not, just
from the beginning, a clear meaning. The term “correlation” refers to
variables, so we need at least two variables to speak of a correlation.
However, consider model (1). There is only a single error variable, e,
and, so far, it simply doesn’t make sense to speak of correlated errors.

2. This fact is somewhat obscured by the widespread habit to write
already the theoretical model in terms of observational units. Following
this practice, (1) would become

Yi=a+X;B+¢ for i=1,...,n (19)

with index ¢ referring to observational units. Such a formulation ob-
viously provides the opportunity to think of correlated errors, namely
cov(e;, €i7) # 0. However, to make sense of the formulation we need to
understand the meaning of the indexed variables.

3. Let us first try to understand the meaning of (X,Y) in the simple
model (1). If we view this as a random variable we are referring to
a chance situation, say S, that can create values for (X,Y). We can
also think of a data generating process (DGP) that creates these val-
ues. In social science applications this DGP takes place in social reality
and should not be confused with “sampling data”, meaning the process
through which we get information about the results of the DGP.
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Model (1) is then understandable as a model for the chance situation
S. And if we focus on the conditional distribution of ¥ on X, we can
imagine that each value of X defines a somewhat different chance situa-
tion S;. In any case, the model does not refer to any specific individual.
If we want, nonetheless, think in terms of individuals then the model
refers to the “population” of individuals who might be in the chance
situation 8, or 8, depending on the interpretation of the model.

4. Now, why should we want to index our variables with 7 One possi-
bility is to understand this as a convenient way to represent data, that
is, the result from observing a set of outcomes from the chance situation
S. The set of indexed variables, (X;,V;), refers then by definition to the
same chance situation, §, and we should assume that all these indexed
variables have the same distribution as (X,Y). If the sampling proce-
dure is purely random we should also assume that the variables (X;, Y})
are independent, again by definition. Of course, indexing the variables
with ¢ provides an opportunity to think about correlations. However, this
question refers then to the sampling procedure and is quite independent
of the question whether the individuals being in the chance situation §
are in some way related. In any case, as long as we are referring to a
single chance situation, §, there is no possibility to reflect the notion of
interdependent individuals in terms of correlated variables.

5. What is required to think of two (or more) variables being correlated?
There are two essential points. The first one is that the variables are
defined on the same sample space. This then allows to think of a joint
distribution and, consequently, of a correlation. Think of two variables,
X and Y. If they are defined on the same sample space, say €2, we can
imagine a sequence of realization

(X(wi),Y(wi) i=1,2,3..

This then creates the notion of a joint distribution and it would become
possible to describe one aspect of this joint distribution in terms of a
correlation. If we interpret w; as representing randomly drawn individu-
als, we can assume a joint distribution for any set of variables which are
defined simultaneously for all individuals (being in the chance situation
behind €2). However, it does not make sense to think of a correlation
between, say, X (w;) and X (w;/).

Now, we can also view a sample as containing observations for n
individuals simultaneously. Assuming a single variable, say X, the sample
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can be written

{X(w1),..., X(wn)}

Alternatively, we can also think in terms of a separate variable for each
randomly drawn individual, say

{X1(w1), ..., Xn(wn)}

However, these variables are no longer defined on the same sample space,
Q, but on the product space, Q2 x - - - x Q. While this does not, in general,
exclude the possibility to think of a joint distribution for these variables,
it requires that we are able to view w = (wi,...,wp) as an ordered
n-tupel. Only then can we think of (Xy,...,X,) as an n-dimensional
variable with a joint distribution. This, then, is the second essential
requirement for assumptions about correlated variables.

A sampling unit w = (wy,...,w,) will be called structured if the
ordinal numbers ¢ = 1,...  n can be given some substantive meaning.
A simple example would be couples, represented by (w1,ws) where wy
always refers to the man and wy always refers to the women (or the other
way around). Then it clearly makes sense to assume that two variables,
X, defined for men and Xy defined for women, might be correlated. In
this example the structure on the sampling units is given by a structural
relationship in couples. Another example would be panel data. The struc-

tured observational unit is then w = (w1, ... ,wp) where each w; refers to
the same individual observed for a sequence of time points, t = 1,... 7.
Again, it would make sense to assume that variables Xq,..., Xp might

be correlated.

However, a standard random sample is, by definition, not structured.
The individual observations in the sample are “anonymously labelled”
and their order has no meaning. Consequently, although we can represent
the data for each individual in the sample by a separate variable, it makes
no sense to assume that these variables might be correlated.

6. The conclusion is that there are severe limitations if one tries to cap-
ture the notion of related and interdependent individuals in terms of
correlated variables representing in some way the individuals. The basic
precondition is that we can define a structured observational unit. In
general, this seems not possible if we directly refer to individuals. We
need, instead, some notion of “social position.”

We are sceptical, therefore, whether it would be possible to capture
the idea of some relationship between individuals being in the same group
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(e.g., school) can be captured in terms of correlated variables. This would
require that we can view the group as a structured unit. While this might
be possible by explicitly referring to the social relations that constitute
the group, simply referring to the fact that individuals belong to the
same group is not sufficient.

Of course, given groups G; (directly, or induced by some variable, Z)
we can define for each individual a position by referring to the group the
individual belongs to. Each group is then a separate chance situation and
we can set up a separate model for each group, say ¥; = o 4+ X; 8 + ¢,
and speculate about correlations between ¢; and ¢;,. But this possibility
is clearly not meant when people think of “correlated errors” because
individuals are clustered into groups.®

7. There remains the question how to reflect the fact that individuals are
connected by social relations in the set up of statistical models. Standard
regression models seem to provide only two possibilities.

a) One can try to represent characteristics of each individual’s social
position by regressor variables. This simply means that we add variables
that provide information about how an individual is related to other
people. But these variables have then the same logical status as all other
regressor variables. They cannot be used to give some meaning to the
notion of “correlated individuals”.

b) Another possibility is to set up regression models for structured ob-
servational units. However, this then requires that we are able to define
a set of related social positions (independent of the sampling procedure).
We have already mentioned couples as a simple example. It should be
obvious, however, that this approach is only applicable for very simple
relations and not suitable for approaching the general notion of social
relations.
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