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Preface

�e present document has been submitted as the author’s Habilitationss-

chri� to the faculty of Social Science at the Ruhr University Bochum. It

is concerned with the problem of incomplete data in the social sciences.

While traditionally the focus of statistical treatments of the problem

was con�ned to completely missing data, the extensions to partially

missing values were pursued systematically only since about 15 years.

�is approach has opened the way to unify concepts and models from

otherwise quite divergent �elds. Some problems of model building and

estimation within the general approach are documented in the following

pages with particular emphasis on social science applications.

�e document is based on six articles that appeared either in refereed

journals or as refereed contributions to conference proceedings.�e six

articles are:

• Probabilistische Selektionsmodelle, Kölner Zeitschri� f. Soziolo-

gie u. Sozialpsychologie, Sonderhe� 44 “Methoden der Sozial-

forschung” (A. Diekmann, Ed.), 2006, 172–202

• Causal inference from series of events, European Sociological

Review, 17, 2001, 21–32 (with H.-P. Blossfeld)

• A non-parametric mean residual life estimator, Metodoloski

Zvezki, 19, 2003, 97–113 (with K. Kopperschmidt)

• Covariate e�ects in periodic hazard rate models, Metodoloski

Zvezki, 17, 2002, 137–145 (with K. Kopperschmidt)

• A multivariate Buckley–James estimator, in: T. Kollo, E.-M. Tiit,

M. Srivastava (Eds.): Multivariate Statistics, Utrecht 2000
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• On the proportionality of regression coe�cients in misspeci�ed

general linear models, in: E.-M. Tiit et al. (Eds.): Proceedings

of the 5th Tartu Conference onMultivariate Statistics, Utrecht 1995

�ese articles are slightly revised to provide for a more uni�ed notation.

However, I have tried not to change the style or the arguments originally

presented. All articles are followed by a new postscriptum highlighting

later developments and putting them in the context of the general

discussion of incomplete data.

�e articles are preceded by two new chapters. �e �rst chapter sys-

tematically introduces the theory of incomplete data. It surveys the

probabilistic theory and highlights those features that are of critical

importance for social science applications.�e main advantages of a

general formulation of the problem of incomplete data are presented and

some alternative formulations are discussed.

A second new chapter presents a case study that serves both to illustrate

the basic concepts and to emphasise those aspects of the theory that are

of particular importance for social science applications. Also added is an

appendix that treats some implementation problems of one of the central

building blocks of the treatment of incomplete data, the estimation of

distribution functions from incomplete data.
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1

Introduction

Since 30 years or more, the literature on incomplete data is dominated

by approaches that make essential use of statistical models and their

underlying probabilistic desiderata: random variables, distributions,

stochastic independence etc. In their famous book “Statistical Analysis

with Missing Data”, Roderick Little and Donald Rubin state:

Missing data mechanisms are crucial since the properties of

missing-data methods depend very strongly on the nature

of the dependencies in these mechanisms.�e crucial role

of the mechanism in the analysis of data with missing values

was largely ignored until the concept was formalized in

the theory of Rubin (1976), through the simple device of

treating the missing-data indicators as random variables

and assigning them a distribution. (Little, Rubin 2002: 11)

�is “simple device” is now nearly universally adopted both in theoretical

research and in appliedwork, and particularly in empirical social research.

�is document is no exception and in e�ect most chapters that follow

use the “simple device” without further justi�cation.

However, this “simple device” is neither the most natural nor the only

one available to the empirically working social scientist. Nor was the

“simple device” accepted without resistance. In fact, it has o�en been

doubted that a statistical treatment of the problem is at all possible, at

least in the social sciences. Oskar Morgenstern, in his early study “On

1



1. Introduction

the Accuracy of Economic Observations”, said that “the errors in these

data cannot always be formulated according to strict statistical theory

for the simple reason that no such exhaustive theory is available for

many social phenomena” (1963: 7). Some 20 years later, Tore Dalenius

commented on the statistical treatment of survey non-response:

I take a dim view of the usefulness of these endeavors on

two grounds. (1) First, it appears utterly unrealistic to pos-

tulate “response probabilities” which are independent of

the varying circumstances under which an e�ort is made to

elicit a response. . . . (2) . . . it seems unavoidable to introduce

assumptions of unknown validity about probabilities. In

summary, I am inclined to reject approaches to the non-

response problem which involve “response probabilities”

(Dalenius in Madow, Olkin 1983, vol. 3: 412).

While the resistance against statistical treatments of incomplete data has

dwindled away, this may only partly be due to the successes of the the

“simple device” of Little and Rubin. It may as well be due to the rather

naive hope for a “method” that could somehow amend the de�ciencies

of data sets.�e “simple device” plus a few “plausible assumptions” will

indeed allow for estimates nearly as precise as the ones one would expect

when problems of incomplete data were completely ignored.

In contrast, alternative approaches are much more cautious and will in

many cases even indicate the inadequacy of a given data set to provide

useful answers at all. Manski (2003: 18) illustrates the e�ect by looking

at the percentage of employed persons estimated from the National

Longitudinal Survey of Youth, a sample of 6812 young Americans.�e

naive estimate using only complete data is 78% with a 95% con�dence

interval of roughly±1%. Both the estimate and the con�dence interval
can be justi�ed within the Little-Rubin setup by simply declaring that

the “missing data mechanism” is “missing at random” (Little, Rubin

2002: 12). But taking into account that people who did not answer to this

question (some 18%) might be either employed or not, the percentage of

employed may vary between 64% and 82%, an interval not only much

larger than the one suggested by the sampling distribution but also too

large for many practical purposes.

2



�e computation is easy: For 82% of the interviewed the employment

status is known, but for the other 18% it is not. �us if all those not

answering that question were unemployed or out of labour force, the

proportion of employed in the sample would be 0.82 · 0.78 + 0.18 · 0 =
0.6396 or roughly 64%. On the other hand, all of those not answering

might as well have been employed. In that case, the share of 18% not

answering must be added to the 64%, resulting in 82%. Note that these

two extreme possibilities are not only logically consistent with the data

but that they cannot be ruled out by an appeal to the general statistical

approach to missing data nor by the more special notion of “missing at

random”.�e only information available from the data alone is that the

percentage of employed people in the sample is in the range of 64% to

82%. In consequence, any “inference” to the population at large must

at least contain this interval, plus any uncertainty resulting from the

sampling procedure.

It is obvious why most practitioners would prefer to report 78% plus

minus 1% as the result of the survey instead of being forced to admit

that the sought for percentage is somewhere between 64% and 82%.

Conventional sampling theory suggests that in order to achieve a 95%

(symmetric) con�dence interval for the percentage of±9% (the equiva-
lent to the interval of 64% to 82% resulting fromManski’s bounds), a

sample of size 125 would be su�cient. Why go through the trouble to

interview 6812 people if the result was at most as precise as the answers

of just 125 persons? Moreover, since of the 6812 interviewed persons

5556 actually gave an answer, should the survey not be counted as being

as informative as a pure random sample based on 5556 persons without

any missing values?

In summary, there are many reasons to prefer the statistical approach to

incomplete data, especially in the social sciences, where non-response

rates of 18% must be regarded as moderate. But neither convenience, nor

cost, nor appeal to conventional wisdom in sampling theory can be a

valid argument to the e�ect that 78%±1% is a reasonable estimate of the
employment rate. How can such an optimistically accurate estimation be

justi�ed?�e statistical approach to incomplete data proceeds in several

steps:

3



1. Introduction

�e most crucial step is to construct a special mathematical model to

replace the simple question originally posed. To make this step more

transparent and to prepare for some generalisations, some notation

is needed: Let U = {u1, . . . , uN} denote (a list of) the population of
interest, in the example Americans aged 25 to 35 in 1991. Let

Y : U −→ {0, 1} =: Y

be a function that assigns the employment status (1 stays for ‘employed’, 0

for ‘not employed’) to all members of the population. Further, denote by

S ⊆ U the given survey sample.�e sought for percentage of employed
people in the sample and in the population, respectively, are then

m(Y , S) :=
1

|S|
∑
u∈S

Y(u) m(Y ,U) := 1

|U|
∑
u∈U

Y(u)

But some of the people did not answer to the question on their employ-

ment status and thus the range of Y must be enlarged to allow for this

possibility.�e function

Y∗ : U −→ {{0}, {1}, ∗} ∪ {Y} = {{0}, {1}, {0, 1}, ∗} =: Y∗

will describe the answer to the employment question, where a ‘∗’ is used
if people were not asked (were never in the survey) and a non-response is

indicated by the set {0, 1}: a non-respondent might be either employed
or not and the union of the two possibilities is the set {0, 1}.

�e function Y∗ is intended to capture the responses of sample members,
while Y captures the (socially constructed) fact of employment.�e

latter is de�ned for essentially all members of the population. But an

answer to a survey questions is not, unless one was willing to posit that

all members of the population posses an “answer characteristic”, assumed

�xed for the purposes of survey sampling, that they “activate” just in

case that they are included in a survey.�e symbol ‘∗’ is introduced so
that Y∗ can still be de�ned for all members of the population without
presupposing anything about “answer characteristics”.�is construction

may be needed even when no comparison with some population is

contemplate. E.g., the National Longitudinal Survey of Youth was started

4



in 1979 as a panel study. Of the 1256 non-responses on the employment

question in 1991, only 555 were approached in 1991 and either declined to

be interviewed or did not answer to the question.�e other 701 could not

be located or were otherwise lost to follow up before 1991. To presuppose

a certain “answer characteristic” and thus a particular value of {0}, {1},
or {0, 1} for them would be preposterous and an extra symbol like ‘∗’
should be introduced.

Allowing for non-response and thus using only the values ofY∗ (restricted
to the survey members), the value ofm(Y , S) must be between

1

|S|

(∑
u∈S

1[Y
∗ = {1}](u)

)
and

1

|S|

(∑
u∈S

1[Y
∗ ∈ {{1}, {0, 1}}](u)

)
(1.1)

where 1[.] denotes the indicator function.1�ese are, of course, the

bounds derived earlier. Note that there is nothing in the data that

would allow to narrow the bounds. Both extreme cases are logically and

materially possible, since the only connection between the functions is

that from Y∗(u) = {1} Y(u) = 1 should follow, and similarly for Y∗(u) =
{0}.2�e latter conditions stipulate that respondents tell the truth in that
generally Y(u) ∈ Y∗(u).�is will be assumed throughout the following
pages, since otherwise there would be no necessary connection between

the observations and the percentage of employed in the sample. In

the general situation, the requirement Y(u) ∈ Y∗(u) will be termed
consistency condition in the following.

�e “simple device”, then, consists in adding some further structure to

the setup. It does so by introducing a probability model: Let (Ω,B, λ) be
a probability space. As is usual in the construction of probability models,

the nature of (Ω,B) is irrelevant if only the space Ω and its σ−algebra B
1
As usual, the indicator function 1[A](x) takes the value 1 i� x ∈ A, 0 otherwise.

For a function f , 1[f ∈ B](x) is short for the somewhat cumbersome 1[f
-1
(B)](x)

where f
-1
(B) is the pre-image of B.

2
Note that the problem of “inference to the population” does not play any role in

this setup. It will re-surface when sampling properties of the “simple device” are

discussed.
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1. Introduction

is chosen large enough to allow for the following constructions. Now

the functions Y and Y∗ can be transformed into random variables by
rede�ning them to have joint domain U ×Ω:3

(Y , Y∗) : U ×Ω −→ Y × Y∗

�ese new functions should be carefully distinguished from the ones

previously de�ned.�e latter are a simple bookkeeping device, referring

to a listing of people together with their employment status and their

answers to survey questions respectively. In contrast, the new versions

are only de�ned within a probability model.�ey are a mathematical

construction and as such do not refer to anything in the world except in

the very limited sense that it may be assumed that there is an ω such that

the values of Y(., ω) are equal to the values in the list of the population.

Values of both Y and Y∗ are assumed to be generated from the list U
together with draws from a random number generator that produces

both values for each u ∈ U .�is is certainly not the way in which either
the employment status or answers in interviews come about in this

world.

Nevertheless it is exactly the formulation of a mathematical model that

is the main achievement of the statistical approach. Within the model it

is possible to precisely state conditions that justify a point estimate of

a 78% employment rate. In terms of the probability model itself, the

condition uniquely identi�es the distribution of Y from the (known)

distribution of Y∗.�is condition is termedmissing at random (MAR)

or, in a more general context, coarsening at random (CAR). It states that

the conditional probability of any set {Y∗ = y∗} given {Y = y} for a
particular value of y is the same for all y ∈ y∗. Put another way, the
conditional probability of {Y = y} given the set {Y∗ = y∗} is the same
as that of the conditional probability of {Y = y} given that {Y ∈ y∗}. In
other words, having “observed” {Y∗ = y∗} this tells us that {Y ∈ y∗} and
nothing more. In Bayesian terms, the “information” {Y∗ = y∗} allows

3
In Chapter 4 I have chosen to make the sample S dependent on ω ∈ Ω as well so
that one can treat questions of sampling design within the same model. However, for

the purpose of this introduction such a generalisation may distract from the main

argument.�us, the sample S is taken to be a known and �xed set here.

6



to update the a priori distribution of Y to the conditional probability

Pr(Y = y |Y ∈ y∗).

In the case of employment status the latter formulation states that the

probability of being employed among the non-responders must be the

same as the probability of being employed.�us the probability of being

employed, say p1, must be equal to the probability of a positive answer to

the employment question (0.64) plus the fraction of employed among the

non-respondents (0.18 p1).�is gives the probability of 78% employment.

�is looks like a rather complicated reformulation of a simple solution

that moreover could have been formulated without the help of the “simple

device” and without any probability theory. Namely: the proportion of

employed among the respondents is the same as that among the non-

respondents. But that is just a reformulation of the original unfounded

claim and obviously only begs the question.�e somewhat complicated

formulation of the MAR/CAR condition is not a pretentious though

vacuous reformulation of this unjusti�ed claim.�e main point of the

“simple device” lies in the use of conditional probabilities that provide the

connection between the distribution of Y and that of Y∗. In particular,
the �rst version of the MAR (or CAR) condition is a statement about the

probability of the type of response that is chosen given the underlying

state of the respondent.�is is what Little and Rubin call a “missing

data mechanism”. While it can only be formulated within a model for

the joined distribution of (Y , Y∗), it certainly provides a prescription to
simulate incomplete data from any assumption on the distribution of

the variable of interest, Y .�is model construction permits to argue

about the form of the “mechanism”, about the validity of the MAR or

CAR condition, and about consequences of deviations from it. And it is

precisely this feature that makes the “simple device” potentially useful.

Still, the special formulation used here might look unfamiliar. Most

texts, including the well known text book by Little and Rubin, formulate

the MAR/CAR condition using a further random variable indicating

whether data are missing or not. However, using subsets of Y to present
incomplete data opens the way to discuss many types of incomplete data

including truncated, censored, grouped, or heaped data in a uni�ed

way. Compared to pure missing data problems these general types of

7



1. Introduction

incomplete data provide both more information and more challenging

problems.�e latter aspect enriches the discussion of the appropriateness

of the “simple device” in general and of certain formulations in particular.

�e missing at random condition can be formulated only within the

probability model. It has no real world counterpart. While the random

variable Y∗ of the model may be identi�ed with the observed values
of Y∗(u), u ∈ U , the empirical counterpart Y(u), u ∈ U of the random
variable Y is only partially known.�erefore, the missing at random

conditions cannot be translated into conditions on empirical distributions.

No reformulation of the missing at random conditions will help in this

respect.4

Moreover, there is no way to formulate a “missing data mechanism”

within the sampling theory framework. Using its bookkeeping variables

allows to express assumptions pertaining to the real world such as:�e

percentage of employed among the non-respondents is 80%. It is plain

that it might have been otherwise. But there is no way to argue for a

particular value. In the sampling approach values of Y and Y∗ are taken
to be �xed for each interviewee.�ere is no formal way to express the

idea of a tendency to answer to an interview request. On the contrary,

the approach explicitly rules out any speculations about other possible

responses and employment statuses than those that actually obtain. But

such speculations are the essence of the “simple device”.

It is certainly not enough simply to invoke the missing at random

“assumption” as an assumption about the social world and then proceed

using an estimate that simply ignores missing or incomplete observations.

It is apparent that neither the “simple device” nor the MAR condition as

such justify the use of a point estimate of 78% for the employment rate.

Nor does it justify the general tendency to ignore missing values and

incomplete data and to use only complete data.

�e original formulation of the missing data problem concerned the

percentage of employed among a certain group and the problem encoun-

tered was that not all people answered to the respective question. In this

4
A more formal statement including necessary regularity conditions are discussed in

the next Chapter.
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setting, giving a particular percentage as the result of the survey can only

be justi�ed by appeal to convention and convenience or to experiences

gained in more favourable circumstances.�e “simple device” rede�nes

this simple problem by �rst introducing a lot of mathematical structure

and then solving a mathematical problem, not the one the survey statisti-

cian or the sociologist is interested in.�e simple bookkeeping quantities

(Y , Y∗) are transformed into random variables.�en the problem of
missing values is translated into one of formulating a stochastic relation

between Y and Y∗, a relation that has no direct empirical counterpart.
And �nally, sets of “assumptions” are produced that would guarantee the

identi�cation of the distribution of Y from the distribution of Y∗.

Before one may enjoy the merits or otherwise of the approach, one

should therefore answer to the objections of its critics.�e main objec-

tion, at least from the perspective of the survey statistician, is that the

probability model and in particular the stochastic relation between Y

and Y∗ introduces additional mathematical structure far beyond the
usual practises. But introducing additional structure may simply be

a form of begging the question presupposing answers that otherwise

would not exist. Moreover, in so far as some of the additional concepts

are open to empirical scrutiny they may fail to be useful or applicable.

Dalenius’ and Morgenstern’s remarks, if correct, would indicate that the

prime motivating areas of applications of the statistical approach are

exactly those where it lacks applicability.

�e second objection pertains to the missing at random condition. Taken

as an assumption about the real world, the condition is generally said to

be untestable. In fact, in the example Y(u) ∈ Y∗(u) by construction and
the same relation is used in the probability model. Since only Y∗(u) is
empirically accessible any joint distribution of Y(u, .) and Y∗(u, .) that
obeys the restriction is compatible with the data. And there is nothing

else in the social world that corresponds to the MAR/CAR condition. It

would be strange or at best elliptical to say that the missing at random

assumption would hold for the interviewees of the National Longitudinal

Survey of Youth. A�er all, it is certainly not a property or characteristic

of the respondents. Nor does it pertain to the sample drawn. Neither

is there a direct connection between the social world and probability

9



1. Introduction

statements as used in the “simple device”. Tryfos formulated:

To our knowledge, there is no randomizer consulting a

table of random numbers to determine, say, the value of

an unknown determining factor. We know of no gambling

“Nature”, no “invisible hand”, divine or otherwise, rolling

dice or drawing from an urn. (Tryfos 2004: 69)

Nor is it possible to “apply” the model to the social world. Matheron

clearly stated that

. . . the notion of probability is of a mathematical, not empiri-

cal nature, and thus the notion of objectivity as it is accepted

in the positive sciences is not relevant to it. . . . [N]obody

has ever applied either the theory of probability or for that

matter any other mathematical theory, to reality. One can

only “apply” to reality real (physical, technical, etc.) opera-

tions, not mathematical operations. ... In other words, it

is always to probabilistic models, and only to them, that we

apply the theory of probability. (Matheron 1989: 27)

Nor does the probability model “describe” the world. Or at least, models

are nearly never used to describe the world. Rather, descriptions in

science document observations and facts. Statements in descriptions

relate to facts. Statements made within a probabilistic framework—in

particular the MAR and CAR conditions—do not.

Even though some of the proponents of the “simple device” and many

practitioners deliberately ignore the distinction, the critics were well

aware of it. In fact, Dalenius was speaking of “assumptions of unknown

validity about probabilities”, thus referring to the probability model

and not to the data or social reality. Within a given probability model,

what then is the validity of assumptions of the MAR/CAR variety? It

might seem to be an arbitrary mathematical prerequisite similar to the

introduction of the probability axioms. But then there would be no

point in discussing it, not even a point for calling it an assumption.

One does not say “1 + 2 = 2 + 1 because I assume addition of natural

numbers to be commutative”. Perhaps it is best seen as a modelling

decision, a constitutive decision that “de�nes the general framework

10



within which we shall operate and determines the choice of the tools we

use” (Matheron 1989: 52). But such an interpretation is reasonable only

for the introduction of the basic probabilistic framework for (Y , Y∗).
�at choice determines the tools we use.�e MAR/CAR conditions do

not determine the general framework but de�ne a very special case of

the general model.

On the other hand, the MAR/CAR conditions are not open to empirical

assessment. In this respect, they are similar to the assumption of stochas-

tic independence that is invoked in many social science models. While

the latter assumption is not empirically accessible either, it does not prej-

udice a particular solution to a problem but sets the frame of reference

in which solutions are formulated.�e MAR/CAR assumptions are dif-

ferent in that they do lead to a particular solution. And this solution may

turn out to be unreasonable, even though a decision can not be based on

the available data. For such conditions, criteria for their appropriateness

and usefulness are required beyond the consistency within a given model.

Except for other data sources or general experience, the only possible

base for a critical assessment of the MAR/CAR condition must rely on

an operational model, a prescription on how to simulate the incomplete

data within the model that avoids to exploit information on the complete

data model above that revealed by the incomplete data. Procedural

models that can be simulated without presupposing a knowledge of the

“truth” have been developed for certain non-MAR/CAR models as well.

An assessment of the merits of MAR/CAR or alternative conditions

may then be based on a comparison of the outcomes of procedurally

speci�ed sub-models. Criteria for such comparisons, and for the ap-

propriateness of conditions that are neither open to empirical scrutiny

nor are constitutive for the model construction, have only recently been

proposed.

I will discuss these problems in some detail in the �rst, newly written

chapter. It presents a general probabilistic formulation of the incomplete

data problem and the corresponding solution sets. I then proceed to

study several alternative mathematical representations of the solution

sets which will help to decide whether the probabilistic framework

adds possibly too much structure, thus answering the �rst concern of

11



1. Introduction

the critics. In a second step, several formulations of the MAR/CAR

conditions are introduced. Di�erences between these formulations have

given rise to many confusions. A closer look at the di�erences, however,

reveals that they are closely connected to the structure of incomplete

data as represented in probabilistic models. One particular formulation,

the one that relies on the introduction of additional random variables

(e.g. indicators of missing values) to express MAR/CAR conditions,

will in general introduce further restrictive elements into the analysis

that go far beyond the introduction of a probability model per se. Such

constructions are very useful since they allow to formulate MAR/CAR

conditions even in cases that can not be couched in terms of a joined

distributions of some (Y , Y∗). And they provide a simple language to
stateMAR/CAR conditions in terms of these variables. On the other hand,

it turns out that such formulations are ambiguous:�ere are in general

several versions, some of which will declare (Y , Y∗) to be MAR/CAR
while others will contradict. I will conclude that such additional random

elements will obfuscate the analysis as long as there is a reasonable

mathematical structure of (Y ,Y∗). In a �nal step, various procedural
models for the MAR and CAR conditions are introduced.�ese serve

to study the special status of the MAR/CAR conditions in models of

incomplete data.�e chapter closes with some remarks on criteria of the

appropriateness of the MAR/CAR conditions.

�e next chapter, Chapter 3, is also written for the present document.

It complements the previous chapter, discussing a practical problem

using the tools developed so far.�e problem is that of inferring the

distribution of life lengths of a parent generation from the information

provided by their children in a survey.�e survey participants were asked

for the birth dates of their parents and, if they died before the survey

date, the date of death. Such a data structure combines truncated and

censored data with a speci�c selection of the observations. Information

on life length is obviously only available for those who had children so

that deaths in infancy are never reported. Parents who are still alive at the

time of the survey contribute censored observations. And parents with

several children are possibly over-represented in a survey.�e interplay

of several forms of incompleteness makes this case study particularly

valuable in demonstrating several versions of the “simple device” and
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their consequences.

Chapter 4 takes up the general discussion, this time concentrating on the

selectivity of observations. In the simplest case, selection models are just

a variant of missing data models in that information on a certain group

of people is unavailable. But selectivity becomes a much more interesting

problem when partially complete data are considered along with the

completelymissing case. A further extension of the basicmodel discussed

in Chapter 2 is the introduction of conditional incomplete data models.

Muchmore challenging variants of incomplete data models are models of

self-selection.�ey are prevalent in many parts of micro-economics and

sociology.�e Roymodel and the particular case of Heckman’s model are

but two examples that �t in the general framework. Such models clearly

violate the CAR condition but still permit to deduce a unique answer

from observational data, at least when some additional “assumptions”

are invoked. One of the questions that prompted the article was whether

arguments within the probability model would justify such non-CAR

models. Another question that is investigated is the stability of answers

from CAR or non-CAR models to minor variations in assumptions on

the selection “mechanism”.�e newly written appendix provides some

hints especially on the latter question. Techniques of sensitivity analyses

have seen some important developments since the article was published.

While the article surveys the main statistical methods suggested to deal

with incomplete and self-selected data, the appendix updates hints to

this rapidly growing literature. It also contains a short discussion on

the appropriate standards by which to judge statistical methods via

asymptotic considerations.

�e next chapter, Chapter 5, discusses statistical approaches to causal

inference.�e predominant approach in statistics nowadays is based

directly on the missing data paradigm. It de�nes a cause, or, perhaps

better, the causal e�ect of the value of the “variable” X(u) = x on Y(u)

to be the di�erence between Y(u) |X(u) = x and Y(u) |X(u) 6= x.�is

is a missing data problem since for any given unit u ∈ U , only either
X(u) = x or X(u) 6= x but not both are observed. In consequence, most

statistical approaches rely on some form of the CAR condition to identify

the “causal” e�ect of X.�e article provides an alternative relying on

13



1. Introduction

the timing of events.�e approach identi�es events as the relata of a

causal relation and is thus closer to the classical philosophical discussion

than that based on variables. Also, since humans can bring about events

and since sequences of such events constitute an important topic in

the social sciences it is better suited for social science applications than

a counterfactual account. And �nally the approach avoids to mimic

(statistical) experiments that inspire the counterfactual approach.�e

analogywith experiments that is sought by other approachesmay inmany

cases of interest to the social scientists turn out to be counterproductive.

�e new appendix to the chapter starts with a short review of the coun-

terfactual approach as it is discussed in the recent statistical and social

science literature. It then illuminates the direct connection between

the approaches to incomplete data problems and statistical versions of

counterfactual accounts of causality. Recent progress in the two main

problem areas of the event based approach, the notion of autonomy and

the de�nition of local independence, are also reviewed.

Chapters 6 and 7 deal with the special case of censored data.�e �rst pro-

poses a potentially very useful extension of non-parametric techniques

for censored data using themean residual life function. Its main technical

contribution is a thorough investigation of variance estimators based

on a representation of Kaplan-Meier integrals in terms of independent

summands.�e main contribution in the present context of incomplete

data, however, is the reminder that some statistical methods within the

incomplete data paradigm can be re-expressed in a way that both �t

the standard statistical methods geared to independent observations

and the requirements of incomplete data methods. Chapter 7, on the

other hand, provides a discussion of some constraints on the form of

hazard functions when a particular constraint, that of periodic e�ects, is

invoked. Such constraints are o�en present in labour market studies as

well as in marketing, and these examples provided the motivation of the

article.�e constraints imply restrictions on the form of the in�uence of

covariates that can be seen as a restriction on the possible incomplete

data models compatible with the constraints when covariates are present.

Chapter 8 discusses a regression model for multivariate censored ob-

servations. Historically, the non-parametric multivariate censored data
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model has been one of the inspiring problems for a general account of

incomplete data. It is one of the examples where the non-parametric

maximum likelihood estimator is inconsistent. One of the consistent

alternatives deliberately coarsens the data even further by grouping both

event and censoring times. Perhaps unexpectedly, incomplete data may

help in stabilising estimation problems. �e article exploits this fact

for the construction of a locally e�cient regression estimator. Its con-

struction is based on the missing information principle, a reformulation

and extension of the CAR condition that shows how scores and other

likelihood quantities transform when some data are partially incomplete.

�e appendix reviews new developments in the estimation theory with

incomplete data. Recent variations and extensions of the Buckley-James

estimator suggested in the paper are also discussed.

�e last Chapter 9 investigates the e�ect of incorrect model choice in

regression models with linear predictors. It turns out that even when

the model is mis-speci�ed the relative size of regression coe�cients is

correctly estimated.�is result, it is noted, is directly connected with a

situation where the data for the dependent variable are only incompletely

observed.�us, a form of duality between incomplete data models and

the analysis of mis-speci�ed regression models is established.�is type

of partial duality, though probably known in special cases and for a long

time, is certainly not yet explored to the same extent as other areas of

incomplete data analysis.�e new appendix lists a few more recent hints

to a duality between incomplete data and wrong statistical models.

Finally, the work is supplemented by an appendix documenting an imple-

mentation of CAR compatible non-parametric distribution estimators

within TDA (Transition Data Analysis, www.stat.ruhr-uni-bochum.
de/tda.html), a computer package designed speci�cally to deal with
censored and otherwise incomplete data. It is the base for Buckley-James

type estimators discussed in Chapter 8 and can easily be used as a build-

ing block for regression problems with more general types of incomplete

data.

15

www.stat.ruhr-uni-bochum.de/tda.html
www.stat.ruhr-uni-bochum.de/tda.html


16



2

ProbabilisticModels of

Incomplete Data

While the treatment of missing data has a long tradition in statistics,

it was only 30 years ago that Rubin proposed to study such problems

systematically from a probabilistic point of view. In retrospect, Rubin

and Little dubbed the introduction of random variables, probability

distributions and expectations to the study of missing data a “simple

device”.�is chapter studies the rami�cations of the “simple device” in the

context of general incomplete data. It outlines a theory of probabilistic

incomplete data models that is general enough to cover all data structures

discussed in later chapters. And it provides the basic framework used

in the statistical approach to incomplete data. Within this framework,

some of the problems mentioned in the introduction can be answered.

Indeed, the very introduction of a probability model may at �rst sight

seem extraneous to the problem of analysing incomplete data.�e use of

probability theory may simply presuppose solutions that otherwise do

not exist. It is not clear at the outset whether the introduction of the

“simple device” will prejudice its solutions, thus just begging the original

question.

I will show that this is not the case in the following section. �ere I

also explore the mathematical structure of incomplete data models and

relate them to other well known structures in mathematics.�e second

section introduces several versions of the coarsening at random (CAR)

model. It turns out that the di�erences between CAR formulations are
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2. Probabilistic Models of Incomplete Data

closely connected to the structure of incomplete data which therefore

is an essential part of the “simple device” of Rubin and Little. �e

discussion will clarify several misunderstandings about the role of

CAR models that pervade the current literature. Among these are the

empirical content of CAR models and the uniqueness of CAR models.

�e next sections considers the role of missing indicators that play such

a prominent role in the now classical version of the “simple device”.

It is shown that the introduction of the missing indicator (or of any

other further random variables like censoring variables) extends the

�eld of applications considerably. But it does so at the cost of making

the de�nition of CAR dependent on modelling decisions that can not

be justi�ed from considerations of the structure of incomplete data

alone. In this sense, the introduction of random variables indicating the

extent of incompleteness goes beyond a probabilistic re-expression of

the incomplete data problem. A last section concludes by taking up the

discussion of criteria of applicability of probabilistic incomplete data

models.

2.1. �e Structure of Incomplete Data

Statistical data as well as random variables are commonly de�ned as

functions with values in a previously de�ned spaceY . Statistical variables
take as their domains of de�nition a list representing the target population,

say U . On the other hand, random variables are de�ned on a probability
space Ω equipped both with a probability measure Pr(.) and a set of

subsets of Ω to which probabilities can be assigned. �e device of

random variables as functions on Ω serves to induce further probability

distributions and to de�ne operations between random variables. In

contrast, statistical variables are a device to keep track of properties of

the members of the population. In both cases, however, the range space

is chosen by the researcher. It is an a priori decision in Matheron’s sense,

constituting the questions that are contemplated.

More o�en than not, the detailed information necessary for the assess-

ment of a statistical variable is not available. Employment status may be
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2.1. �e Structure of Incomplete Data

thoroughly de�ned, say following the ILO standard.�us the range of a

corresponding variable is well de�ned. But if people are asked about

their employment status using that standard, it may not �t too well with

the knowledge of the respondents. In consequence, respondents may

only provide a rough characterisation of their employment status or

even do not answer at all.

�is situation can be represented by a further set Y∗, a set of subsets
of Y . As an example, suppose that employment status is di�erentiated
into the three categories ‘employed’, ‘unemployed’ and ‘out of labour

force’ coded consecutively as Y = {1, 2, 3}. Suppose that respondents are
reluctant or unable to di�erentiate between unemployment and out of

labour force. Further they may refuse to answer at all.�en the observed

data can be represented by

Y∗ = {{1}, {2}, {3}, {2, 3}, {1, 2, 3}} ⊆ P(Y) \ {∅}

where P(Y) is the power set of Y . Here a non-response is represented
by {1, 2, 3} while someone who is unwilling to di�erentiate between
unemployment and being out of labour force is represented by {2, 3}.
Exact answers are represented by {1}, {2}, or {3}.

In general, let

Y : U −→ Y

be a statistical variable.�en coarse data can be represented by a statistical

variable Y∗

Y∗ : U −→ Y∗ ⊆ P(Y) \ {∅}

such that for all u ∈ U : Y(u) ∈ Y∗(u).�e last condition excludes the
possibility that respondents are misrepresenting their situation. I will

term this requirement the consistency condition. In a purely set based

model of incomplete data such a restriction is necessary since otherwise

there would be no connection between Y and Y∗ at all.

�e consistency condition rules out some situations that sometimes are

considered as incomplete data problems. If all respondents possibly
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2. Probabilistic Models of Incomplete Data

mis-classi�ed their situation by indicating another employment than the

one they are in, then the consistency condition would force the choice of

{1, 2, 3} as a representation of all answers. But that would be completely
uninformative.

Fortunately, most incomplete data problems encountered in social

science applications, in particular grouped, truncated, and censored

data, do have a representation in terms of subsets. Consider grouped

data: If Y is an ordered set represented by {0, 1, . . . , τ}, and if [yi, yi+1]
are intervals into which some observations are grouped, then Y∗ =
{{0}, {1}, . . . , {τ}, [y0, y1], . . . , [yk−1, yk]}may be used to represent the
situation. Such a grouping together with the possibility to provide “exact”

values is o�en employed in survey questions. An example from the ALL-

BUS is discussed in Chapter 4. A similar case of the grouping together

of observations that is not restricted to intervals is given by a general

function g : Y → Z that can be represented as Y∗ = {g-1({z}) | z ∈ Z}.

Another important case of incompleteness is provided by censored or

truncated data. If Y is again the ordered set {0, 1, . . . , τ}, then censored
observations, i.e. observations for which it is only known that an event

happened a�er a certain period, can be represented by {y, . . . , τ} such
that Y∗ becomes {{0}, {1}, . . . , {τ}, {0, . . . , τ}, {1, . . . , τ}, . . . .}.�is
structure is studied in most of the later chapters.

A parallel construction can be used within a probability model without

any change, resulting in

(Y , Y∗) : Ω −→ Y × Y∗ (2.1)

such that

Y(ω) ∈ Y∗(ω) for all ω ∈ Ω (2.2)

�is will also be called consistency condition.1

1
�e condition (2.2) can be weakened to Pr(Y ∈ Y∗) = 1.�is might be necessary if

Ω is chosen uncountable, e.g. to model continuous covariates. But with �nite sets Y
as used here, and without the necessity to model additional information, nothing

essential is gained since one can always choose a �nite Ω with Pr({ω}) > 0 for all ω.
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One aspect of incomplete data can be studied by just considering the

structure of Y∗. To facilitate the discussion, I introduce three simple
examples that will be considered throughout this Chapter.

Example 1
Suppose again that employment status is di�erentiated into the three

categories ‘employed’, ‘unemployed’ and ‘out of labour force’ coded

consecutively as Y = {1, 2, 3}. Suppose further that respondents are
reluctant or unable to di�erentiate between unemployment and out of

labour force. Further they may of course refuse to answer at all.�en

the observed data can be represented by

Y∗1 = {{1}, {2}, {3}, {2, 3}, {1, 2, 3}}

Example 2
Respondents in addition to the previous reporting conditions would

sometimes only report whether they are employed or unemployed vs.

being out of labour force.�en the support of Y∗ becomes

Y∗2 = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}

Example 3
�e second example can be changed slightly by deleting {3}. �us
nobody would report to be out of labour force.�e resultingY∗3 becomes

Y∗3 = {{1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}

�e sets of coarsened data are partially ordered by set inclusion.�us, in

the �rst example, one has {2} ≺ {2, 3} ≺ {1, 2, 3}. And in the second
example {2} ≺ {1, 2}, {2, 3} ≺ {1, 2, 3}.�e ordering relations of the
elements of the three examples can be read from the corresponding

Hasse diagrams presented in Figure 2.1
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2. Probabilistic Models of Incomplete Data

Figure 2.1.: Hasse diagrams for the sets Y∗1 ,Y∗2 and Y∗3 .�e top nodes
correspond to the set {1, 2, 3}, the bottom nodes to the sets {1}, {2}, {3}.

2.1.1. A Typology of Missing Data Structures

Example 1 is special in that the elements of Y∗1 are hierarchically ordered.
By this I mean that for all elements y∗1 , y

∗
2 ∈ Y∗ we have either y∗1 ⊆ y∗2

or y∗2 ⊆ y∗1 or y
∗
1 ∩ y∗2 = ∅. Another way to describe this special situation

that will be of importance later on is that Y∗ is the union of a sequence
of re�nements of a partition of Y . Here, the sequence of partitions is
{{1, 2, 3}}, {{1}, {2, 3}}, {{1}, {2}, {3}}.

�e case of hierarchically ordered incomplete data structures is encoun-

tered in many common models of incomplete data situations.�e most

obvious one is when only completely missing or exact observations

of a single variable are considered. �en the resulting Y∗ is trivially
hierarchically ordered.

If observations are discrete and possibly right censored durations, cen-

sored observations are presented by sets of the form {y, . . . , τ}. Such
observations just tell that an event happened a�er period y− 1, but they
don’t reveal the exact time of the event. Rearranging terms, the set Y∗ be-
comes {{0, . . . , τ}} ∪ {{0}, {1, . . . , τ}} ∪ {{0}, {1}, {2, . . . , τ}} ∪ . . .
so that it is a union of re�nements of a partition and thus hierarchically

ordered.

Grouped data provide another important example. If Y = {0, . . . , τ}
and if there is just one level of grouping Y into disjoint intervals [yi, yi+1]
whose union is Y , then the Y∗ resulting from taking the union of
the intervals with the set of all singletons and possibly the whole set

(completely missing data) will result in an hierarchically ordered Y∗.
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Adding further levels of grouping still will lead to hierarchically ordered

models as long as the further levels are either re�nements or coarsenings

of the original grouping.

Perhaps the most important example is provided bymonotone missing

data patterns. Consider several variables Y1, . . . , Yk with values in Y1 ×
. . . × Yk. Suppose that each variable is either observed or completely
unobserved. If the pattern of missingness is such that there is an ordering

of the variables, say (1) < (2) < . . . < (k), and such that if Y(i) is missing

(i.e. Y∗
(i) = Y(i)) then all Y(j) are missing as well as long as (i) < (j), the

pattern is called a monotone missing pattern (see e.g. Little, Rubin 2002:

Chap. 7.4). A typical element of the set Y∗ is

{(y(1), . . . , y(i−1))} × Y(i) × . . . × Y(k)

and the union of these sets over all tuples (y(1), . . . , y(i−1)) forms a par-
tition of Y(1) × . . . × Y(k). Furthermore, if Pi is such a partition with
smallest index (i) such that all the values of Y(j) with index (j) larger than

(i) are missing, the partition Pj with (j) > (i) is a re�nement of Pi.�us,
monotone missing data patterns are hierarchically ordered.

In section 2.2, I will show that the CAR condition for hierarchically

ordered models can be treated very much like a single variable which is

either exactly observed or completely missing. But how can one justify

the choice of such a simple model? In the case of monotone missingness

the order of the variables may arise from an ordering of observations

according to the time they were made.�is is o�en the case in panel

studies. Moreover, in that case, monotone missingness just excludes the

possibility of returning to the panel population a�er some temporary

withdrawal.�is restriction is o�en part of the design of a panel study.

In other cases, it might be seen as a reasonable approximation to the

design.

But in many other models such an assumption seems to be rather far

fetched. Consider regression models with several covariates where some

or even all of the covariates are incompletely observed.�at situation

can be formalised quite similarly to the case of monotone missingness.

Nevertheless, a regression context will nearly never allow to justify a

particular order of incompleteness information. And even if one is
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thought to be adequate, a few data may prove the assumption to be

inadequate. Or, arguing the other way around, even if a given data set

is consistent with a certain order of incompleteness, this may not be

expected in general and not even for similar data sets. Still, it would be

inadequate to decide on the choice of the model for the incompleteness

structure solely based on one (or several) data sets. It is o�en much easier

to envisage broader forms of incompleteness than those actually present

in a data set since it may then be possible to largely reduce the modelling

burden.�e choice of the incompleteness structure will therefore always

contain preliminary modelling decisions that are informed by data

aspects but are not determined by it.

Since hierarchically ordered incomplete data structures and their proto-

type of missing values in single variables share many nice properties,

the study of the value of the “simple device” might in fact be preju-

diced when only these special cases are considered. A less demanding

data structure is given by a union of several partitions that need nei-

ther be re�nements nor coarsenings of each other. An example in

point would be data grouped into several types of categories which

may overlap. Example 2 provides another example. Y∗2 is not hierarchi-
cally ordered since {1, 2} ∩ {2, 3} 6= ∅ but neither {1, 2} ⊆ {2, 3} nor
{2, 3} ⊆ {1, 2}. But it is the union of several partitions, since one may
write Y∗2 = {{1, 2, 3}} ∪ {{1}, {2, 3}} ∪ {{3}, {1, 2}} ∪ {{1}, {2}, {3}}.
Another prominent example is given by current status data where for a

given point in time it is only known whether an event did occur previ-

ously or not.�en the incomplete data of event times are of the form

{0, . . . , y} if the event happened before time y. Or they take the form
{y + 1, . . . , τ} when the event did not yet happen at inspection time.
Clearly, this forms a partition of Y for each inspection time y and thus
Y∗ is a union of partitions. But these partitions are not re�nements of
each other.

�e third example, Y∗3 , is neither hierarchically ordered nor even the
union of partitions of Y since for the element {2} the only disjoint set
in Y∗3 is {1} but there union is not all of Y .�e consideration of such
examples will provide the background against which several formulations

of CAR can be compared. It will transpire that modelling decisions
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2.1. �e Structure of Incomplete Data

pertaining only to the choice of (Y ,Y∗) have important consequences
for the evaluation of the “simple device”.

2.1.2. Graphical Representations of Coarsened Data

Depicting the order of the elements of Y∗ will as well exhibit which
elements of Y belong to which sets in Y∗ if the latter contains all one-
element sets. If this is not the case, one would need to indicate this

additional information, e.g. by providing the incidence matrix with rows

presenting the elements of Y and columns the elements of Y∗. In the
matrix, the (i, j)-th element is 1 if the i-th element of Y is an element of
the j-th element of Y∗, 0 otherwise. In the �rst example one gets

{1} {2} {3} {2, 3} {1, 2, 3}
1 1 0 0 0 1

2 0 1 0 1 1

3 0 0 1 1 1

Figure 2.2.: Levi graph for the sets Y∗1 ,Y∗2 and Y∗3 .�e top circles corre-
spond to the set {1, 2, 3}, the bottom circles to the sets {1}, {2}, {3}.�e
squares correspond to the elements of Y , 1,2,3.

�is could be visualised by a hypergraph whose vertices are the elements

of Y and the edges indicate the composition of the elements of Y∗. An
equivalent representation is the Levi graph, a bipartite graph with the

�rst set of vertices being the elements of Y and the second set being
the elements of Y∗.�ere is an edge between vertices of the two sets i�
y ∈ y∗.�e Levi graphs of the three examples are given in Figure 2.2.
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2. Probabilistic Models of Incomplete Data

�e Levi graph and the hypergraph of an incidence matrix are obviously

in one-to-one correspondence.

Jaeger (2005b) argued that it is better to use the dual of the hypergraph

where the elements of Y∗ are the vertices and the edges indicate which
elements of Y belong to them.�e resulting hypergraphs for the three
examples are depicted in Figure 2.3.

Figure 2.3.: Hypergraphs for the sets Y∗1 ,Y∗2 and Y∗3 .�e layout is the
same as in the previous Figure, the top nodes correspond to the set {1, 2, 3},
the bottom nodes to the sets {1}, {2}, {3}.�e edges indicate the elements
of Y .

Taking an extreme example one may consider

Y∗4 := {{1, 2}, {2, 3}}

so that the only information available would be whether someone was

employed or unemployed, or unemployed or out of labour force.�ere

is no ordering between the two sets.�ere are no singletons either and

so the information on which element of Y belongs in which of the two
coarsened sets in Y∗ must be added.�e corresponding hypergraph is
given in Figure 2.4.

In this hypergraph, the edge representing 2 (the outer ellipse) contains

two proper subsets, the edges representing 1 and 3 (the inner circles

around the two circles representing the sets {1, 2} and {2, 3}). Jaeger
(2005b) argued that whenever the hypergraph contains properly nested

edges then the CAR condition can not hold (except for degenerate cases).

�e non-existence of CAR models would then follow just from the
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2.1. �e Structure of Incomplete Data

Figure 2.4.: Hypergraph for the set Y∗4 .�e innermost circles represent
the sets {1, 2} and {2, 3}.�e outer circles represent the elements 1 and 3,
and the out-most oval represents the element 2.

structure of the incomplete data and without considering any more

details like the distribution of Y∗.

�ere is an interesting connection of this example with the famous

Monty Hall problem: A contestant at the Monty Hall show has to choose

between three doors 1, 2, 3, behind one of which there is a price. Behind

the others there is a goat. If the contestant has chosen door 2, say, the

host opens one of the other doors which reveals a goat.�e information

that the contestant can expect a�er his choice of the door is that the

price is behind either the doors {1, 2} or {2, 3}. In particular, the Monty
Hall problem has the structure given in Figure 2.4. Next, the host reveals

which of the two sets from Y∗4 obtain. Given this information, the
candidate can either change his choice of a door or stick with the original

one. But this opening of a door by the host is informative for the location

of the price: Informally, if the rules of the game were uninformative

about the location of the price, the opening of, say, door 3 by the host

should only reveal that the price is either behind door 2 or behind

door 1 (Y∗ = {1, 2}). Put di�erently, the decision to reveal {1, 2} ought
not depend on the location of the price. Now if the price is behind

door 1, the rules of the game force the host to open door 3. But then

an uninformative rule would force him to open door 3 also when the

price is behind door 2. By the same argument, the host must open

door 1 (revealing Y∗ = {2, 3}) when the price is behind door 3. An
uninformative rule would lead him to open door 1 also when the price is

behind door 2. In consequence, if an uninformative rule existed it would

lead to inconsistent behaviour (opening both door 1 and door 3 when the

price is behind door 2).�us there is no uninformative rule and the CAR
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2. Probabilistic Models of Incomplete Data

condition certainly does not hold.2�is example provides a connection

between the incomplete data literature and that on probability dynamics

in the Bayesian literature.3

2.1.3. Distributions Consistent with Coarsened Data

�e last piece of information required for the representation of incom-

plete data is a distribution on Y∗.�is might either be the distribution of
a statistical variable Y∗ representing the observed frequencies of incom-
plete data. Or, as in the Monty Hall example, it might be a probability

distribution representing the “rules of the game”.�e task is to infer

something useful about the distribution of Y on Y from a distribution
on Y∗.

In any case, instead of taking a particular subset Y∗ of the power set
of Y as the support of the distribution, one might as well take the full
power set and use zero probability assignments for certain elements of

the power set to de�ne the structure of incompleteness.4 However, I

prefer to separate the determination of a distribution of Y∗ from the
determination of its support encoded by a subset of the full power set,

namely Y∗. O�en the distribution of Y∗ is determined by the empirical
distribution. But the structure of Y∗ is only partly determined by the
data. It might be chosen much larger than the data suggest, so that a

particularly simple structure emerges. Or it might, as in the Monty Hall

example, encode the rules of the game.�ere are also technical problems:

2
�is rather informal discussion presupposes that the price may be behind any of the

doors with positive probability in order to derive a contradiction. If the price is

always behind door 1 (and the contestant has chosen door 2 preliminarily), then

there is a unique strategy of the host that is ‘uninformative’ in the above sense: He is

forced to reveal {1, 2}. Similarly, if the price is always behind door 2, the host is free
to either reveal {1, 2} or {2, 3}.�is will always be ‘uninformative’ whatever his
strategy to choose between{1, 2} and {2, 3}.�ese ‘uninformative’ possibilities are
only ruled out by a further elaboration of the rules of the game.
3
A short and vivid discussion is given by Je�rey (2004: Chap. 3).�e notion of CAR

in probability dynamics is further discussed by Jaeger (2005b), de Cooman and

Za�alon (2003, 2004), Grünwald and Halpern (2003).
4
�e sets y∗ ∈ P(Y) are called focal elements by Shafer (1976: 40). His notion of core

as the union of all focal elements is a subset of my Y∗.
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2.1. �e Structure of Incomplete Data

With in�nite sets Y , it is in general impossible to assign probabilities to
all subsets of Y . In such applications, subsets of the power set must in
any case be determined before a probability distribution can be assigned.

Consequently, in the following a particular subset Y∗ of the power set of
Y is used as the support of the distribution of Y∗.�e distribution may,
however, assign zero probabilities to some further elements of Y∗. On
the other hand, it is much easier to work with probabilities de�ned on all

of P(Y) so that I will without further mentioning use the extension of a
probability on Y∗ by stipulating Pr(Y∗ = A) = 0 for all A ⊆ Y such that
A /∈ Y∗.

�e distribution with supportY∗ together with the consistency condition
will imply restrictions on the distribution of the corresponding variableY .

Since Y(.) ∈ Y∗(.) for all arguments of the variables, {Y∗ = y∗} ⊆ {Y ∈
y∗} for all y∗ ∈ Y∗ because if Y∗(ω) = y∗, then necessarily Y(ω) ∈ y∗

for (almost) all ω ∈ Ω. In particular,

Pr(Y∗ = y∗) ≤ Pr(Y ∈ y∗) (2.3)

for all y∗ ∈ Y∗. A useful consequence is

Pr(Y∗ = y∗) = Pr(Y∗ = y∗, Y ∈ y∗) (2.4)

Since also {Y∗ = y∗′} ⊆ {Y ∈ y∗} for all subsets y∗′ ⊆ y∗, it follows
that ∪y∗′ | y∗′⊆y∗{Y∗ = y∗′} ⊆ {Y ∈ y∗} and the inequality can be
strengthened to∑

y∗′⊆y∗
Pr(Y∗ = y∗′) = Pr(Y∗ ⊆ y∗) ≤ Pr(Y ∈ y∗) (2.5)

�e same reasoning applies not only to y∗ but to arbitrary subsets A ⊆ Y .
�us one �nally arrives at∑

y∗′⊆A
Pr(Y∗ = y∗′) = Pr(Y∗ ⊆ A) ≤ Pr(Y ∈ A) (2.6)

for all A ⊆ Y .
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2. Probabilistic Models of Incomplete Data

On the other hand, {Y = y} ⊆ ∪y∗3y{Y∗ = y∗} since if Y(ω) = y then

necessarily all possible values of Y∗(ω) must contain y (the empty set is
excluded from Y∗) and therefore

Pr(Y = y) ≤
∑
y∗3y

Pr(Y∗ = y∗) = Pr(Y∗ ∩ {y} 6= ∅) (2.7)

for all y ∈ Y . An immediate consequence is that

1 =
∑
y∗3y

Pr(Y∗ = y∗ |Y = y) (2.8)

for all ywith Pr(Y = y) > 0 since the right hand side is just the probability

of the set ∪y∗3y{Y∗ = y∗} conditioned on its subset {Y = y}. �e
equality states that the support of the conditional probabilities given

{Y = y} is the subset of elements of Y∗ that contain y.

�e inequality can be generalised to give

Pr(Y ∈ y∗) ≤
∑

y∗′∩y∗ 6=∅

Pr(Y∗ = y∗′) = Pr(Y∗ ∩ y∗ 6= ∅) (2.9)

�is is not, in general, a strengthening of (2.7). In the case of Y∗4 ,
Pr(Y = 1) ≤ Pr(Y∗ ∈ {1, 2}) but trivially Pr(Y ∈ {1, 2}) ≤ Pr(Y∗ =
{1, 2}) + Pr(Y∗ = {2, 3}) = 1. In hierarchical data structures, however,
the upper bound of Pr(Y = y) stays the same when the event {Y = y} is
replaced by the possibly larger event {Y ∈ y∗} when y∗ is the unique
element of the �nest partition of Y that contains y.�us in hierarchical
incomplete data structures it is always su�cient to consider the pairs of

inequalities (2.5) and (2.9).

Since there is no best upper bound on subsets of Y in general, one has to
check that

Pr(Y ∈ A) ≤
∑

y∗∩A6=∅

Pr(Y∗ = y∗) = Pr(Y∗ ∩ A 6= ∅) (2.10)

for all ∅ 6= A ⊆ Y . Combining this with the respective lower bounds,
the full set of inequalities becomes:∑

y∗⊆A
Pr(Y∗ = y∗) = Pr(Y∗ ⊆ A) ≤ Pr(Y ∈ A)
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2.1. �e Structure of Incomplete Data

≤ Pr(Y∗ ∩ A 6= ∅) (2.11)

=
∑

y∗∩A6=∅

Pr(Y∗ = y∗)

for all ∅ 6= A ⊆ Y .

While the extension to all non-empty subsets of Y introduces many re-
dundant restrictions, it allows for a concise and symmetrical formulation.

Setting

F(A) := Pr(Y∗ ⊆ A) =
∑
y∗⊆A

Pr(Y∗ = y∗)

T(A) := Pr(Y∗ ∩ A 6= ∅) =
∑

y∗∩A6=∅

Pr(Y∗ = y∗)

the inequalities can be abbreviated to

F(A) ≤ Pr(Y ∈ A) ≤ T(A) (2.12)

But {Y∗ ⊆ A} = {Y∗ ∩ Ac = ∅} = {Y∗ ∩ Ac 6= ∅}c.�us F(A) = 1 −
T(Ac). In particular, the upper bound for the setAc, Pr(Y ∈ Ac) ≤ T(Ac),

is equivalent to Pr(Y ∈ A) = 1− Pr(Y ∈ Ac) ≥ 1− Pr(Y∗ ∩ Ac 6= ∅) =
F(A), the lower bound for the set A. Since the inequalities are to hold for

all non-empty A ⊆ Y , the consistency conditions can be shortened to
the one sided condition

F(A) ≤ Pr(Y ∈ A) =: Π(A) ∀ ∅ 6= A ⊆ Y (2.13)

One may think of F(A) as a distribution function of Y∗: It is monotone
increasing with F(∅) = 0 (since ∅ is excluded from Y∗ by de�nition,
Pr(Y∗ = ∅) = 0) and F(Y) = 1. Moreover, knowing F(.), one gets back
the probabilities of all y∗ ∈ Y∗ by5

Pr(Y∗ = y∗) =
∑

y∗′⊆y∗
(-1)|y

∗\y∗′|F(y∗′) (2.14)

5
�is is the Möbius function from the combinatorics of partially ordered sets. See

Aigner (1997: Chap. 4) who stresses the similarity with di�erentiation and integration

and who presents many further connexions.
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2. Probabilistic Models of Incomplete Data

�is is similar to the formula determining the probability of rectangles

from distribution functions in higher dimensions.

In fact, F(.) enjoys a stronger monotonicity property. It is 2-monotone in

that for A, B ⊆ Y

F(A ∪ B) ≥ F(A) + F(B)− F(A ∩ B)

since

F(A ∪ B) = Pr(Y∗ ⊆ A ∪ B) ≥ Pr(Y∗ ⊆ A ∨ Y∗ ⊆ B)

= F(A) + F(B)− F(A ∩ B)

It is even in�nitelymonotone since for any k and any subsetsA1,A2, . . . ,Ak

of Y

F

(
k⋃
i=1

Ai

)
≥

∑
∅6=I⊆{1,2,...,k}

(-1)|I|+1F
(⋂
i∈I

Ai

)
It can be shown that all in�nitely monotone set functions on Y with
F(∅) = 0 and F(Y) = 1 arise from a probability distribution of a random
variable Y∗ taking values in Y∗.6

�is characterisation of F(.) as a normed in�nitely monotone set function

connects the necessary consistency condition with many other concepts

suggested to deal with incomplete information. In particular, such an F(.)

is a belief function in the sense of Shafer (1976). Furthermore, Strassen

(1964) and Huber (1976) suggested to use either 2-monotone or in�nitely

monotone distribution functions to express limits of measurement

precisions in statistics.7

6
�is result is known as Choquet’s theorem. See Nguyen (2006: 38) for a simple

proof in the case of �nite Y .�e general case is thoroughly discussed in the classical
monograph of Phelps (2001) which was �rst published in 1965. Molchanov (2005)

provides an updated review.
7
See Weichselberger (2001) and Walley (1991) for broad reviews.�ere is also an

interesting connexion with game theory where the set of probability measures

Π(A) ≥ F(A) is called the core of a game. Characterisations of the core are discussed

by Chateauneuf/Ja�ray (1989) from a combinatorial point of view. Wallner (2007)
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2.1.4. �e Geometry of Consistent Distributions

�e consistency conditions in the form of (2.13) pertain only to either

the distribution of the random variables (Y , Y∗) or their statistical
counterparts. As such, they do not encode whether in fact Y(.) ∈ Y∗(.)
or not.�eymerely record distributional consequences of the consistency

requirement Y(.) ∈ Y∗(.). But even these weak necessary conditions
provide rather strong information about the set of possible distributions

of Y .

Looking again at the �rst example and writing p{1}, . . . , p{1,2,3} for the
density of the variable Y∗, p1, p2, p3 for the density of the variable Y , the
(non-vacuous) consistency requirements become

p{1} ≤ p1 ≤ p{1} + p{1,2,3}

p{2} ≤ p2 ≤ p{2} + p{2,3} + p{1,2,3}

p{3} ≤ p3 ≤ p{3} + p{2,3} + p{1,2,3}

p{2} + p{3} + p{2,3} ≤ p2 + p3 ≤ p{2} + p{3} + p{2,3} + p{1,2,3}
(2.15)

�e last restriction is generally non-redundant since its upper bound can

be smaller than the upper bound available from adding together the

upper bounds for p2 and p3. Similarly, the lower bound will be larger

than the lower bound implied by the second and third line.

For the next two examples, the restrictions are

p{1} ≤ p1 ≤ p{1} + p{1,2} + p{1,2,3}

p{2} ≤ p2 ≤ p{2} + p{1,2} + p{2,3} + p{1,2,3}

p{3} ≤ p3 ≤ p{3} + p{2,3} + p{1,2,3}

provides a further connexion to interval probabilities where monotonicity need not

hold.

�e set function T(.) is called capacity functional in the literature on random sets and

upper probability in the literature on imprecise probabilities. It has complementary

properties to the ones of the set function F(.). Molchanov (2005: Chap. 1) provides a

comprehensive review. Applied to singletons, T({y}) is the inclusion probability of

sampling theory.
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2. Probabilistic Models of Incomplete Data

p{1} + p{2} + p{1,2} ≤ p1 + p2

≤ p{1} + p{2} + p{1,2} + p{2,3} + p{1,2,3}

p{2} + p{3} + p{2,3} ≤ p2 + p3

≤ p{2} + p{3} + p{1,2} + p{2,3} + p{1,2,3}

and

p{1} ≤ p1 ≤ p{1} + p{1,2} + p{1,2,3}

p{2} ≤ p2 ≤ p{2} + p{1,2} + p{2,3} + p{1,2,3}

p{1} + p{2} + p{1,2} ≤ p1 + p2

≤ p{1} + p{2} + p{1,2} + p{2,3} + p{1,2,3}

p{2} + p{2,3} ≤ p2 + p3

≤ p{2} + p{1,2} + p{2,3} + p{1,2,3}

It is instructive to use a few numerical values for the distribution of Y∗

to get an impression about the dependence of the range of distributions

of Y implied by restrictions on the support of Y∗. For the three examples,
I will use the following values:

Example 1

Y∗1 = {{1}, {2}, {3}, {2, 3}, {1, 2, 3}}
p{1} = 0.5, p{2} = 0.1, p{3} = 0.1, p{2,3} = 0.1, p{1,2,3} = 0.2

Example 2

Y∗2 = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}
p{1} = 0.5, p{2} = 0.1, p{3} = 0.1, p{1,2} = 0.1, p{2,3} = 0.1,

p{1,2,3} = 0.1

Example 3

Y∗3 = {{1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}
p{1} = 0.5, p{2} = 0.1, p{1,2} = 0.1, p{2,3} = 0.1, p{1,2,3} = 0.2
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A closer look at the �rst example provides further insight into the

structure implied by the consistency condition. Each of the inequalities

de�nes a closed half-space in R3. �e set of points satisfying all the
inequalities is the intersection of these half-spaces.�us the set satisfying

the consistency condition must be a polytope (Ziegler 1995: Chap. 1).8

Since all the lower and upper bounds for (p1, p2, p3) are in the interval

[0,1], the set of points satisfying the �rst three constraints is a closed

cuboid with sides parallel to the axes in the unit cube.�e last constraint

may chop o� the outer edges parallel to the �rst axes.�e polytope of

solutions is depicted in Figure 2.5.

(a) (b)

Figure 2.5.:�e polytope of the consistency conditions of Y∗1 .�e �rst
�gure presents the constraints of the last line of the conditions.�e second

�gure shows the resulting polytope.�e distribution of Y∗ is given by
p{1} = 0.5, p{2} = 0.1, p{3} = 0.1, p{2,3} = 0.1, p{1,2,3} = 0.2.

�e intersection of this polytope with the simplex p1 + p2 + p3 = 1, pi ≥ 0
gives the set of probability distributions compatible with the constraints.

�e intersection could only be empty if the polytope would lie completely

on either side of the simplex.�is can be checked by computing the

vertices of the polytope from the constraints given in (2.15). Using the

probabilities suggested above, the vertices are

8
Ziegler’s book (1995) provides a vivid introduction to the theory of convex polytopes.
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(0.5, 0.1, 0.2) (0.5, 0.1, 0.4) (0.7, 0.1, 0.2) (0.7, 0.4, 0.1)

(0.5, 0.2, 0.1) (0.5, 0.4, 0.1) (0.7, 0.2, 0.1) (0.7, 0.1, 0.4)

Here, the �rst two points on the le� lie below the probability simplex, the

last two on the right above it.�us the set of probability distributions

subject to the constraints given by the consistency requirements (2.15) is

non-empty. As an intersection of half-spaces with the probability simplex,

it is a closed polytope. In particular, the solution set is convex.�e set of

probability distributions of Y compatible with the distribution of Y∗

given above is depicted in Figure 2.6.�e resulting set of probability

distributions pi is shown in Figure 2.7 together with the solution sets of

the other two examples.

(a) (b)

Figure 2.6.: Two views of the constraints implied by the distribution of Y∗1
intersecting the probability simplex.

Geometrically, the inequalities of the consistency requirements generally

lead to a closed convex polytope as the set of compatible values of the

distribution of Y . Requiring additionally that the values are in fact a

probability distribution translates into intersecting the polytope with

the simplex of probability distributions giving ones again a closed and

convex polytope.�e extreme points of this polytope are in Example 1
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(0.5, 0.1, 0.4) (0.5, 0.4, 0.1)

(0.7, 0.2, 0.1) (0.7, 0.1, 0.2)

In the other two examples, the extreme points of the polytope turn out

to be

(0.5, 0.2, 0.3) (0.6, 0.1, 0.3) (0.6, 0.1, 0.3) (0.8, 0.2, 0.0)

(0.5, 0.4, 0.1) (0.7, 0.2, 0.1) and (0.5, 0.2, 0.3) (0.5, 0.5, 0.0)

(0.7, 0.1, 0.2) (0.8, 0.1, 0.1)

Figure 2.7.: �e ranges of (p1 , p2 , p3) implied by Y∗1 ,Y∗2 ,Y∗3 and the fol-
lowing probabilities: (0.5, 0.1, 0.1, 0.1, 0.2), (0.5, 0.1, 0.1, 0.1, 0.1, 0.1), and

(0.5, 0.1, 0.1, 0.1, 0.2).�e coarsening at random solutions are indicated

by×.

As an immediate consequence of this geometric interpretation of the con-

sistency conditions, a measure of the informativeness of the distribution

of Y∗ for the distribution of Y suggests itself:�e volume of the solution
set in relation to the volume of the simplex. In the three examples above,

the volume of the possible distributions relative to the volume of the

simplex is 8%, 7%, and 14%, respectively.9�is may be compared with

the simple version of missing versus exact answers in the case of the

9
�e computation of the volumes depends heavily on ‘nice’ triangulations of the solu-

tion sets, and these may be di�cult to �nd. Furthermore, constructing the solution

sets becomes rather complicated both with an increasing number of constraints and

an increasing number of elements of Y .�e general formulation (2.13) suggests that
the complexity may increase exponentially with the size of Y . Even in very restricted
cases, where the number of binding inequalities may be much less than (2.13), pro-

grams such as polymake (www.math.tu-berlin.de/polymake) must be used
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National Longitudinal Survey of Youth where the observed information

reduces the possible range of percentages and thus the one dimensional

volume to only 18%.

With dichotomous variables, it is only possible to distinguish between

either exact observations or no answer at all. In that case, the simple

bounds of the introductory example characterise the set consistent

distributions. But with larger numbers of states |Y|, the complexity of
incomplete data models increases. At the same time, using the partial

information (not just assuming that partial, inexact information is

completely missing) may dramatically increase the information that can

be extracted from the distribution on Y∗. To illustrate the possible gain
from using also the partial information, Figure 2.8 compares the ranges

of consistent distributions implied by the distributions on Y∗1 ,Y∗2 ,Y∗3
with those that arise when all partial information is treated as completely

missing. In the latter case, the set of consistent distributions is always

a simplex whose vertices are the probabilities of the singletons in Y∗
where the mass of the missing data is added to each element in turn.

�e e�ect of including the partial information is to reduce the range of

compatible distributions by excluding the grey areas from consideration.

�e gain of information (the relative reduction of the area of consistent

distributions) is 12%, 28%, and 14%, respectively.

2.1.5. Constructing Consistent Distributions

�e consistency conditions in form of the inequalities (2.12) or (2.13)

provide a simple and intuitive view of the form of the implied set of

distributions of Y as an intersection of half-spaces with the unit-simplex.

Before one can use the result, however, it must be checked whether

the solution set always is nonempty.�at is, given a structure Y∗ and
an arbitrary probability distribution on it, is there always at least one

to compute the solution sets. polymake, in turn, relies on cdd (ftp://ftp.ifor.
math.ethz.ch/pub/fukuda/cdd/cddman/cddman.html) which may be used
to compute the vertices of a polytope from its description in terms of an intersection

of half-spaces as in (2.13). See the cdd home page for details on the algorithms
employed.
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2.1. �e Structure of Incomplete Data

Figure 2.8.: �e ranges of (p1 , p2 , p3) implied by Y∗1 ,Y∗2 ,Y∗3 compared to
the ranges implied by taking partial information as completely missing.

distribution on Y consistent with the distribution on Y∗? While the
geometric interpretation in terms of half-spaces is suggestive, arguments

in terms of explicit expressions for the vertices would make the answer

obvious. But the connection between the half-space representation of

polytopes and their representation as convex hull of their vertices is not

immediate. Fortunately, in the case of �nite Y , a direct argument can be
given:�e simplest version would be to �x arbitrary numbers p(y | y∗)
such that they form, for �xed y∗, a probability distribution on Y and
such that p(y | y∗) = 0 for y /∈ y∗. One would then have to check that the
implied probabilities Pr(Y ∈ A) :=

∑
y∈A
∑

y∗∈Y∗ p(y | y∗) Pr(Y∗ = y∗)

satisfy the consistency constraints (2.11) or (2.13).

While this is rather easy, a somewhat more involved construction gives

probability distributions that equal the lower or upper bounds for some

set A and otherwise satisfy the constraints.�is construction will give

further insight into extrememembers of the set of probabilities consistent

with some distribution of Y∗. For a �xed set ∅ 6= A ⊆ Y put

πA(y) :=



∑
y∗⊆A

1[y
∗](y)

Pr(Y∗ = y∗)

|y∗|
for y ∈ A

∑
y∗*A

1[y
∗](y)

Pr(Y∗ = y∗)

|Ac ∩ y∗|
for y /∈ A

(2.16)

In Example 1 with A = {1}, one obtains

π{1}(1) = p{1} = 0.5
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2. Probabilistic Models of Incomplete Data

π{1}(2) = p{2} +
p{2,3}

2
+
p{1,2,3}

2
= 0.25

π{1}(3) = p{3} +
p{2,3}

2
+
p{1,2,3}

2
= 0.25

and with A = {2, 3}, the de�nition yields

π{2,3}(1) = p{1} + p{1,2,3} = 0.7

π{2,3}(2) = p{2} +
p{2,3}

2
= 0.15

π{2,3}(3) = p{3} +
p{2,3}

2
= 0.15

�us π{1} attains the lower bound in the �rst equation in (2.15) while
π{2,3} attains the upper bound. Also, π{2,3} attains the lower bound
in the last line in (2.15) while π{1} attains the upper bound.�e other
inequalities are ful�lled by both π{1} and π{2,3}.�e second and third
sets of inequalities are attained by π{2} and π{3}, and π{1,3} and π{1,2},
respectively.

In the general case, it must be demonstrated that

a) (2.16) de�nes a probability density on Y for all ∅ 6= A ⊆ Y .

b) F(A) =
∑

y∈A πA(y) =: ΠA(A), i.e. the bound for A in (2.13) is

attained by choosing πA as a density on Y . Here I write ΠA(.) for

the measure corresponding to the density πA(.).

c) �e density πA satis�es all other consistency conditions in that for

all subsets ∅ 6= B ⊆ Y

F(B) ≤
∑
y∈B

πA(y) = ΠA(B)

First note that

ΠA(Y) = ΠA(A) + ΠA(A
c)

or in terms of the density∑
y∈Y

πA(y) =
∑
y∈A

πA(y) +
∑
y /∈A

πA(y)
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2.1. �e Structure of Incomplete Data

For the �rst term on the right hand side∑
y∈A

πA(y) =
∑
y∈A

∑
y∗⊆A

1[y
∗](y)

Pr(Y∗ = y∗)

|y∗|

=
∑
y∗⊆A

Pr(Y∗ = y∗)

|y∗|
∑
y∈y∗

1

=
∑
y∗⊆A

Pr(Y∗ = y∗) = F(A)

where in the second equation the order of summation is interchanged.

It follows that the lower bound in the consistency condition (2.13) is

attained for the set A by this construction.�us requirement b) holds

true. Further,∑
y /∈A

πA(y) =
∑
y /∈A

∑
y∗*A

1[y
∗](y)

Pr(Y∗ = y∗)

|Ac ∩ y∗)|

=
∑
y

∑
y∗*A

1[A
c](y)1[y

∗](y)
Pr(Y∗ = y∗)

|Ac ∩ y∗)|

=
∑
y∗*A

∑
y

1[A
c ∩ y∗](y)

Pr(Y∗ = y∗)

|Ac ∩ y∗|

=
∑
y∗*A

Pr(Y∗ = y∗)

�erefore,

ΠA(Y) =
∑
y∈Y

πA(y) =
∑
y∈A

πA(y) +
∑
y /∈A

πA(y)

=
∑
y∗⊆A

Pr(Y∗ = y∗) +
∑
y∗*A

Pr(Y∗ = y∗) = 1

and, since certainly πA(y) ≥ 0, πA(.) is a probability density on Y
(requirement a). It remains to show that πA satis�es all the other con-

straints implied by the consistency conditions (2.13). Let ∅ 6= B ⊂ Y be
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2. Probabilistic Models of Incomplete Data

another set that might appear in the consistency conditions. Writing

ΠA(B) :=
∑

y∈B πA(y) for the measure corresponding to πA,

ΠA(B) = ΠA(A ∩ B) + ΠA(A
c ∩ B)

Now

ΠA(A ∩ B) =
∑

y∈A∩B

∑
y∗⊆A

1[y
∗](y)

Pr(Y∗ = y∗)

|y∗|

=
∑
y∗⊆A

∑
y∈A∩B

1[y
∗](y)

Pr(Y∗ = y∗)

|y∗|

≥
∑

y∗⊆A∩B

∑
y∈A∩B

1[y
∗](y)

Pr(Y∗ = y∗)

|y∗|

=
∑

y∗⊆A∩B
Pr(Y∗ = y∗)

and

ΠA(A
c ∩ B) =

∑
y∈Ac∩B

∑
y∗*A

1[y
∗](y)

Pr(Y∗ = y∗)

|Ac ∩ y∗|

=
∑
y∗*A

∑
y∈Ac∩B

1[y
∗](y)

Pr(Y∗ = y∗)

|Ac ∩ y∗|

≥
∑
y∗*A

y∗⊆B

∑
y∈Ac∩B

1[y
∗](y)

Pr(Y∗ = y∗)

|Ac ∩ y∗|

=
∑
y∗*A

y∗⊆B

Pr(Y∗ = y∗)

so that

ΠA(B) = ΠA(A ∩ B) + ΠA(A
c ∩ B)

≥
∑

y∗⊆A∩B
Pr(Y∗ = y∗) +

∑
y∗*A

y∗⊆B

Pr(Y∗ = y∗)

42



2.1. �e Structure of Incomplete Data

=
∑
y∗⊆B

Pr(Y∗ = y∗) = F(B)

Hence, also requirement c) is satis�ed.

It follows that to every structure of incomplete data Y∗ and to every
distribution of the corresponding Y∗ there exists a non-empty set of
probability distributions on Y .�e set is restricted only by the distri-
butional consequences of the consistency requirement Y(.) ∈ Y∗(.).
Geometrically, the set of consistent distributions of Y is a non-empty,

closed, convex polytope.

�is answers one of the questions on the “simple device” formulated

in the introduction, namely whether by introducing a probabilistic

framework the set of underlying possible values consistent with the

incomplete data is restricted beyond the consistency requirement.�is

does not happen, the “simple device” does not prejudice certain solutions

against others simply by adding the constraints of a probability model.

2.1.6. Selectors and Allocations

But the previous construction gives only a marginal distribution consis-

tent with the distributional consequences of the requirement Y ∈ Y∗.
What must be shown in order to be sure that there is no systematic

bias introduced by adopting a probability model is that the requirement

Y(ω) ∈ Y∗(ω) for almost all ω ∈ Ω is at most as strong as the distri-
butional consistency requirement (2.13). Note that when dealing with

statistical variables as functions of population members, the question is

one pertaining to facts. It may be simply wrong that Y(u) ∈ Y∗(u) for
all u ∈ U . But given Y(u) ∈ Y∗(u) as a matter of fact, all (empirical)
marginal distributions of Y satisfying (2.13) are possible distributions of

interest with no further restrictions.

However, in a probability model one must be able to construct random

variables (Y , Y∗) de�ned on a common probability space (Ω,B, λ) such
that Pr(Y ∈ Y∗) = 1 and such that the marginal distribution is prescribed
by Pr(Y∗ = y∗) for all y∗ ∈ Y∗. If such a construction succeeds, the
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2. Probabilistic Models of Incomplete Data

constructed random variable Y is called a selector of the set-valued

variable Y∗.�us Y is a selector of Y∗ if and only if Y∗ is a coarsening of
Y .

�e construction in the previous subsection exhibits one possible dis-

tribution on Y consistent with the distributional consequences of the
requirement Y(.) ∈ Y∗(.). Moreover, ΠA(A) attains the lower bound

F(A). But comparing the values of πA in the example with the vertices of

the polytope of consistent distributions shows that these are not the ex-

treme points of the polytope.�us, a concise description of the polytope

of consistent distributions is also still missing.

Both problems, that of the extent of the set of probabilitymodels satisfying

Pr(Y ∈ Y∗) = 1 and that of characterising the set of distributionally
feasible marginal distributions, can be attacked using a very simple

device. Let

α : Y × P(Y) −→ [0, 1] (2.17)

such that

Pr(Y∗ = y∗) =
∑
y∈y∗

α(y, y∗) ∀ y∗ ∈ Y∗ (2.18)

Such a function is called an allocation in the literature on random sets.

It is an obvious candidate for a joint density of (Y , Y∗), at least when
α(y, y∗) = 0 for y /∈ y∗.10 In fact, if one de�nes the marginal density of Y
as

πα(y) :=
∑
y∗3y

α(y, y∗) =
∑

y∗∈Y∗
1[y

∗](y)α(y, y∗)

the marginal density of Y∗ stays just Pr(Y∗ = y∗). Furthermore,∑
y∗∈Y∗

∑
y∈Y

1[y
∗](y)α(y, y∗) =

∑
y∗∈Y∗

∑
y∈y∗

α(y, y∗)

10
It is sometimes convenient not to require α(y, y∗) = 0 for y /∈ y∗. In that case, α

need not be a density. It can be made into one by multiplying α by 1[y
∗
](y) since

this modi�cation does not change the de�ning property (2.18).�is is the reason to

call α an allocation, not a joined density. Whether or not α(y, y∗) = 0 for y /∈ y∗ is

assumed should be clear from the context.
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2.1. �e Structure of Incomplete Data

=
∑

y∗∈Y∗
Pr(Y∗ = y∗) = 1

�us 1[y
∗](y)α(., .) is a joined density of (Y , Y∗) with the prescribed

marginal distribution of Y∗. Moreover,

Pr(Y /∈ Y∗) =
∑

y∗∈Y∗

∑
y /∈y∗

1[y
∗](y)α(y, y∗) = 0

so that Pr(Y ∈ Y∗) = 1. In particular, the marginal measure Πα derived

from the density πα satis�es the consistency equations (2.13) so that

F(A) ≤ Πα(A) for all A ⊆ Y .

By the above construction, there always exists a common probability

space (Ω,B, λ) for two variables (Y , Y∗) such that Y is a selector for
Y∗ and Y∗ has any given marginal distribution. In particular, one may
choose Ω = Y × P(Y), B = P(Ω) and the density of λ as 1[.](.)α(., .)

for any allocation α(., .).�e pair of random variables (Y , Y∗) can then
be taken as the identity (Y , Y∗)(ω) = (Y , Y∗)((y, y∗)) := (y, y∗). In
probability theory, such constructions of pairs of random variables on a

common probability space are called couplings.11

It remains to exhibit allocations and, if possible, construct some versions

with properties that elucidate the structure of incomplete data problems.

A simple construction starts out with any probability density, say π(.) on

Y such that π(y) > 0 for all y.�en one may put

α(y, y∗) := π(y)
Pr(Y∗ = y∗)

Π(y∗)
(2.19)

where Π is the measure corresponding to the density π. Note that with

this de�nition α(y, y∗) > 0 for all y as long as Pr(Y∗ = y∗) > 0. To
provide a joint density, one may simply put

α′(y, y∗) := 1[y
∗](y)α(y, y∗)

11
See�orisson (2000) or Lindval (1992) who both provide lucid examples and a

wealth of further constructions.
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2. Probabilistic Models of Incomplete Data

�is constructionwill be of particular importance when di�erent versions

of the CAR condition are discussed. To illustrate it with the data from the

�rst example, set π(y) := 1/3 for all y ∈ Y = {1, 2, 3}.�en α becomes

{1} {2} {3} {2, 3} {1, 2, 3}
1 0.5 0.1 0.1 0.05 0.2/3

2 0.5 0.1 0.1 0.05 0.2/3

3 0.5 0.1 0.1 0.05 0.2/3

which clearly is no density. But the corresponding α′ is given by

{1} {2} {3} {2, 3} {1, 2, 3}
1 0.5 0 0 0 0.2/3

2 0 0.1 0 0.05 0.2/3

3 0 0 0.1 0.05 0.2/3

which is a density with the marginal πα′(1) = 0.5 + 0.2/3 and πα′(2) =

πα′(3) = 0.1 + 0.2/3 which clearly satis�es (2.15).

�us, there always exists at least one pair of random variables (Y , Y∗) that
the “simple device” requires for its operation. For �nite Y , the existence
of such a coupling satisfying the additional consistency requirement is

almost trivial. It is, of course, always possible to choose an element from

a �nite, non-empty set as is required here.12

But it is not yet clear how large the set of possible joined distributions is.

In the case of statistical variables, it coincides with the set of consistent

distributions characterised in the previous sections since Y(u) ∈ Y∗(u)
as a matter of fact. Either it is the case that all respondents answer

12
�e proof of the existence of almost sure selectors for in�nite (even countable) Y is
much more involved. A direct construction of a selector will not work. Nevertheless,

for general Polish spaces, the existence of selectors is guaranteed by the Kuratowski-

Ryll-Nardzewski selection theorem. Moreover, in this setting, one has to be prepared

to deal with the dependence of the set of allocations on the particularly chosen

underlying probability space. Molchanov (2005: 32) provides an example. In

consequence, the “simple device” has to deal with classes of selectors that are not

unique. It turns out, however, that the (weak) closure of the set of selectors is in fact

uniquely de�ned.
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2.1. �e Structure of Incomplete Data

consistently, or it is not. But consistency is not automatically guaranteed

for random variables. If the “simple device” is to work, the use of random

variables (Y , Y∗) should not restrict the set of compatible marginal
distributions of Y for a given marginal distribution of Y∗ beyond the
distributional requirements (2.13). Put di�erently, one has to show that

the marginal distributions of all possible selectors of a random set Y∗

with a prescribed distribution exhausts the set of consistent distributions.

One possible approach is to investigate the set of all allocations, preferably

constructing extreme ones that in some (vague) sense chart the boundary

of the set of all allocations. Instead of distributing the mass Pr(Y∗ = y∗)
according to some probability π on the elements of Y one may try to
distribute as much of the mass to a selected point, say y|Y|, distribute as
much as possible of the remaining mass on a second point, say y|Y|−1,
and so on. More precisely, suppose that Y is ordered as (y1, y2, . . . , y|Y|).
�en put α(y, y∗) := Pr(Y∗ = y∗) if y is the maximal element in y∗

according to this ordering and set α(y, y∗) = 0 for all other y.�en the
marginal density of Y becomes

πα(yi) =
∑
y∗3yi

α(yi, y
∗) =

∑
y∗3yi

y∗⊆{y1 ,y2 ,...,yi}

Pr(Y∗ = y∗) (2.20)

= F({y1, y2, . . . , yi})− F({y1, y2, . . . , yi−1})

where as before F(.) is the distribution function of Y∗ with F(A) =

Pr(Y∗ ⊆ A).

With the ordering (1, 2, 3), this construction in Example 1 leads to the

joint density

{1} {2} {3} {2, 3} {1, 2, 3}
1 0.5 0 0 0 0

2 0 0.1 0 0 0

3 0 0 0.1 0.1 0.2

so that the marginal density becomes πα(1) = 0.5, πα(2) = 0.1, πα(3) =

0.4. Comparing this with the extreme points of the feasible distributions

given in section 2.1.4, this solution is extreme in the set of consistent
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2. Probabilistic Models of Incomplete Data

distributions. In fact, computing πα for each permutation of (1, 2, 3)

leads to all the extreme points of the polytope of consistent distribu-

tions:�e ordering (2, 1, 3) leads to the same πα as that arising from

(1, 2, 3), the orderings (1, 3, 2) and (3, 1, 2) both lead to πα = (0.5, 0.4, 0.1),

and the orderings (2, 3, 1) and (3, 2, 1) lead to πα = (0.7, 0.1, 0.2) and

(0.7, 0.2, 0.1)

Now the construction (2.20) depends on the ordering of the elements of

Y . For each permutation σ of (y1, y2, . . . , y|Y|) one gets an allocation
and a corresponding marginal density of Y which one might index with

the permutation σ , say πσ . It can be shown that all πσ are extreme points

of the set of densities π on Y that satisfy the consistency requirements
F(A) ≤ Πσ (A) for all A ⊆ Y . Moreover, there are only these extreme
points.13

�is result has many important consequences. First note that one

gets an upper bound on the number of extreme points as |Y|!. But
of much greater importance is the following consequence: �e set

{Π | F(A) ≤ Π(A) ∀A ⊆ Y} of measures that satisfy the (distribu-
tional) consistency conditions is equal to the set of distributions that

come from some allocation α(., .). �is is because by construction,

{Πα | α is an allocation} ⊆ {Π | F(A) ≤ Π(A) ∀A ⊆ Y}. On the other
hand, since {Πσ | σ} are the extreme points of {Π | F(A) ≤ Π(A) ∀A ⊆
Y}, the latter set is the convex hull conv({Πσ}) of the extreme allocations.
But convex combinations of allocations are again allocations so that also

{Π | F(A) ≤ Π(A)∀A ⊆ Y} ⊆ {Πα | α is an allocation}.�erefore to
each of the measures Π satisfying (2.13) there exists a pair of random

variables (Y , Y∗) where Y is a selector for Y∗ and such that the marginal
measure of Y is Π.

�is answers another possible concern with the “simple device”: Using

13
See Nguyen (2006: 98–102, 118–122), or Nguyen/Wu (2006) and Aubin and

Frankowska (1990: Chap. 8). Feng/Feng (2004) generalise the result to compact

metric spaces with continuous distributions. Such generalisations are also discussed

in Molchanov (2005: Chap. 1).

However, this construction of the vertices (extreme points) of the feasible set of

marginal distributions on Y is mainly of theoretical importance. It is numerically
much faster and requires less memory to use the classical double description method

from the theory of linear optimisation.

48



2.1. �e Structure of Incomplete Data

statistical variables, the set of possible distributions of Y consistent with

the observations Y∗ is just the set of distributions satisfying F(A) ≤
Pr(Y ∈ A) since Y(u) ∈ Y∗(u) for all u as a matter of fact. But it is
now clear that the same applies to a probability model.�us, the set of

probability models (Ω,B, λ, (Y , Y∗)) compatible with some prescribed
distribution of Y∗ is only constrained by the same requirement that must
hold for statistical variables as well and by nothing beyond.
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2. Probabilistic Models of Incomplete Data

2.2. Coarsening at Random

Problems of incomplete data and particularly the special case of either

completely missing or exactly observed data have been discussed since

the inception of statistics. But such problems were dealt with using

either special extensions to algorithms developed within the framework

of classical statistics (and typically restricted to completely missing

observations) or by exploiting the structure of special types of incomplete

data.�e classical approach in the former tradition is well summarised in

a series of articles by A�� and Elasho� (1966, 1967, 1969).�e treatment

of partially complete observations can be traced back to the very �rst

contributions to statistics in its present form. E.g., Ronald Fisher in

his famous essay on maximum likelihood of 1922 deals at length with

the problem of grouped data. As far as I know, however, a systematic

treatment unifying the di�erent approaches was never attempted before

the 1990’s.

�e introduction of the “simple device” had to wait until 1976 when

Rubin’s account appeared in Biometrika. Xiao-Li Meng’s editorial for

the Statistica Sinica special issue on missing data (vol. 16, no. 4, 2006)

recounts details of the reservations of referees and editors before the

paper was �nally accepted.�e resistance the paper met early on was

certainly not only based on technicalities, as Meng seems to imply. As I

indicated in the introduction, scepticism towards the “simple device”

was widespread and well articulated.

Rubin not only gave a systematic account of missing data based on the

“simple device”, he also introduced the notion of ‘missing at random’

(MAR), a condition on the joint distribution of (Y , Y∗) that allows
statistical methods to proceed as if no observations were missing. He

also discussed the consequences of the MAR condition for inference

within the di�erent statistical paradigms.�e �rst contribution made the

“simple device” very attractive to applied statisticians, for obvious reasons.

�e general approach also sparked the interest of most statisticians and

probabilists since it promised a principled treatment where previously

ad hoc methods and subjective judgements prevailed.�us, Rubin’s 1976
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paper marks the starting point of the modern treatment of missing data

problems.

Even though the “simple device” was accepted rather rapidly and even

though some of the techniques developed within the framework became

common practice in many applied �elds, it took another 15 years until

the approach was extended to partially complete observations. A �rst

attempt at a general formulation was made by Heitjan and Rubin in 1991.

�ey termed conditions similar to the MAR conditions coarsening at

random (CAR) conditions.�e notion was further developed by Heitjan

(1993, 1994), Jacobsen and Keiding (1995), Gill et al. (1997), Nielsen

(2000), Grünwald and Halpern (2003), Jaeger (2005a, b), Lu and Copas

(2004), de Cooman and Za�alon (2004), and by Cator (2004).14

In the last section I have shown that a versatile representation of partially

incomplete data can be obtained when incomplete data are taken to be

subsets of the range of statistical or random variables. If a variable Y

takes values in Y , then partial knowledge of the value of the variable
can be encoded by the subset of Y to which it necessarily belongs.�us,
incomplete data can be represented as derived variables Y∗ with values
in the power set P(Y), excluding the empty set. Such a representation
presupposes that for all elements either of a population U or a probability
�eldΩ, Y(.) ∈ Y∗(.). In the case of data for a population, this consistency
condition is satis�ed as a matter of fact. In the case of a probability

model, it was demonstrated in the previous section that the consistency

requirement can always be satis�ed for any given distribution of the

variable Y∗.�us one can always construct an abstract probability space
on which both Y and Y∗ are de�ned. In particular, one may always
assume that there is a joint distribution of Y and Y∗.

�e missing at random condition of Rubin as well as the general coars-

ening at random condition is formulated as an additional constraint

14
While this rather late development may seem surprising, it may have been due to

the fact that partially complete data have been discussed under di�erent headings in

di�erent applications, every discipline developing their own jargon. In fact, even

today the analysis of censored, grouped, truncated or weighted data is o�en presented

in monographs and articles accessible only to experts in a particular subject area.

But this explanation is partial at best, since many unifying concepts were taken up

rapidly in other areas of statistics.
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2. Probabilistic Models of Incomplete Data

on this joint distribution. It can be expressed most conveniently using

conditional probabilities. One of its versions requires that for all y∗ and
all y ∈ y∗:

Pr(Y = y |Y∗ = y∗) = Pr(Y = y |Y ∈ y∗) (2.21)

In words, the answers of respondents, y∗, just tell that the random
variable Y takes a value in y∗ and nothing more. Or in Bayesian terms,
the fact that {Y∗ = y∗} was observed allows to update probabilities only
to the same extent as an observation of {Y ∈ y∗} and does not provide
any further clues.

�e marginal distribution of Y can be obtained from combining the

conditional distribution of Y given Y∗ with the marginal distribution of
Y∗, i.e.

Pr(Y = y) =
∑

y∗∈Y∗
Pr(Y = y |Y∗ = y∗) Pr(Y∗ = y∗)

but from (2.21), this equals

Pr(Y = y) =
∑

y∗∈Y∗
Pr(Y∗ = y∗) Pr(Y = y |Y ∈ y∗)

=
∑

y∗∈Y∗
y∗3y

Pr(Y∗=y∗)>0

Pr(Y∗ = y∗)
Pr(Y = y)

Pr(Y ∈ y∗)
(2.22)

since terms involving either sets y∗ with y /∈ y∗ or with Pr(Y∗ = y∗) = 0
are zero by de�nition. Furthermore, if Pr(Y∗ = y∗) > 0, then because of
(2.3), Pr(Y ∈ y∗) > 0 so that the last term is well de�ned.

Note that if Pr(Y∗ = y∗) = 0 but Pr(Y ∈ y∗) > 0, then (2.21) may be
seen as an arbitrary de�nition of the le� hand side. If both sets {Y∗ = y∗}
and {Y ∈ y∗} have probability 0, then nothing is required.15 �at is,
15
In particular, the explicit restriction of the CAR requirement (2.21) to sets {Y∗ = y∗}
of positive probability as in Jaeger (2005a: 1969) is super�uous.

Also, in (2.22) one can not, in general, divide out Pr(Y = y) since it may be zero.
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2.2. Coarsening at Random

the CAR condition requires that the probability mass Pr(Y∗ = y∗) of
a y∗ is distributed among the {Y = y} according to their conditional
distribution given Y ∈ y∗.

Returning to the introductory example of the National Longitudinal

Survey of Youth, suppose that an answer to the employment question is

either correct or is completely missing. In my notation, missing answers

are indicated by the set y∗ = {0, 1}. Suppose that the CAR condition
(2.21) holds. �en Pr(Y = y |Y∗ = {0, 1}) = Pr(Y = y |Y ∈ {0, 1}).
But since it was supposed that all respondents are either employed or

unemployed, the last quantity reduces to Pr(Y = y). Consequently, to a

Bayesian the answer Y∗ = {0, 1} would not change his prior probabilities
Pr(Y = y). And within all other approaches to statistics, the information

Y∗ = {0, 1} is of no use in “inferential” procedures either. �us, at
least for the case of either completely missing or exact observations the

condition (2.21) reproduces Rubin’s MAR condition in that completely

missing observations can safely be ignored.

In this simple example, the conditional probabilities are

Pr(Y = 1 |Y ∈ {1}) = 1
Pr(Y = 1 |Y ∈ {0}) = 0
Pr(Y = 1 |Y ∈ {0, 1}) = Pr(Y = 1)

�us

Pr(Y = 1) = Pr(Y∗ = {1}) + Pr(Y = 1) Pr(Y∗ = {0, 1})

leading to

Pr(Y = 1) =
Pr(Y∗ = {1})

1− Pr(Y∗ = {0, 1})
=
Pr(Y∗ = {1})
Pr(Y∗ 6= {0, 1})

(2.23)

Similarly Pr(Y = 0) = Pr(Y∗ = {0})/ Pr(Y∗ 6= {0, 1}). Within the model
the probability of being employed can be deduced form the probability

of reporting to be employed.
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2. Probabilistic Models of Incomplete Data

2.2.1. Does CAR Apply to Survey Non-response?

�e textbook approach connecting the probability model with the sam-

pled responses adds the assumption that the (Y(u, .), Y∗(u, .)) are identi-
cally and independently distributed across the population. It further

adds that in some sense the mean value of observations should be close

to the expectation derived from a reasonable probability model, i.e.

m(Y , S) :=
1

|S|
∑
u∈S

Y(u) ≈ E(Y(u1, .)) = Pr(Y(u1, .) = 1) (2.24)

�e precise nature of the connection between random variables and

observations is of no immediate concern here. A di�erent or more

elaborate approach would lead to essentially the same procedure.�e

main point is that within the statistical approach, the search for reasonable

values form(Y , S) can be replaced by a search for a reasonable value of the

expectation E(Y(u1, .)) or, equivalently, for the probability Pr(Y(u1, .) =
1). One may proceed similarly to identify (approximately) the observed

frequencies of the variables Y∗ with their probability counterpart.

Since the variables (Y(u, .), Y∗(u, .)) are assumed to be independent and
identically distributed, it is possible to drastically reduce the notational

burden.�e reference to the individuals u or the population U can be
dropped completely. And, as is the custom in most applied statistical

work, reference to the elements of the probability space ω will also be

dropped.�e “simple device” leaves us with a very simple mathematical

structure, namely the random tupel (Y , Y∗) and its joint distribution.
�e original problem, that of connecting the employment ratem(Y , S)

to the incomplete answers of the respondents, is now replaced by the

problem of characterising the extent to which the distribution of the

variable Y can be identi�ed from knowledge of the distribution of Y∗

alone.

�e “simple device” of introducing a probability model plus the missing

at random condition can now be translated back into an “answer” to the

original question using a translation principle similar to (2.24).�is
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2.2. Coarsening at Random

leads to the naive use of only the complete answers from the survey:

Pr(Y = 1) =
Pr(Y∗ = {1})
Pr(Y∗ 6= {0, 1})

≈
1
|S|
∑

u∈S 1[Y
∗ = {1}](u)

1
|S|
∑

u∈S 1[Y∗ 6= {0, 1}](u)

=
1

|S∗|
∑
u∈S∗

1[Y
∗ = {1}](u)

with S∗ := {u | u ∈ S ∧ Y∗(u) 6= {0, 1}}. Here, S∗ is a subset of the
sample with valid responses to the employment question. Using the data

from the National Longitudinal Survey of Youth, one in fact arrives at a

percentage of 78% employed.

But what is the precise connection between the results of a survey and

its translation into a probability model? And what justi�es or at least

motivates (2.24)? And what status has the CAR ‘assumption’?

�e various textbook approaches are rather unclear and even potentially

misleading. Even the very �rst step, the introduction of a probability

model that somehow refers to the information provided by the intervie-

wees, is generally glossed over. And if there are detailed accounts at all,

the expositions given are neither enlightening nor cogent.

Consider Haavelmo’s in�uential paper “�e Probability Approach to

Econometrics” where he wrote

�e question is not whether probabilities exist or not, but

whether—if we proceed as if they existed—we are able to

make statements about real phenomena that are “correct for

practical purposes”. (Haavelmo 1944: 43)16

�e literature on stochastic models is similarly obscure. E.g. Nelson in

his introduction to “Stochastic Modeling” writes:

16
See Morgan (1990: Chap. 8) for an emphatic account of the papers impact on

econometrics. A more critical account is given by Tryfos (2004: Chap. 7).
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2. Probabilistic Models of Incomplete Data

When the data are obtained by observing a real system,

then we can treat the data as if they were simulation output.

�ere is no need to di�erentiate “real” data from the output

of a simulation. . . .Probability . . . is useful for deriving

statements about the data that a completely speci�ed model

might generate if it were simulated. (Nelson 2002: 24)

And Bartholomew in his equally in�uential “Stochastic Models for Social

Processes” writes:

Our contention is not that the employee actually uses a

chance device to make the decision but that the group

behaves as if its individual members did use such a method.

�e function of probability theory is thus simply to describe

observed variability; it carries no implications about the

freedom, or otherwise, of human choice. It is a fact of

experience that ‘choice may mimic chance’. (Bartholomew

1967: 6)

�e ‘as if ’ rhetoric dominated also much of the history of probabilistic

reasoning in the social sciences.17 Historically, the domination of the

‘as if ’ rhetoric may not be too surprising in view of the roots of social

statistics in the 19th century, where it was assumed by many that nearly

all social phenomena might be amenable to probabilistic analysis.18

�e philosophical literature on models, while quite extensive, is not very

useful either.19 Even those works directly dealing with statistics like

17
See Rohwer/Pötter 2002b: Part 2.

18
Hacking’s (1988) account of the origin of experimental design and randomisation

from curiosity in telepathy provides an interesting case study of the sort of uses

made of probability models in the late 19th century.
19
Frigg and Hartmann (2005) provide a short review. A somewhat more relevant view

is expressed by Knuuttila and Voutilainen (2005).

�e classical study of the ‘as if ’ rhetoric is Vaihinger’s “Philosophie des Als-Ob”

(1911). He clearly distinguishes between ‘hypotheses’ and ‘�ction’, writing “Der

Veri�zierung der Hypothese entspricht die Justi�zierung der Fiktion. Muß jene

durch Erfahrung bestätigt werden, so muß diese gerechtfertigt werden durch die

Dienste, welche sie der Erfahrungswissenscha� schließlich leisten.” (1911/1923: 91).

But he indiscriminately treats all forms of ‘�ction’ alike, whether it be mathematical

or juridical or philosophical concepts. He therefore is unable to explain the role of
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Lenhard (2006) take the probability model for granted. In the statistics

literature, when models are discussed at all, then the role of probability

is not questioned (e.g. Cox 1990 or Lehmann 1990).

On the other hand, survey statisticians were always aware of the problem-

atic connection between the real answers of interviewees and probabilistic

models of them. Tore Dalenius’ remark cited in the introduction voices

that concern.

Many probabilists were also rather dismayed by the obscure ‘as if ’ rhetoric.

Even Kolmogorov in a review chapter that was �rst published in 1956

stated that

. . . there exists no event which is absolutely random; an event

is random or is predetermined depending on the connection

in which it is considered, but under speci�c conditions an

event may be random in a completely non-subjective sense,

i.e., independently of the state of knowledge of any observer.

(Kolmogorov 1999: 249)

While Kolmogorov denounced the observer dependence of randomness

but stressed that at least the range of “events” considered has to be taken

into account, Jaynes insists on the dependends of the notion on “human

information”:

Belief in the existence of ‘stochastic processes’ in the real

world; i.e. that the property of being ‘stochastic’ rather than

‘deterministic’ is a real physical property of a process, that

exists independently of human information, is another

example of the mind projection fallacy: attributing one’s

own ignorance to Nature instead. (Jaynes 2003: 506)

Matheron, whose “Random Sets and Integral Geometry” provided much

inspiration for the treatment of incomplete data, also rejects the ‘as if ’

rhetoric:

When we deal with a unique phenomenon and a prob-

abilistic model, that is a space (Ω, α, P) which is put in

the ‘as if ’ rhetoric within a model.
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2. Probabilistic Models of Incomplete Data

correspondences with this unique reality, the same kind of

illusion incites us to say that everything happens, a�er all, as

if the realised event had been “drawn at random” according

to law P in the sample space Ω. But this is a misleadingly

clear statement, and the underlying considerations support-

ing it are particularly inadequate. What is the mechanism

of this “random choice” that we invoke . . . ?�is “random

draw” myth, for it is one, (in the pejorative sense), is both

useless and gratuitous. (Matheron 1989: 23)

He rather emphasises the role of models and their uses and states:

In fact there is not, nor can there be, any such thing as

probability in itself.�ere are only probabilistic models. In

other words, randomness is in no way a uniquely de�ned,

or even de�nable property of the phenomenon itself. It is

only a characteristic of the model or models we choose to

describe it, interpret it, and solve this or that problem we

have raised about it. (Matheron 1989: 4)

Similarly, Dawid (2004: 44) argued:

I regard “probability” as a purely theoretical term, inhabiting

the intellectual universe and without any direct physical

counterpart. . . [W]e should regard probabilities as entering

our scienti�c theories as instrumental terms, the link be-

tween theoretical probabilities and the physical universe

being indirect.�is approach to interpreting probabilistic

models avoids many potential philosophical pitfalls. In

particular, by treating probabilities as purely theoretical

terms with only indirect implications for the behavior of ob-

servables, it is able to eschew deep but ultimately irrelevant

and distracting philosophical inquiry into the “true nature

of Probability”.

�is emphasis on models allows to see the role of probability in a dif-

ferent light, transcending the objectivist-subjectivist divide. Matheron

distinguishes several steps in the choice of a model:
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[T]here is �rst an epistemological choice: it has been de-

cided to use probabilistic techniques to represent the phe-

nomenon. . . . �is is a decision, not a hypothesis. It is a

constitutive decision. (It ‘constitutes’ the forest as an object

of study, it de�nes the general framework within which

we shall operate and determines the choice of the tools

we use). . . .At this level, we shall speak of a constitutive

model. . . . (Matheron 1989: 52)

�erefore, statements made within a probabilistic framework do not

directly refer either to social facts or to states of mind.�ey only work

within a probability model. And the latter is not forced upon us by some

obscure ‘as if ’ similarity but created by a decision to use such a model.

In fact, the classical theory of sampling does not rely on a probability

model for the variables (Y , Y∗). Rather, these variables are treated as
�xed though unknown quantities ascribable to the individuals in the

population. And probability only appears in the picture in as far as it

is introduced by the researcher himself, by deliberately using random

sampling designs.

�ere are some further elements of probability models used in the social

sciences that can be regarded as constitutive in the sense of Matheron.

In particular, in the context of surveys this is the assumption of inde-

pendence and of identical distribution.�ey determine the choice of

statistical and probabilistic tools but are not determined from any aspect

of social facts.20 As Kolmogorov (1950: 9) noted: “. . .one of the most

important problems in the philosophy of the natural sciences is . . . to

make precise the premises which would make it possible to regard any

given real events as independent.” It is argued here that it is more fruitful

not to search for such premises but to take them as part of the decision

to use a particular type of model. In fact, classical statistical tests of the

independence assumption are self-refuting when carried out on a given

data set: If a test does not reject independence, then there must be some

20
Recently, Humphreys (2008) argued similarly that the basic probability setup is a

purely mathematical artefact, a mathematical template. He also counts probability

models and classes of distributions as such templates. It seems to me, however, that

he overlooked the fundamental role of independence assumptions.
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dependence in the joint distribution of the data given the observed value

of the test statistic.21

From this perspective one needs to reconsider the approximation sug-

gested in (2.24). In so far as the le� hand side is treated as a function

whose behaviour is determined within the model, it is plain that it can

only be correct when several caveats are added. In particular, if Y is
�nite, then (2.24) is true, but only with high probability.�at is, (2.24)

can only be expressed when probability is presupposed in the expression

of the approximation.

IfY is unbounded, then (2.24) is not even true in probability since for any
sample size |S|, there exist distributions such that the di�erence between
the two sides can be made as large as one pleases.�is is true even if the

existence of all moments or similarly strong regularity conditions are

stipulated. Simply put Y = 0 with probability є, but Y = (1/є)k+1.�en

E(Y) = (1/є)k. But with є� 1/|S|, most samples will contain only zeros,
thus being in error by (1/є)k. Or it does contain at least a value of (1/є)k+1,

then the estimated mean on the le� is much larger than the “true” value.

Examples like these show that there are (within a probability model)

no consistent estimators, tests or con�dence intervals of expectations

when all probability models are taken into account, even within an i.i.d.

setup.22

�is may seem to contradict traditional wisdom from the statistical

textbooks. But the textbooks rely on very narrow ‘assumptions’ that

provide optimality results at �xed parameter points. Uniformity of results

for all sets of parameters is rarely considered.

Motivated by similar examples, Davies (1995) argued to acknowledge

the “approximate nature of probability models” by taking all probability

models as adequate models of a data set if data simulated from the

21
See Hennig (2007) for some further comments and Leeb/Pötscher (2006) on some

general impossibility results for model selection and the distribution of estimators

conditional on speci�cation tests.
22
See Bahadur/Savage (1956), Gleser/Hwang (1987), Lehmann/Loh (1990), Pfanzagl

(1998), and Romano (2004) for further details.
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models are “very much like the sample actually obtained”.23 If this is to

work in the above example, one has to insist on a known bound on the

support of the probability model. Otherwise, any value of an expectation

(or any other moment) would be an ‘adequate’ model for any given data

set.24

What is expressed by (2.24) then is not a truth deducible within the

probability model, i.e. when the le� hand side refers to a realisation of the

model variables. But it is also obviously wrong when the le� hand side is

taken to be the empirical mean over some sample, the right hand side is

interpreted as a mean over the population and nothing is ‘assumed’ about

the values in the population.25 In contrast to both positions, the one that

makes (2.24) a consequence of the model and the one that naively sees it

as an empirical justi�cation of probability models, it seems better to see

(2.24) as an expression of a further constitutive element of a particular

type of a probabilistic model. It expresses the intent to treat empirical

means to gauge the performance of subsets of probability models. It

singles out a certain ‘estimation principle’ that can be used to criticise a

given probabilistic model. But it in no way implies that it is the only way

to do so. Nor does its acceptance imply that there is some ‘true’ model.

�e CAR condition (2.21), on the other hand, can not be used in such

a way simply because there is no empirical way to express it. It is also

not constitutive in Matheron’s sense. It singles out one particular set

of solutions from all probability distributions based on a probability

concept, at least when (2.24) is accepted. But it can not, as an ‘assumption’,

justify that particular choice. Nor does it constitute the form of models

or the set of tools that are to be used within a certain type of models. And

it does not provide means to argue about the model. It rather provides

a reference point for further speculations about the situation within a

23
Note that this reverses the roles of probability models and observations as expressed

by Nelson(2002) cited above.
24
See also some further comments in section 4.

25
It is at most a di�erent �gure of speech if ‘population’ here is interpreted within a

probability model as a naive frequentist might suggest, whether directly referring to

an ‘in�nite population’ or via a super-population model. Since limiting frequencies

do not express anything about any �nite subsequence, counterexamples are easily

produced.
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2. Probabilistic Models of Incomplete Data

probability model. Such speculations can not be completely arbitrary,

they are at least constrained by the mathematical rules of probability.

But they are clearly di�erent from assumptions about reality as well.

2.2.2. CAR in Hierarchically Structured Models

Before looking into the use of such principled speculations I still have to

show whether the CAR formulation (2.21) is general enough to deal with

all types of incomplete data beyond the simple case of either completely

missing or exact observations.

Suppose that there is some partial information on Y beyond that of Y

being either completely missing (Y∗ = Y) or exactly given (Y∗ = {y}) for
some y ∈ Y . Example 1 is a case in point since it di�erentiates between
‘employed’, ‘unemployed’, and ‘out of labour force’ (coded asY = {1, 2, 3})
and allows for partial answers: if a respondent does not di�erentiate

between ‘unemployed’ and ‘out of labour force’, this answer is coded as

y∗ = {2, 3}. In this case, the information y∗ = {2, 3} cannot simply be
ignored. But the CAR condition now says that the only information

supplied by the respondent is that her employment status is in fact either

‘unemployed’ or ‘out of labour force’ and must be treated as such.�ere

is then no need to contemplate why she has chosen to answer in the way

she did, at least not as long as one is interested in the probabilities of

‘employment’, ‘unemployment’, and ‘out of labour force’.

Using the formulation (2.21) in conjunction with (2.22) and the previ-

ously de�ned short hand notation, plugging in the values for Pr(Y∗ = .)
from Example 1, one arrives at:

p1 = p{1} + p{1,2,3}p1 = 0.5 + 0.2p1

p2 = p{2} + p{2,3}
p2

p2 + p3
+ p{1,2,3}p2

= 0.1 + 0.1
p2

p2 + p3
+ 0.2p2

p3 = p{3} + p{2,3}
p3

p2 + p3
+ p{1,2,3}p3
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= 0.1 + 0.1
p3

p2 + p3
+ 0.2p3

�e �rst equation is easily solved, giving p1 = 5/8 = 0.625. From this it

follows that p2 + p3 = 3/8 so that

p2 = 0.1 +
0.1

3/8
p2 + 0.2p2

p3 = 0.1 +
0.1

3/8
p3 + 0.2p3

giving p2 = p3 = 3/16 = 0.1875.

�is example, while exceedingly simple, is typical for hierarchically

structured incomplete data. In this case, one can always proceed from

top down through the hierarchy of partitions to provide simple linear

equations for the probabilities of Y in subsets of Y∗. To see this, note
that for a subset A ∈ Y∗

Pr(Y ∈ A) =
∑
y∈A
Pr(Y = y)

=
∑
y∈A

∑
y∗∈Y∗
y∈y∗

Pr(Y = y |Y∗ = y∗) Pr(Y∗ = y∗)

=
∑
y∈A

∑
y∗∈Y∗

1[y
∗](y) Pr(Y = y |Y∗ = y∗) Pr(Y∗ = y∗)

=
∑

y∗∈Y∗

∑
y∈A

1[y
∗](y) Pr(Y = y |Y ∈ y∗) Pr(Y∗ = y∗)

=
∑

y∗∈Y∗
Pr(Y ∈ A ∩ y∗ |Y ∈ y∗) Pr(Y∗ = y∗)

=
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

Pr(Y∗ = y∗)
Pr(Y ∈ A ∩ y∗)

Pr(Y ∈ y∗)
(2.25)

generalising (2.22). Since {Y∗ = y∗} ⊆ {Y ∈ y∗}, the fractions in
the last expression are well de�ned. Note that (2.25) can be written
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alternatively as

Pr(Y ∈ A) =
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

Pr(Y∗ = y∗ |Y ∈ y∗) Pr(Y ∈ A∩y∗) (2.26)

In the hierarchically structured case, i.e. when Y∗ is the union of re�ne-
ments of a partition, if A is an element of Y∗ and if y∗ ∩ A 6= ∅ for some
y∗, then either y∗ ⊆ A or A ⊆ y∗. Now if y∗ ⊆ A, then the fraction

on the right hand side is 1.�at is, at most terms of a coarser partition

than that to which A belongs contribute non-trivially to the sought for

probabilities Pr(Y ∈ A).

Starting at the coarsest non-trivial partition (i.e. ignoring the uninfor-

mative level comprising all of Y , the set indicating completely missing
information) in Y∗, there are subsets A1, . . . ,Ak ∈ Y∗ forming a parti-
tion of Y . For these sets, (2.25) takes the form

Pr(Y ∈ Ai) =
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

Pr(Y∗ = y∗)
Pr(Y ∈ Ai ∩ y∗)

Pr(Y ∈ y∗)

= Pr(Y ∈ Ai) Pr(Y
∗ = Y) +

∑
y∗⊆Ai

Pr(Y∗ = y∗)

resulting in the explicit solution

Pr(Y ∈ Ai) =

∑
y∗⊆Ai

Pr(Y∗ = y∗)

Pr(Y∗ 6= Y)

which is always de�ned unless Pr(Y∗ = Y) = 1. But in the latter case,
obviously no information about Pr(Y ∈ .) can be derived from the
distribution of Y∗.

Proceeding down the hierarchy one level, one �nds a re�nement of

the partition {A1, . . . ,Ak}, say {A11 , . . . ,A1k1 , . . . ,Ak1 , . . . ,Akkk}. But
for this re�nement, the denominators of the fractions Pr(Y ∈ Aij ∩
y∗)/ Pr(Y ∈ y∗) are either known from the previous computation (when
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y∗ ∈ {A1, . . . ,Ak,Y}) or they equal 1 for subsets of the re�nement.
�us,

Pr(Y ∈ Aij) =
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

Pr(Y∗ = y∗)
Pr(Y ∈ Aij ∩ y∗)

Pr(Y ∈ y∗)

= Pr(Y ∈ Aij)

(
Pr(Y∗ = Y) + Pr(Y

∗ = Ai)

Pr(Y ∈ Ai)

)
+
∑

y∗⊆Aij

Pr(Y∗ = y∗)

where it is assumed that Pr(Y ∈ Ai) > 0 (otherwise, the term is simply

dropped from the sum). But the denominator of the second term,

Pr(Y ∈ Ai), is known from the previous step. Once again, the resulting

simple linear equations can be solved directly and one may proceed

further down to the �nest partition.

Consequently, the CAR condition together with the consistency condi-

tion reduces to a sequence of equations that can be solved recursively. In

particular a CAR model always exists and is unique down to the �nest

partition ofY , i.e. the distribution of Y , Pr(Y ∈ .), can be determined for
all sets in Y∗. If the latter contains all singletons with positive probabili-
ties, then the distribution of Y is uniquely identi�ed from the coarsened

data together with the CAR condition.

�is will be true even when the information from the distribution

of Y∗ is extremely scarce. Suppose that Pr(Y∗ = Y) = 1 − є and

Pr(Y∗ = {yi}) = єi with
∑

i єi = є and є, єi > 0 for some small є.�en

the set of consistent distributions of Y is a simplex whose volume is

arbitrarily close to the full probability simplex. In other words, the

consistency conditions do not restrict the set of consistent probabilities

beyond their being positive. But even in this case, the CAR condition

leads to a unique result.�e e�ectiveness of the CAR condition to single

out one particular distribution from the many possible ones simply does

not depend on the informativeness of the distribution of Y∗.

A noteworthy further consequence of the CAR condition in the hierarchi-

cal case is that it leads to a rational solution when the known Pr(Y∗ = y∗)
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are rational.�us, if the probabilities of the coarsened sets are taken to

be relative frequencies, the CAR solution can be interpreted as a relative

frequency as well. In particular, the construction does not necessarily

lead beyond an interpretation based on the classical sampling theory.

From the CAR condition (2.21) and the marginal distribution of Y∗ one
can also write down the joint distribution of (Y , Y∗).�e joined density
follows from

Pr(Y = y, Y∗ = y∗) = Pr(Y = y |Y ∈ y∗) Pr(Y∗ = y∗)

= 1[y
∗](y) Pr(Y∗ = y∗)

Pr(Y = y)∑
y∈y∗ Pr(Y = y)

(2.27)

for Pr(Y∗ = y∗) > 0. Note that the consistency condition (2.3) implies
that the denominator in the fraction above is > 0. Furthermore, Pr(Y =

y, Y∗ = y∗) = 0 for Pr(Y∗ = y∗) = 0. Note also that this is an allocation
of the form given in (2.19).

In Example 1, the joined density is readily seen to be

{1} {2} {3} {2, 3} {1, 2, 3}
1 1/2 0 0 0 1/8 5/8

2 0 1/10 0 1/20 3/80 3/16

3 0 0 1/10 1/20 3/80 3/16

1/2 1/10 1/10 1/10 2/10

2.2.3. Non-Hierarchical CAR

Suppose next that Y∗ is no longer hierarchical. A simple example is
given by my Example 2 where

Y∗2 = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}
p{1} = 0.5, p{2} = 0.1, p{3} = 0.1, p{1,2} = 0.1, p{2,3} = 0.1,

p{1,2,3} = 0.1
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2.2. Coarsening at Random

Here the equations (2.22) become

p1 = 0.5 + 0.1
p1

p1 + p2
+ 0.1p1

p2 = 0.1 + 0.1
p2

p1 + p2
+ 0.1

p2

p2 + p3
+ 0.1p2

p3 = 0.1 + 0.1
p3

p2 + p3
+ 0.1p3

where the restriction p1+p2+p3 = 1 was used in the last terms.�ese equa-

tions are no longer linear. Multiplying through by p1+p2, (p1+p2)(p2+p3),

and p2 + p3, one is led to a system of polynomial equations which in

this case simpli�es because the �rst and last equations depend only on

p1, p2 and p2, p3, respectively. In fact, the system can be triangularised

resulting in26

243p33 − 261p23 + 73p3 − 6 = 0
7p2 − 27p23 + 33p3 − 6 = 0

7p1 − 162p23 + 135p3 − 22 = 0

�e �rst equation has the three real solutions p3 = 2/9 or p3 = (23 ±√
205)/54. Plugging the rational solution 2/9 into the second and third

equation forces p1 = p2 = 0 so that this is no probability distribution.

Using (23 +
√
205)/54 gives a negative solution in the second equation.

Only the last solution, which obviously is irrational, provides a solution

that also respects the restrictions of a probability model. �us, the

solution is still unique and is given by p1 = (95−
√
205)/126 ≈ 0.64033,

p2 = (5
√
205− 34)/189 ≈ 0.19888, p3 = (23−

√
205)/54 ≈ 0.16078.

26
�ere is a further triangularisation which, however, violates the requirement p1 +

p2 + p3 = 1.�e solution was computed using the Singular package (http://www.
singular.uni-kl.de) using lexicographical ordering of themonomial terms. Any
other so�ware that allows to compute Gröbner bases and resultants can obviously be

used as well. Further pertinent free so�ware packages for such computations include

Macaulay 2 (http://www.math.uiuc.edu/Macaulay2/) and CoCoA (http:
//cocoa.dima.unige.it/). Another program that uses homotopy methods is
PHCpack (http://www.math.uic.edu/~jan/download.html).

67

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.math.uiuc.edu/Macaulay2/
http://cocoa.dima.unige.it/
http://cocoa.dima.unige.it/
http://www.math.uic.edu/~jan/download.html
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�e elements of the solution vector, however, are no longer rational

numbers.27 Consequently, there is no sample size and there are no

relative frequencies such that the CAR requirement (2.21) holds exactly,

whatever the number of observations.

If the CAR condition is supposed to hold, however, the implied joined

density of (Y , Y∗) is given (using (2.27)) by

{1} {2} {3} {1, 2} {2, 3} {1, 2, 3}
1 1/2 0 0 0.0763 0 0.0640 0.6403

2 0 1/10 0 0.0237 0.0553 0.0199 0.1989

3 0 0 1/10 0 0.0447 0.0161 0.1608

1/2 1/10 1/10 1/10 1/10 1/10

In the case of Example 3, where

Y∗3 = {{1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}
p{1} = 0.5, p{2} = 0.1, p{1,2} = 0.1, p{2,3} = 0.1, p{1,2,3} = 0.2

the condition (2.22) gives

p1 = 0.5 + 0.1
p1

p1 + p2
+ 0.2p1

p2 = 0.1 + 0.1
p2

p1 + p2
+ 0.1

p2

p2 + p3
+ 0.2p2

p3 = 0.1
p3

p2 + p3
+ 0.2p3

If one adds the requirement p1 + p2 + p3 = 1 to the equations, the

triangularised set of equations becomes

16p23 − 9p3 = 0
7p2 + 9p3 − 2 = 0

27
Whether there is an algorithm to decide whether a given system of polynomials

with rational coe�cients has rational solutions is Hilbert’s 10th problem. Such an

algorithm does not exist for integer solution. Whether there is one for rational

solutions is still unknown.
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2.2. Coarsening at Random

p1 + p2 + p3 − 1 = 0

where the two real solutions to the �rst equation are p3 = 0 and p3 = 9/16.

�e second solution leads to a negative value for p2.�us the solution is

given by p1 = 5/7 = 0.71429, p2 = 2/7 = 0.28571, p3 = 0 which is now

on the boundary of the distributions compatible with the consistency

constraints, though again rational.

�e joined density of (Y , Y∗) for Example 3 is given by

{1} {2} {3} {1, 2} {2, 3} {1, 2, 3}
1 1/2 0 0 1/14 0 2/14 5/7

2 0 1/10 0 1/35 1/10 2/35 2/7

3 0 0 0 0 0 0 0

1/2 1/10 0 1/10 1/10 2/10

In general, non-hierarchical coarsening patterns will lead to polynomial

equations for the probabilities of interest. One may try to gain insight

in the solutions of such systems by using the methods of Sturmfels

(2002) and Cox et al. (2002).28 An interesting method that uses only the

structure of Y∗ to bound the number of solutions from above is related
to the (mixed) volume of certain polytopes.29

As far as I can see, the bound is of no immediate help for the solution of

CAR equations. But the polytopes provide another graphical method

represent the structure ofY∗. To illustrate, one canwrite out the system of
polynomial equations for Example 2, this time without using p1+p2+p3 =

1 and multiplying with all denominators. �is leads to the following

three polynomials:

p31 + 2p
2
1p2 + p

2
1p3 − 0.7p21 + p1p2p3 + p1p22 − 1.2p1p2 − 0.6p1p3

− 0.5p22 − 0.5p2p3
p42 + 2p

3
2p3 + 2p1p

3
2 − 0.2p32 + p22p23 + 3p1p22p3 − 0.6p22p3 + p21p22

28
A short introduction with a view towards applications in statistics is Pistone et al.

(2001).
29
Rojas (2003) provides an accessible introduction.
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2. Probabilistic Models of Incomplete Data

− 0.6p1p22 + p1p2p23 − 0.2p2p23 + p21p2p3 − 0.6p1p2p3 − 0.2p21p2
− 0.1p1p23 − 0.1p21p3

p33 + 2p2p
2
3 + p1p

2
3 − 0.1p23 + p22p3 + p1p2p3 − 0.2p2p3 − 0.2p1p3

− 0.1p22 − 0.1p1p2

�e exponents of the monomial terms of the polynomials encode to how

many of the sets in Y∗ a particular y belongs.�ey also encode how
o�en a pair (y, y′) is a subset of the sets in Y∗ etc. Writing down the
exponents as vectors of integers in the order p1, p2, p3 gives the following

three sets of points:

A1 = {(3, 0, 0), (2, 1, 0), (2, 0, 1), (2, 0, 0), (1, 1, 1), (1, 2, 0),
(1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1)}

A2 = {(0, 4, 0), (0, 3, 1), (1, 3, 0), (0, 3, 0), (0, 2, 2), (1, 2, 1),
(0, 2, 1), (2, 2, 0), (1, 2, 0), (1, 1, 2), (0, 1, 2), (2, 1, 1),

(1, 1, 1), (2, 1, 0), (1, 0, 2), (2, 0, 1)}
A3 = {(0, 0, 3), (0, 1, 2), (1, 0, 2), (0, 0, 2), (0, 2, 1), (1, 1, 1),

(0, 1, 1), (1, 0, 1), (0, 2, 0), (1, 1, 0)}

Taken as points in R3 with integer coordinates, one may construct the
convex hull of the points in A1, A2, A3.�ese are the Newton polytopes

of the respective polynomials. Now the Newton polytope of the product

of polynomials is just the Minkowski sum of the Newton polytopes.�us

in so far as the Newton polytope of a polynomial encodes information

about the zeros of the polynomial, all Minkowski sums that can be

constructed from the three sets should give information on the zeros of

the system of equations. Figure 2.9 demonstrates the constructions.30

30
�e mixed volume in this case is de�ned as MV(A1 ,A2 ,A3) = Vol(conv(A1) +

conv(A2) + conv(A3))−Vol(conv(A1) + conv(A2))−Vol(conv(A1) + conv(A3))−
Vol(conv(A2) + conv(A3)) + Vol(conv(A1)) + Vol(conv(A2)) + Vol(conv(A3)). A

multiple of this number bounds the number of the non-zero isolated complex

solutions to the system of polynomial equations. But what is needed here, of course,

is a bound on the number of real solutions in the probability simplex. It is still

unclear whether the geometric methods can provide insight into this problem.
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2.2. Coarsening at Random

�e actual solution to the CAR equations, however, depends not only on

the structure of the set Y∗ but also on the coe�cients Pr(Y∗ = y∗). It is,
moreover, not obvious how to include the inequalities of the consistency

requirements into the framework of systems of polynomial equations.

One may add slack variables to represent the constraints. But as far as

I can judge from simple examples, such a move tends to complicate

matters in many cases without any real gain of insight.

(a) (b)

Figure 2.9.: �e Newton polytope conv(A1) and the Minkowski sum
conv(A1) + conv(A2) + conv(A3) from Example 2.

2.2.4. CAR is Everything

Numerical solutions are much easier (though less explicitly) computed

using (2.22) directly. A�er all, that equation expresses a �xed point

property which may be used as a recipe to compute a stationary point

satisfying both the consistency requirements and the additional CAR

condition. Starting from any assignment of positive values to Pr(Y ∈ .)
one can use the right hand side of (2.22) to update the probability so that

the consistency constraints are always satis�ed.�e procedure can be

iterated and the solutions will converge to a �xed point of the equations
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2. Probabilistic Models of Incomplete Data

(2.22) if at least one exists.31

In section 2.1.6 it was shown that any choice of a probability measure

with Pr(Y = y) > 0 for all y will give rise to an allocation respecting the

consistency requirements via (2.22). In fact, the identity (2.22) is just

the marginal distribution of the selector corresponding to the allocation

(2.19). Starting values for iterating (2.22) can therefore be chosen more

generally from all selectors of allocations.

Note that the equations (2.22) are the self-consistency equations in-

troduced by Efron (1967) and discussed by Tsai and Crowley (1985).32

Since

Pr(Y = y) = EY∗
(
EY|Y∗

(
1[Y = y] |Y∗

))
by (2.21) one gets

Pr(Y = y) = EY∗
(
Pr(Y = y |Y∗)

)
= EY∗

(
Pr(Y = y |Y ∈ Y∗)

)
=

∑
y∗∈Y∗
y∗3y

Pr(Y∗=y∗)>0

Pr(Y∗ = y∗)
Pr(Y = y)

Pr(Y ∈ y∗)

Turning to the existence of a solution, note that the right hand side of

(2.22) is a continuous function of Pr(Y = y) since the denominators

in the equation are strictly positive and will stay so by the consistency

requirement. Moreover, the image under this map of any consistent

probability on Y (an element of the compact convex set of consistent
31
Numerical applications of the algorithm provide only approximations to actual �xed

points.�e numerical solutions may not even be close to actual solutions of (2.22).

As usual, results must be checked by other means.
32
Orchard/Woodbury (1972) termed the construction principle the ‘missing informa-

tion principle’. A general version is discussed by Lai/Ying (1994).�e equations are a

special case of the (non-parametric) EM-algorithm. Wu (1983) discusses convergence

properties. Tsodikov (2003) extends the idea to general semi-parametric models,

Pons (2006) discusses applications to Markov processes. Subramanian (2003) uses

the missing information principle in the case of general censored regression models

where the censoring depends on covariates.
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2.2. Coarsening at Random

probabilities) is necessarily again an element of the set of consistent

probabilities. �erefore, there always is at least one solution to the

equations (2.22).33

Because there is always a solution satisfying CAR for any given distri-

bution on Y∗, CAR can not be ruled out empirically. Gill et al. (1997)
summarised the �nding with the slogan ‘CAR is everything’. It is always

possible to take the coarsened data at face value in the sense of the

CAR condition (2.21). Put still di�erently, no distribution on Y∗ will
contradict the CAR condition and, conversely, the CAR condition does

not restrict the distribution of Y∗.34

�e only caveat so far was that CAR may result in irrational probabilities

for some of the y, even if all Pr(Y∗ = y∗) are rational. In this sense, the
“simple device” of Rubin and Little takes one beyond the strict limits of a

�nite sample approach.

2.2.5. Uniqueness of CAR

Certainly, solutions to the equations will not be unique in general. In

particular, a distribution that puts zero probability on some y ∈ Y but
having Pr(Y ∈ y∗) > 0 for all y∗ with Pr(Y∗ = y∗) > 0 may satisfy the
equations as well as some other distribution with Pr(Y = y) > 0.�is

will certainly happen when the partition of Y induced by the sets in Y∗
does contain a set, say A, with cardinality |A| > 1. If y, y′ ∈ A, then the

sets in Y∗ do not allow to distinguish between y and y′. In such a case, it
can not be expected that CAR by itself identi�es the probabilities of y

and y′. Modifying Example 1 by eliminating all singletons except {1}
from Y∗ gives

Example 1a

Y∗1a = {{1}, {2, 3}, {1, 2, 3}}
33
�is is the mean value theorem for |Y| = 2 and Brouwer’s �xed point theorem for
general (�nite) |Y|.

34
Molenberghs et al. (2008) formulate the equivalent result in a parametric setting,

assuming parameter distinctness.
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2. Probabilistic Models of Incomplete Data

p{1} = 0.5, p{2,3} = 0.3, p{1,2,3} = 0.2

say.�e equations (2.22) become

p1 = 0.5 + 0.2p1

p2 = 0.3
p2

p2 + p3
+ 0.2p2

p3 = 0.3
p3

p2 + p3
+ 0.2p3

whose solution set is given by p1 = 5/8 and any partition of the remaining

mass of 3/8 between p2 and p3.�is is a closed, connected and convex

subset of the probability simplex.�e set of solutions within the set of

consistent distributions is shown in Figure 2.12.

Restricting for the time being Y∗ to those elements y∗ such that Pr(Y∗ =
y∗) > 0, a very special case arises when Y∗ is just a partition of Y .
�at happens when only simply grouped data are available.�is is a

hierarchically orderedmodel and thus Pr(Y ∈ y∗) is uniquely determined
for all y∗ ∈ Y∗. In particular, Pr(Y ∈ y∗) = Pr(Y∗ = y∗). But for y∗

with |y∗| > 1, this is the only restriction on the probabilities Pr(Y = y)

for y ∈ y∗, i.e. the probabilities can vary between 0 and Pr(Y ∈ y∗).
In this situation, the set of consistent distributions coincides with the

set of CAR distributions. To see this, suppose that Pr(Y ∈ .) is a
consistent distribution.�en {Y∗ = y∗} ⊆ {Y ∈ y∗} by consistency
and {Y ∈ y∗} ⊆ {Y∗ = y∗} by construction.�us, the CAR condition
(2.21) follows.�is is the only situation where the CAR condition is

implied by the structure of (Y ,Y∗) and is therefore always justi�ed.
�ere simply are no distributions consistent with the structure that could

contradict CAR.35 Furthermore, in this case the probability distribution

of Y is determined on the σ-algebra generated by the partition.

Gill et al. (1997: 262) claimed that the only form of non-uniqueness is the

one exhibited by Example 1a, and that in particular the solution to the

CAR conditions are always unique on sets y∗ with Pr(Y∗ = y∗) > 0.�is
is obviously the most one can hope for. Suppose now that Pr(Y ∈ y∗) is

35
See the discussion by Grünwald/Halpern (2003: Proposition 4.1) and De

Cooman/Za�alon (2004: Sect. 3).
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2.2. Coarsening at Random

in fact uniquely identi�ed from the distribution of Y∗.�en also the
probability of complements, Pr(Y ∈ y∗c), is identi�ed. In other words,
the probabilities of subsets {y∗′ ∈ P(Y) | y∗′ ∈ Y∗ ∪ y∗′c ∈ Y∗} are
identi�ed. Furthermore, disjoint unions and set di�erences y∗ \ y∗′
for y∗′ ⊆ y∗ are identi�ed.�is set of subsets of Y will be denoted by
D(Y∗).36

In the hierarchically ordered case, this implies that the probabilities of

the �nest partition (and their unions) are known. Since the elements of

the �nest partition together with all their unions forms a σ-algebra, as is

the case for simply grouped data,D(Y∗) = σ(Y∗).

In all other cases, however, the sets y∗′ for which Pr(Y ∈ y∗′) would be
identi�ed from the uniqueness of CAR for Pr(Y∗ = y∗) > 0 will not
form a σ-algebra. Consider Example 5 below:

Example 5
Suppose Y = {1, 2, 3, 4} and

Y∗5 = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}
p{1,2} = p{1,3} = p{2,4} = p{3,4} = 1/4

�e set of solutions of the CAR equations (2.22) is given by p1, 1/2 −
p1, 1/2− p1, p1 for p1 ∈ [0, 1/2], a line segment joining (0, 1/2, 1/2, 0) to
(1/2, 0, 0, 1/2).�is is a closed, convex set. Moreover, Pr(Y ∈ {1, 2}) =
1/2 = Pr(Y ∈ {3, 4}) = Pr(Y ∈ {2, 4}) = Pr(Y ∈ {1, 3}) as suggested by
the Gill et al. conjecture.

�e hypergraph corresponding to this example is given in the following

Figure 2.10. Its symmetry suggests why the the probability of the above

mentioned sets is identi�ed from the distribution of Y∗ together with
the CAR condition.

36
�e elements ofD(Y∗) form what is known as a λ-system in measure theory, a set

of subsets of Y containing the empty set and being closed under the formation of
complements and disjoint unions. See Pollard (2002: 42). Note that Grünwald and

Halpern (2003: 251) included also intersections into what they termedR-atoms, the
building blocks for their algebraic characterisation of CAR.
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2. Probabilistic Models of Incomplete Data

Figure 2.10.: Hypergraph for Example 5.�e innermost circles represent
the sets {1, 2}, {1, 3}, {2, 4}, and {3, 4}.�e outer ellipses represent the
elements 1, 2, 3, 4.

Looking at the structure of subsets whose probability is uniquely deter-

mined by the CAR condition, neither Pr(Y = 1) nor Pr(Y ∈ {1, 2, 3}) are
identi�ed unless one of the Pr(Y∗ = .) equals 0. But {1} = {1, 2}∩ {1, 3}
so that {1} is an element of the σ-algebra generated by {{1, 2}, {1, 3},
{2, 4}, {3, 4}}. Similarly, {1, 2, 3} = {1, 2} ∪ {1, 3} is an element of
the σ-algebra but its probability is not identi�ed.�e identi�ed proba-

bilities can not be extended to the σ-algebra because the unions and

intersections here are taken among non-nested elements of Y∗ and such
that these unions and intersections are not themselves elements of Y∗.
�erefore, in this exampleD(Y∗) ( σ(Y∗).

I have already shown that if Y∗ is hierarchically ordered, then necessarily
D(Y∗) = σ(Y∗). Conversely, suppose that D(Y∗) = σ(Y∗) and let y∗′
be an arbitrary element of σ(Y∗). Being an element of σ(Y∗), y∗′ is the
union of elements of Y∗ or their complements, or the complement of
such a union. Write y∗′ = ∪y∗′′ with either y∗′′ ∈ Y∗ or y∗′′c ∈ Y∗.
For this to be also an element of D(Y∗), any pair of sets y∗′′1 and y∗′′2
must satisfy either y∗′′1 ⊆ y∗′′2 or y

∗′′
2 ⊆ y∗′′1 or y

∗′′
1 ∩ y∗′′2 = ∅ so that

σ(Y∗) is itself hierarchically ordered. If this holds true for σ(Y∗), it must
be true for Y∗, a subset of σ(Y∗). �us, Y∗ is hierarchically ordered.
�is clari�es the relation between the structure of the setD(Y∗) (which
according to the Gill et al. conjecture would be the largest set of subsets

whose probabilities are uniquely determined by CAR) and the structure

of Y∗.

But is the form of non-uniqueness exempli�ed by Example 1a and

Example 5 really the only one that is to be expected? Do we only have to
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care about non-uniqueness on sets of the above form? A variation of

Example 3 shows that the claim of Gill et al. is false, at least when (2.21)

is used as a de�nition of CAR.

In Example 3 it is the fact that Pr(Y∗ = {2}) > 0 from which Pr(Y =
2) > 0 follows. But this implies Pr(Y = 3) = 0. If the example is modi�ed

such that Pr(Y∗ = {2}) = 0, then it may seem to be di�cult to identify
separately the probabilities of {Y = 2} and {Y = 3}. On the other hand,
since Pr(Y∗ = {1}) > 0, Pr(Y = 1) should be uniquely identi�ed. And
from Pr(Y∗ = {1, 2}) > 0, Pr(Y ∈ {1, 2}) should be identi�ed.�erefore
Pr(Y = 2) = Pr(Y ∈ {1, 2} \ {1}) = Pr(Y ∈ {1, 2}) − Pr(Y = 1)
is identi�ed together with Pr(Y = 3). �us, Pr(Y = .) is completely

identi�ed. In fact, CAR in that case implied a unique solution for the

distribution of Y .

Now suppose that Example 3 is replaced by

Example 3a

Y∗3a = {{1}, {1, 2}, {2, 3}, {1, 2, 3}}
p{1} = 0.5, p{1,2} = 0.1, p{2,3} = 0.1, p{1,2,3} = 0.3

As in Example 3, since {2} = {1, 2} \ {1}, all the singletons should
have unique probability and thus D(Y∗) = P(Y) when the Gill et al.
conjecture was true.�e probability distribution of Y would be uniquely

determined.�is was the case in Example 3.

�e hypergraph of the modi�ed example is given in Figure 2.11. It shows

that the edges representing {Y = 2} and {Y = 3} are properly nested.
�is is already the case in Example 3 (see Figure 2.3) so that there is no

reason to expect additional trouble.

�e CAR condition (2.22) gives

p1 = 0.5 + 0.1
p1

p1 + p2
+ 0.3p1

p2 = 0.1
p2

p1 + p2
+ 0.1

p2

p2 + p3
+ 0.3p2
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Figure 2.11.: Hypergraph for Example 3a.�e innermost circles represent
the sets {1}, {1, 2}, {2, 3}, and {1, 2, 3}.�e outer ellipses represent the
elements 1,2, and 3.

p3 = 0.1
p3

p2 + p3
+ 0.3p3

But now there are two di�erent solutions to the equations:

p1 = 5/6, p2 = 1/6, p3 = 0 and p1 = 6/7, p2 = 0, p3 = 1/7

�e implied joined densities are

{1} {1, 2} {2, 3} {1, 2, 3}
1 1/2 5/60 0 15/60 5/6

2 0 1/60 6/60 3/60 1/6

3 0 0 0 0 0

1/2 1/10 1/10 3/10

and

{1} {1, 2} {2, 3} {1, 2, 3}
1 1/2 7/70 0 18/70 6/7

2 0 0 0 0 0

3 0 0 7/70 3/70 1/7

1/2 1/10 1/10 3/10

so that it is easy to check that both solutions indeed satisfy (2.21).
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But now, contrary to the case of Example 3 and the conjecture by Gill et al.

there is no proper subset of Y whose probability is uniquely determined
by CAR. None of the singletons nor any of the two-element subsets

of Y have identical probabilities under both solutions.�us, the only
subsets whose probabilities are uniquely determined are trivially ∅ and
Y . On the other hand,D(Y∗) = P(Y) so that the probability of Y ought
to be uniquely identi�ed if the conjecture was correct.�us either the

conjecture is false or one has to use a stronger condition than the CAR

condition (2.21) to further reduce the solution set.

�e same phenomenon as in the previous example occurs in the Monty

Hall problem. If one puts Pr(Y∗ = {1, 2}) = Pr(Y∗ = {2, 3}) = 1/2, then
the CAR equations result in

p1 = 0.5
p1

p1 + p2

p2 = 0.5
p2

p1 + p2
+ 0.5

p2

p2 + p3

p3 = 0.5
p3

p2 + p3

Again, there are two di�erent solutions to the equations:

p1 = 0, p2 = 1, p3 = 0 and p1 = 1/2, p2 = 0, p3 = 1/2

Note that only the second solution depends on the probability distri-

bution of Y∗: if one sets p{1,2} := Pr(Y
∗ = {1, 2}) arbitrarily, then the

second solution becomes p1 = p{1,2}, p2 = 0, p3 = 1− p{1,2}.�e joined
distributions are given by

{1, 2} {2, 3}
1 0 0 0

2 1/2 1/2 1

3 0 0 0

1/2 1/2

{1, 2} {2, 3}
1 1/2 0 1/2

2 0 0 0

3 0 1/2 1/2

1/2 1/2

Once again, condition (2.21) is easily veri�ed.
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2. Probabilistic Models of Incomplete Data

�e solutions to the CAR equations of the Examples 1a, 3a, and the

Monty Hall solutions are depicted within the consistency region of the

probability simplexes in Figure 2.12.

Figure 2.12.: �e consistency polytopes and the solutions of the CAR
equations for Examples 1a, 3a, and the Monty Hall problem. CAR solutions

are indicated by× in the latter two cases.

But by the Gill et al. conjecture, since Pr(Y∗ = {1, 2}) > 0 identi�cation
of Pr(Y ∈ {1, 2}) and therefore of Pr(Y = 3) should follow. Similarly,
Pr(Y = 1) should be identi�ed from Pr(Y∗ = {2, 3}) > 0.�us Pr(Y = .)
should be completely identi�ed. Once again, however, the only sets with

identical probabilities for both solutions are trivially ∅ and Y .

What are the di�culties encountered when there are CAR solutions that

di�er onD(Y∗)? Are these di�culties related to the de�nition of CAR
or to the rather optimistic conjecture of Gill et al.?

It is instructive to look at the Monty Hall problem in some more detail. I

have argued in section 2.1.2 rather intuitively that there can not be a CAR

solution in that example or in any example with the same hypergraph

structure. Moreover, the two solutions presented above using the CAR

condition (2.21) look strange in that they force zero probabilities on

some alternatives that on a priori grounds would be taken to be possible.

Even though the two solutions are contradictory, any one of them rules

out a possibility solely based on a theoretical condition which therefore

must be termed dogmatic.

Furthermore, the non-uniqueness is not of the kind that is necessarily

present in all incomplete data situations. It does not arise from asking
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2.2. Coarsening at Random

more than can reasonably be expected. If Pr(Y ∈ y∗) for both y∗ =
{1, 2} and y∗ = {2, 3} were identi�ed, then the distribution of Y would
be identi�ed as well. And as long as Pr(Y∗ = {1, 2}) /∈ {0, 1}, all
distributions of Y∗ result in two distinct solutions.�e di�culty is not
related to the distribution of Y∗, but to the structure of (Y ,Y∗).�e
result does more to undermine the CAR condition as formulated in

(2.21) than to question the reasonable expectation of Gill et al.

If these considerations are reasonable, one would need a more restrictive

CAR formulation so that not all of the solutions consistent with (2.21)

would be permitted under the label of CAR.�is would rule out counter-

intuitive results as the ones presented above.

But it must then also be allowed that no CAR solution exists.�is would

contradict the slogan that CAR is everything. Even more importantly, it

would contradict the general believe, reiterated in nearly all expositions of

the “simple device”, that CAR is an ‘untestable assumption’. In particular,

the Monty Hall problem would not have a CAR solution and this can be

asserted even without looking at the actual data.37

If despite all the di�culties CAR in the formulation (2.21) was adopted,

the slogan ‘Car is everything’ would be vindicated and it would indeed

be an ‘untestable assumption’. But one then must be prepared to deal

with nasty complications. CAR could be compatible with contradictory

probabilistic accounts involving in extreme cases all non-trivial sets

of the form {Y ∈ y∗} for y∗ ∈ Y∗ simultaneously. And even in less
extreme cases, elements ofD(Y∗) may not be unequivocally identi�ed
by CAR alone. Consequently, the concept would be of only limited use

for either frequentist inference or Bayesian kinematics.

2.2.6. Further CAR Formulations

�e CAR condition (2.21) can be reformulated in a number of useful

ways that will also shed more light on the di�culties encountered in

the previous section. One possible reformulation reverses the roles of

37
�e only prerequisite is that the set Y∗ contains only elements with positive proba-
bility.
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2. Probabilistic Models of Incomplete Data

Y and Y∗ in the conditional probabilities and is thus very helpful as a
complement to (2.21). It can be written as

Pr(Y∗ = y∗ |Y = y) is constant on y ∈ y∗ (2.28)

for all y∗ ∈ Y∗ and all y ∈ y∗ such that Pr(Y = y) > 0. Looking at

the problem from this direction is somewhat closer to the emergence

of incomplete data. �e employment status of the respondents and

possiblymany other characterisations of the respondent and the interview

situation are the background against which the respondents decide to

participate in the survey and to answer its questions.�e conditional

probability of a particular response given (a subset) of the background

variables may be used to model this. In particular, (2.28) says that the

conditional probability of refusing to answer the question of employment

status (Y∗ = {1, 2, 3} in Example 1) does not depend on that status. An
immediate consequence is that

Pr(Y∗ = y∗ |Y = y) = Pr(Y∗ = y∗ |Y ∈ y∗) (2.29)

for all y∗ ∈ Y∗ and all y ∈ y∗ such that Pr(Y = y) > 0, a further form of

the condition that is o�en useful.

Obviously, if (2.29) holds, then Pr(Y∗ = y∗ |Y = y) is constant for all

y ∈ y∗ and Pr(Y = y) > 0 so that (2.28) follows. In the other direction,

�x an y ∈ y∗ with Pr(Y = y) > 0 and suppose that (2.28) holds.�en

Pr(Y∗ = y∗ |Y ∈ y∗) =

∑
y′∈y∗ Pr(Y

∗ = y∗ |Y = y′) Pr(Y = y′)∑
y′∈y∗ Pr(Y = y′)

= Pr(Y∗ = y∗ |Y = y)

∑
y′∈y∗ Pr(Y = y′)∑
y′∈y∗ Pr(Y = y′)

= Pr(Y∗ = y∗ |Y = y)

where terms with Pr(Y = y′) = 0 are zero and where the second equality
uses (2.28). Note that the denominator must be positive since Pr(Y =

y) > 0 by assumption

Now (2.29) can equivalently be written as

Pr(Y∗ = y∗ |Y = y ∧ Y ∈ y∗) = Pr(Y∗ = y∗ |Y ∈ y∗)
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2.2. Coarsening at Random

since {Y = y} ∩ {Y ∈ y∗} = {Y = y} (and ignoring again y with

Pr(Y = y) = 0). In this form the condition can be re-expressed as a

conditional independence condition:

{Y = y}⊥⊥{Y∗ = y∗} | {Y ∈ y∗} or {Y∗ = y∗}⊥⊥{Y = y} | {Y ∈ y∗}
(2.30)

where⊥⊥ denotes stochastic independence and where the second version
follows from the symmetry of conditional independence. Rewriting this

again in the form of conditional probabilities one arrives at

Pr(Y = y |Y∗ = y∗ ∧ Y ∈ y∗) = Pr(Y = y |Y ∈ y∗)

But as a consequence of the consistency condition, if {Y∗ = y∗} obtains
then so must {Y ∈ y∗}.�us, {Y∗ = y∗} ⊆ {Y ∈ y∗} (see (2.3)) and so
the previous equality is equivalent to

Pr(Y = y |Y∗ = y∗) = Pr(Y = y |Y ∈ y∗)

which is just the �rst form of the CAR condition, (2.21).�erefore, all

the conditions (2.21), (2.28), (2.29), and (2.30) are equivalent.

Gill et al. presented a further reformulation of CAR from which, as they

informally argued, both the existence of CAR solutions without further

conditions as well as the uniqueness onD(Y∗) would follow (Gill et al.
1997: Sect. 2).

�is reformulation starts from the consistency requirement {Y∗ = y∗} ⊆
{Y ∈ y∗} to arrive at

Pr(Y∗ = y∗) = Pr(Y∗ = y∗, Y ∈ y∗)

= Pr(Y ∈ y∗) Pr(Y∗ = y∗ |Y ∈ y∗) (2.31)

But the CAR version (2.29) requires that

Pr(Y∗ = y∗ |Y ∈ y∗) = Pr(Y∗ = y∗ |Y = y)

for all y∗ ∈ Y∗ and all y ∈ y∗ with Pr(Y = y) > 0. It follows that one can

write down the distribution of Y∗ as a product of two terms

Pr(Y∗ = y∗) = P(y∗)π(y∗) (2.32)
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2. Probabilistic Models of Incomplete Data

where P(.) is a probability on Y and where the π(y∗) satisfy∑
y∗:y∈y∗

π(y∗) = 1 ∀ y ∈ Y : Pr(Y = y) > 0 (2.33)

encoding version (2.29) of CAR.

Suppose that the decomposition (2.32) together with the restriction

(2.33) holds. �en one may de�ne the conditional distribution of Y

given Y∗ by

Pr(Y = y |Y∗ = y∗) :=
P({y})
P(y∗)

for y ∈ y∗ and Pr(Y∗ = y∗) > 0. �is is well de�ned since (2.32)
together with Pr(Y∗ = y∗) > 0 implies P(y∗) > 0. If y /∈ y∗, one sets
Pr(Y = y |Y∗ = y∗) = 0.

Now the marginal distribution of Y is

Pr(Y = y) =
∑

y∗∈Y∗
Pr(Y∗ = y∗) Pr(Y = y |Y∗ = y∗)

=
∑

y∗∈Y∗
Pr(Y∗ = y∗)

P({y})
P(y∗)

=
∑

y∗∈Y∗
P(y∗)π(y∗)

P({y})
P(y∗)

=
∑

y∗∈Y∗
π(y∗)P({y}) = P({y})

since the sum over the π(y∗) = 1 by (2.33). Note that there is no need to
de�ne Pr(Y = y |Y∗ = y∗) if Pr(Y∗ = y∗) = 0. It follows that

Pr(Y = y |Y∗ = y∗) =
P({y})
P(y∗)

=
Pr(Y = y)

Pr(Y ∈ Y∗)
= Pr(Y = y |Y ∈ y∗)
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as long as Pr(Y∗ = y∗) > 0. If Pr(Y∗ = y∗) = 0, then either P(y∗) = 0 or
π(y∗) = 0. In the �rst case, both sides can be le� unspeci�ed. If however
P(y∗) > 0, the right hand side of the equality can be taken as a de�nition
of the le� hand side without a�ecting the joint distribution of (Y , Y∗).
Lastly,

Pr(Y ∈ Y∗) =
∑

y∗∈Y∗
Pr(Y ∈ y∗ |Y∗ = y∗) Pr(Y∗ = y∗)

=
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

P(y∗)

P(y∗)
Pr(Y∗ = y∗) = 1

so that the consistency condition is met as well. In summary, if there is a

decomposition of the distribution of Y∗ as in (2.32) which obeys the
restriction (2.33), then there is a joined distribution of (Y , Y∗) that is
consistent and satis�es the CAR condition (2.21).

Conversely, suppose that the joined distribution of (Y , Y∗) satis�es the
CAR condition (2.21) and that Pr(Y ∈ Y∗) = 1.�en one can de�ne

P(y∗) := Pr(Y ∈ y∗) ∀ y∗ ∈ Y∗

and

π(y∗) :=

{
Pr(Y∗ = y∗ |Y ∈ y∗) Pr(Y∗ = y∗) > 0

0 else

With these de�nitions,

Pr(Y∗ = y∗) = P(y∗)π(y∗)

follows since

P(y∗)π(y∗) = Pr(Y∗ = y∗ ∧ Y ∈ y∗) = Pr(Y∗ = y∗)

by consistency if Pr(Y∗ = y∗) > 0 or by de�nition if Pr(Y∗ = y∗) = 0.
Moreover, for a �xed y with Pr(Y = y) > 0∑

y∗3y
π(y∗) =

∑
y∗3y

Pr(Y∗=y∗)>0

Pr(Y∗ = y∗ |Y ∈ y∗)
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2. Probabilistic Models of Incomplete Data

=
∑
y∗3y

Pr(Y∗=y∗)>0

Pr(Y∗ = y∗ |Y = y)

=
∑
y∗3y

Pr(Y∗ = y∗ |Y = y) = 1

where the �rst equality uses the de�nition of π(.), the second uses (2.29),

the third the de�nition of conditional probability, and the last consistency

again.

�us (2.32) together with (2.33) are in fact equivalent to the other four

forms of the CAR condition.�e equations (2.32) are now linear in the

probabilities of interest, P(y∗) and the di�culties of solving the system
are hidden in the restrictions (2.33) and the requirement that P(.) must

be a probability distribution.

�ere is a direct interpretation of the reformulated CAR conditions (2.32)

and (2.33). Since π(y∗) must equal Pr(Y∗ = y∗ |Y = y) for all y ∈ y∗

with Pr(Y = y) > 0, the second term in the decomposition encodes

the way incomplete data are constructed in the model, at least when

Pr(Y = y) > 0: Given {Y = y}, choose Y∗ according to this conditional
distribution. �e decomposition thus states that the distribution of

Y∗ factors in a term that only depends on the distribution of interest
(the distribution of Y), and in a term that describes the generation of

the incomplete version Y∗.�is may be translated into the statistical
language by writing down the expected log-likelihood (with respect to

the distribution of Y∗) for the parameters of interest py := Pr(Y = y) and

the nuisance parameters πy∗ :38

ℓ(py , πy∗ ; y ∈ Y , y∗ ∈ Y∗)

=
∑

y∗∈Y∗
Pr(Y∗ = y∗) log

(
P(y∗)πy∗

)
=
∑

y∗∈Y∗
Pr(Y∗ = y∗) log

∑
y∈y∗

py +
∑

y∗∈Y∗
Pr(Y∗ = y∗) log πy∗

(2.34)

38
I write here πy∗ instead of π(y∗) to emphasise their role as a set of parameters.�ese

πy∗ should not be confused with the ame symbol used in section 2.1.
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where the summands are taken to be 0 if Pr(Y∗ = y∗) = 0.�e likelihood
factors into a part that depends on the parameters of interest only and in

a part that depends on the nuisance parameters.�e log-likelihood can

be maximised separately in both parts subject to the restriction (2.33)

and the requirement that py be a probability density. In consequence,

if one is only interested in the density py one may simply maximise

the �rst term of the log-likelihood ignoring the way incomplete data

distributions are supposed to have emerged.39

�is reformulation of the CAR conditions into statistical language pro-

vides an alternative though somewhat tedious way to show that to any

given distribution of Y∗ one can always construct a joint distribution of
(Y , Y∗) such that both Pr(Y ∈ Y∗) = 1 and CAR holds. It is nevertheless
instructive to follow through the proof suggested by Gill et al. (1997)

since as a consequence of their proof they claim uniqueness of the CAR

solution for all sets y∗ such that Pr(Y∗ = y∗) > 0. It is the uniqueness
that was disputed at the end of the last section. And as I have indicated,

non-uniqueness raises potentially serious problems for both the applica-

tion of the CAR condition and the general acceptability of the “simple

device”.

Note �rst that if there is a decomposition of the distribution of Y∗ as in
(2.32) that satis�es the constraint (2.33) and such that P(.) is a probability

distribution, then this decomposition certainly maximises the expected

likelihood (2.34).�is is a simple consequence of Jensen’s inequality40

since for any other values p′y , π
′
y∗ that satisfy the restrictions one has

ℓ(p′y , π
′
y∗ ; y ∈ Y , y∗ ∈ Y∗)− ℓ(py , πy∗ ; y ∈ Y , y∗ ∈ Y∗)

39
�is is rather obviously true only if the nuisance parameters πy∗ are not related

to the parameters of interest py.�is is sometimes called ‘parameter distinctness’.

�e concept of weak exogeneity in econometrics (Engle et al. 1983) and that of a

cut (Barndor�-Nielsen 1978: 50; Barndor�-Nielsen/Cox 1994: 38) relate parameter

distinctness to inferential procedure. While frequentist inference procedures are

generally free to de�ne their parameters arbitrarily (which many see as a threat to

such ‘inferences’), the mere existence of nuisance parameters will in�uence any

frequentist inference procedure. I am not going to discuss these problems here, but

Jaeger (2005a) provides some details in the case of coarsened data.
40
�e special case is known as the information inequality in coding and information

theory.
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=
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

Pr(Y∗ = y∗) log
P(y∗)′π′y∗

P(y∗)πy∗

≤ log
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

Pr(Y∗ = y∗)
P(y∗)′π′y∗

P(y∗)πy∗

= log
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

Pr(Y∗ = y∗)
P(y∗)′π′y∗

Pr(Y∗ = y∗)

= log
∑

y∗∈Y∗
Pr(Y∗=y∗)>0

P(y∗)′π′y∗ ≤ 0

�e last inequality follows from∑
y∗∈Y∗

P(y∗)′π′y∗ =
∑

y∗∈Y∗

∑
y∈Y

1[y
∗](y)p′yπ

′
y∗

=
∑
y∈Y

p′y
∑

y∗∈Y∗
1[y

∗](y)π′y∗ =
∑
y∈Y

p′y = 1

where the restriction (2.33) is used for π′y∗ and p
′
y is assumed to be a

probability density. Note that the second equality requires (2.33) to hold

only for all y ∈ Y with p′y > 0.

In the other direction, the log-likelihood certainly has a maximiser since

it is continuous and the set of parameters (py , πy∗ ; y ∈ Y , y∗ ∈ Y∗)
satisfying the restrictions is convex and compact.

Starting with the �rst summand of the log-likelihood that involves only

py, one may show using a Lagrange multiplier ensuring
∑

y py = 1 that a

maximiser of this summand must satisfy∑
y∗3y

Pr(Y∗ = y∗)

P(y∗)
= 1 if py > 0 (2.35)

�us one can de�ne

πy∗ :=
Pr(Y∗ = y∗)

P(y∗)
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for all those y∗ that contain at least one y with py > 0. For such sets y
∗,

certainly Pr(Y∗ = y∗) = P(y∗)πy∗ and∑
y∗3y

πy∗ = 1 ∀ y : py > 0

so that (2.33) is satis�ed. Moreover, one can extend the de�nition of

πy∗ to all elements of Y∗ by setting it to 0 on sets y∗ that only contain y
with py = 0. For these sets, both P(y

∗) = 0 and Pr(Y∗ = y∗) = 0 so that
the decomposition holds for all elements of Y∗.�is set of parameters
is a maximiser of the expected log-likelihood simply because it is a

decomposition of the probabilities Pr(Y∗ = y∗).

In summary, the argument shows that there is always a maximum of

the expected log-likelihood and this must entail a decomposition (2.32).

In other words, for any given probability distribution Pr(Y∗ ∈ .) there
is always a CAR solution, a result that was already obtained along a

di�erent route in section 2.2.4.

But what does this method tell about the uniqueness of CAR? Gill et

al. (1997: 264) claim that their method provides uniqueness of P(.)

at least for those y∗ with Pr(Y∗ = y∗) > 0. Moreover, they claim that
the restriction (2.33) can be extended to hold for all elements y ∈ Y ,
whether or not py > 0. Unfortunately, both claims are unfounded and it

turns out that the problem is related to both claims simultaneously.

�e examples of the previous section can be used to illustrate what goes

wrong.�ey show that there may be several maxima of the log-likelihood

function in the restricted variables py and πy∗ . Moreover, not all of them

admit an extension of the restrictions on πy∗ to all of Y .

Consider again the Monty Hall problem. As previously noted, there are

two solutions given by

1) Pr(Y = 2) = 1 and π{1,2} = π{2,3} = 1/2

2) Pr(Y = 1) = Pr(Y = 3) = 1/2 and π{1,2} = π{2,3} = 1

when Pr(Y∗ = {1, 2}) = Pr(Y∗ = {2, 3}) = 1/2. Both solutions do
provide a decomposition, since in both cases Pr(Y∗ = {1, 2}) = Pr(Y ∈
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{1, 2})π{1,2} and similarly for Pr(Y∗ = {2, 3}).�us both do satisfy the
�rst part of the CAR condition (2.32). Also, they satisfy the restriction

on πy∗ since in the �rst case, where only y = 2 must be considered,

π{1,2} + π{2,3} = 1 and in the second case for both y = 1 and y = 3 only
one summand with value 1 exists.�us the solutions satisfy both (2.32)

and (2.33). And obviously both solutions lead to the same value of the

expected log-likelihood.

Nothing of this contradicts the arguments given in the proof above. But

then Gill et al. (1997: 263–264) try to show that it is possible to construct

the πy∗ so that their sum over all y
∗ that contain a given y, whether or not

py > 0, must equal 1.�ey try to construct such a πy∗ using an extension

of (2.35) to the case py = 0. Note that this results in a much stronger

restriction than the one used in (2.33). Nevertheless, if the extension

was possible, then there were |Y| valid constraints on the πy∗ . �us

the 2|Y| − 1 equations Pr(Y∗ = y∗) = P(y∗)πy∗ are exactly matched by

the |Y| parameters py and the 2|Y| − 1− |Y| parameters πy∗ , making

uniqueness a reasonable conjecture.

However, such an extension is impossible in both solutions to the Monty

Hall problem. In the �rst solution, if y = 1, then π{1,2} is the only set to
which it belongs, but its value is 1/2. Similarly for y = 3. Note that in this

situation one might be tempted to de�ne π{1} = π{3} = 1/2 so that the
argument goes through nevertheless. But this strategy does not work for

the second solution where for y = 2 we have π{1,2} + π{2,3} = 2. Since
the πy∗ must be non-negative, one can not extend Y∗ so that the sum
condition can be met.

�e only situation where the strategy to prove uniqueness will work is

when Pr(Y∗ = {y}) > 0 for all y ∈ Y . In that case, the original Gill et al.
proof shows that there must be a unique CAR distribution. It is still an

open question how to characterise those situations where the only form

of non-uniqueness of CAR is of the simple form Gill et al. conjectured.

�ere are not even easily stated conditions which imply the existence of

multiple solutions of the type exempli�ed by the Monty Hall problem

and Example 3a.
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2.2.7. Strong CAR?

With the present CAR condition and its various re-expressions there

is always at least one joint distribution of (Y , Y∗) such that a given
incompleteness {Y∗ = y∗} implies nothing more about the distribution
of interest than that {Y ∈ y∗} (this is condition (2.21)) or such that
incompleteness does not depend on the actual value of the random

variable Y within the coarsening set y∗ (condition (2.28)), or that the
coarsened variables are constructed without regard to particular values

of the variable of interest (condition (2.30)), or that the likelihood

factors into a part describing the distribution of interest and the ‘missing

mechanism’ (condition (2.32)). All these CAR formulations turned out to

be equivalent mathematical conditions for which a solution always exists.

�at is, for any given distribution of Y∗ there is a joined distribution of
(Y , Y∗) that is consistent and compatible with the CAR condition.�e
CAR condition does not restrict the set of possible distributions of the

coarsened variable.41

�is is what one ought to hope for since the “simple device” can prove

useful only to the extend that its central concepts are not special math-

ematical artifacts. �e de�nition of CAR depends crucially on the

introduction of a probability model. Its usefulness as a regulative idea

would be impaired if its de�nition would depend on particular data

constellations.

On the other hand, the CAR condition may lead to contradictory results

even for all non-trivial y∗ ∈ Y∗, as Example 3a and the Monty Hall
problem demonstrate.�is situation is at least as threatening to the use

of CAR since it would imply contradictory results for many or even

all sets of interest. One possible solution, albeit a rather radical one,

is to strengthen the CAR de�nition in such a way that contradictory

41
�is is no longer true when in�nite sets are considered. See Gill et al. (1997: 264) for

an example.�ey conjecture that this problem can be alleviated by “compactifying

both the sample space and all the observed random sets in a careful way”. A discussion

of this type of di�culty will not be pursued here. Cator (2004: 1962) provides another

type of example where the di�culty lies in the fact that the incompleteness cannot

be represented in terms of subsets of the set Y . A discussion of this type of problem
will be postponed to the next section.
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results are ruled out. One may then hope that the situations that are

not CAR according to the strengthened de�nition in fact turn out to be

‘pathological’ exceptions. An attractive possibility is opened up by the

CAR formulations of the previous subsection.

While all these de�nitions are equivalent with CAR in the form (2.21),

the change of the conditioning variable from Y∗ in (2.21) to Y suggests
that one may ask for (2.28)–(2.30) to hold for all y and not only for those

with Pr(Y = y) > 0.�is is a vacuous strengthening if Pr(Y∗ = {y}) > 0
for all y ∈ Y because then Pr(Y = y) > 0 by the consistency requirement.

In all other cases, however, it is strictly stronger than the CAR condition

(2.21).�is is an attractive approach since one may argue that (2.28)–

(2.30) refer to a ‘mechanism’ producing the form of incompleteness from

any given ‘input’ y. If such a ‘mechanism’ can reasonably be posited, it

should not depend on whether or not in fact Pr(Y = y) > 0 holds true. It

should be possible to de�ne the ‘mechanism’ of missingness without

paying attention to particulars of a given situation.�ey ought to be

irrelevant for the de�nition of a predetermined procedure.

�e exclusion of situations where such a ‘mechanism’ does not exist

and thus the argument would have no force might be tolerable if this

would happen only in rare or exceptional circumstances. But one of the

arguments of the critics of the “simple device” must be born in mind.

It challenges that there is such a thing as a probabilistic ‘mechanism’

or an ‘answer probability’ of interviewees in a survey at all. Such a

position has some empirical support for social science surveys, and it

certainly pertains to observational studies where the degree of incomplete

information depends on the deliberation of respondents.

On the other hand, the modelling strategy might have some value, at least

if it does not presuppose facts about surveys or the interviewees. It should

only exclude unreasonable mathematical artifacts from consideration

that would not have been considered by informed survey statisticians

either. It would then not touch directly on the question whether the

‘mechanism’ must be supposed to ‘work’ for every interviewee, or whether

its preconditions are ever encountered by any member of the population.

In short, the suggestion is to require that (2.28) and the other versions
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2.2. Coarsening at Random

should hold not only for all y that actually occur but for all y ∈ Y .�is
version of CAR has been termed strong CAR by Jaeger (2005a) and

Grünwald/Halpern (2003). If this direction is pursued, then (2.28) is

strengthened to

Pr(Y∗ = y∗ |Y = y) is constant on y ∈ y∗ (2.36)

for all y∗ ∈ Y∗ and all y ∈ y∗, even when Pr(Y = y) = 0.

It turns out that both the Monty Hall example and Example 3a do not

satisfy strong CAR.�is follows in the case of the Monty Hall example

along the same lines as indicated at the end of section 2.1.2: If the price

is behind door 1 (and the contestant has chosen door 2), then Monty

is forced to open door 3. �us Pr(Y∗ = {1, 2} |Y = 1) = 1. From
strong CAR, it follows that Pr(Y∗ = {1, 2} |Y = 2) = 1. But Pr(Y∗ =
{2, 3} |Y = 3) = 1 as well, from which Pr(Y∗ = {2, 3} |Y = 2) = 1 would
follow. In consequence, 1 = Pr(Y∗ ∈ Y∗ |Y = 2) = Pr(Y∗ = {1, 2} |Y =
2) + Pr(Y∗ = {2, 3} |Y = 2) = 2, a contradiction.�e contradiction is
only avoided when Pr(Y = 2) ∈ {0, 1} and simultaneously conditional
distributions with conditioning events whose probability is zero are not

assumed to take a de�nite value.

Similarly, in Example 3a

Pr(Y∗ = {2, 3} |Y = 2) =: a = Pr(Y∗ = {2, 3} |Y = 3)
Pr(Y∗ = {1, 2, 3} |Y = 2) =: b = Pr(Y∗ = {1, 2, 3} |Y = 3)

so that a + b = 1. But this forces Pr(Y∗ = {1, 2} |Y = 2) = 0 = Pr(Y∗ =
{1, 2} |Y = 1), contradicting Pr(Y∗ = {1, 2}) = 0.1 > 0.

In general, strong CAR will be impossible whenever there are properly

nested edges in the hypergraph of (Y ,Y∗). In that case, the sum over all
nodes of the conditional distributions given the inner edge must equal

the sum of the conditional distributions given the outer edge and both

must equal 1. But this can not be the case when the nodes unique to the

outer edge have non-vanishing probability. For suppose that all elements

of Y∗ have positive probability and that for some y, y′ ∈ Y

A := {y∗ ∈ Y∗ | y ∈ y∗} ( {y∗ ∈ Y∗ | y′ ∈ y∗} =: B
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2. Probabilistic Models of Incomplete Data

so that the edge of the hypergraph corresponding to y is nested within the

one corresponding to y′.�en Pr(Y∗ = y∗ |Y = y) = Pr(Y∗ = y∗ |Y =
y′) and

∑
y∗∈A Pr(Y

∗ = y∗ |Y = y) = 1. It follows that Pr(Y∗ = y∗ |Y =
y′) = 0 for all y∗ ∈ B \ A. Fix one such y∗, say y∗′. By the strong version
of (2.29) Pr(Y∗ = y∗′ |Y ∈ y∗′) = 0. But now Pr(Y∗ = y∗′) = 0 follows
from consistency, in contradiction to the assumption that all elements of

Y∗ have positive probability.�us the existence of properly nested edges
of the hypergraph implies that strong CAR does not hold.

In the Monty Hall example, strong CAR fails and in that setting, the

idea of a well de�ned ‘mechanism’ that produces the coarsened data

can be based on the expectation that the rules of the game are in fact

well de�ned for all situations that might arise. In this case the argument

for strong CAR based upon a ‘mechanism’ de�ned independently of

the distribution of Y has much force. Similarly, in Example 3a, the

contradictory solutions (5/6, 1/6, 0) and (6/7, 0, 1/7) should be ruled

out as well. But strong CAR excludes many more situations. Consider

e.g. Example 3. Here there is a unique CAR solution (5/7, 2/7, 0), but

the hypergraph given in Figure 2.3 shows nested edges for Y = 2 and

Y = 3 so that there is no strong CAR solution. On the other hand, the

interpretation given at the beginning of section 2.1 can certainly not be

ruled out by referring to a ‘mechanism’. It would be simply too much to

ask for a ‘mechanism’ that produces coarsened data according to strong

CAR in a survey context. Even if the illusion of respondents answering

according to some probability model would be taken for granted, it

would be unreasonable to expect that they should be able to react to

circumstances and situations that nobody ever encountered. But this

would be needed to de�ne a ‘mechanism’.

�ere is another argument in favour of strong CAR. It is based on the

fact that a CAR solution that is not strong CAR as well must be such

that Pr(Y ∈ D) = 0 for some element D ∈ D(Y∗). As Examples 1a
and 5 demonstrate, strong CAR may hold even when some solutions

imply 0 probabilities for a subset of Y . Moreover, Pr(Y∗ = y∗) > 0 for
all y∗ ∈ Y∗ implies Pr(Y ∈ y∗) > 0 by consistency (2.6).�e di�erence
between CAR and strong CAR arises solely if CAR implies 0 probability

for at least one element D ∈ D(Y∗) \ Y∗.
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Grünwald and Halpern (2003) have argued that degenerate solutions

(zero probabilities for some sets) are the main source of di�culties

encountered with CAR solutions.�ey counter the slogan ‘Car is every-

thing’ by ‘sometimes CAR is nothing’ (Grünwald/Halpern 2003: 256).42

�ere are obviously circumstances where degenerate results indicate

doubtful results. If to a given Y a further element, say ∗ is added and
if Y∗ is modi�ed so that all y∗ contain ∗, then obviously ∗ can not be
distinguished from any other element of Y .43 But the CAR condition
now leads to either Pr(Y = ∗) = 1 or Pr(Y = ∗) = 0. Moreover, there is
no strong CAR solution since all other edges of the hypergraph are nested

within that of ∗, and some will be properly nested. Here CAR would
seemingly state much more than just that conditioning on {Y∗ = y∗}
can be replaced by conditioning on {Y ∈ y∗}. It says something about
the existence (or non-existence) of certain events. From a Bayesian

perspective, one is forced to assign probability zero to events which were

a priori considered possible.�e disturbing feature of the example is that

from (weak) CAR there seems to follow something de�nite even though

nothing must be known or assumed about the particular situation, not

even probabilities for the coarsened variables.�is seems to suggest that

there is more in (weak) CAR than the assertion that coarsened variables

can be taken at face value.

But adding an extra symbol ∗ to a model may be ruled out either by an
appeal to parsimony or because it would generally lead to ridiculous

models.�ere is no need to apply to strong CAR. Consider the survey

statistician who, a�er the survey, considers that labour market conditions

of many respondents are much more complicated than the simple dis-

tinction between ‘employment’, ‘out of labour force’, and ‘unemployment’.

He could add further categories to his Y and surmise that respondents
are kind enough to answer to the original question even if they do not

consider themselves to be in any of the categories that were being asked.

Redoing his analysis he �nds that either nobody or everybody was in his

additional categories just by invoking CAR. Since this can be done with

42
Grünwald and Halpern (2003: Ex. 4.6) provide examples where the degenerate

solutions do not arise from incomplete identi�cation and characterise such situations

for the case |Y∗| = 3.
43
�is is a form of Jaeger’s (2005a) second example.
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all categories one might ever come up with, the result of such a strategy

is self-defeating.

�e argument concerning degenerate solutions is compelling in the case

of an additional element ∗ or in the Monty Hall example. But in cases like
Example 3 it has no more force than the argument based on ‘mechanisms’.

Note that in Example 3, CAR always forces Pr(Y = 3) = 0 as long as

Pr(Y∗ = {3}) = 0 (the structure of Y∗ does not change) and the other
probabilities of elements in Y∗ are positive. And {3} = Y \ {1, 2} ∈
D(Y∗) \ Y∗ so that CAR puts 0 probability on the ‘wrong’ subset. But
that CAR implies a particular distribution only shows that CAR is a very

strong condition: It can identify a single distribution from a large set of

consistent distributions.�at this particular solution puts 0 probability

on some elements of Y is as such no argument against that solution.

In summary, the CAR condition in the form (2.21) can be satis�ed for any

given distribution on Y∗.�erefore, weak CAR is untestable as it should
be if the modelling strategy is not to be an artifact of the “simple device”.

On the other hand, strong CAR may fail. Note that the strong version of

CAR in (2.36) refers to conditional distributions and is required to hold

for all y∗ ∈ Y∗ and all y ∈ y∗.�e condition must hold irrespective of
whether {Y = y} has positive probability or not. But for those points
y ∈ Y that have 0 probability, the joint probability of {Y = y, Y∗ = y∗}
must be 0 as well. But then the conditional probabilities in the condition

(2.36) are not needed to de�ne the joined distribution. Using (2.36) or

equivalent formulations as a CAR condition thus uses more than just the

joined distribution of (Y , Y∗).

One possible justi�cation of such a move is the requirement of a ‘mecha-

nism’ of coarsening whose de�nition should not depend on any aspects

of Y . Another argument is based on the possibly strong ontological

commitment that may follow from degenerate probability assignments.

But in many relevant cases in the social sciences, neither argument is

compelling. In these cases, strong CAR seems to be much too strong,

excluding even situations as Example 3 which otherwise looks perfectly

natural. Moreover, strong CAR is not neutral as a regulative modelling

strategy since the structure of (Y ,Y∗) on which it hinges is at least partly
determined by the data.
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Lastly, the main problem with weak CAR is not the existence of degen-

erate solutions for elements ofD(Y∗), the situation addressed by both
arguments. It is the existence of contradictory solutions as in the case of

Example 3a and the Monty Hall problem where there are two values

of Pr(Y ∈ D) for some D ∈ D(Y∗). �is follows from the existence
of disconnected solution sets implied by weak CAR. Excluding such

situations, a condition strictly weaker than the strong CAR condition,

may turn out to be a reasonable compromise that almost saves the slogan

‘CAR is everything’.

2.3. Coarsening Variables and Coarsening

Completely at Random

Even if the probability model is taken as the natural framework to

discuss incomplete observations in a general context, it is by no means

implied that the formalisations of the concept of coarsening at random,

and therefore an appreciation of departures from it, are to be framed

in terms of conditional distributions as was done up to now. In the

literature onmissing data problems one �ndsmany variants of themissing

at random conditions, o�en formulated a�er introducing additional

random variables. Before the CAR conditions can justi�ably be used

within the probability model, the status of di�erent versions of the

conditions must be discussed. In particular, it must be shown that no

further structure is implied by di�erent formulations of the conditions.

Of particular importance is the relation of the present formulation to the

now classical formulation used by Little and Rubin (2002).�e latter

exploits additional random variables that together with the variable

of interest determine the incomplete variable Y∗.�en the missing at
random (or coarsening at random) conditions are expressed in terms of

conditional densities involving the additional variables.44

44
It seems that the origins of this way to formulate missing or coarsening at random

conditions must go back at least to the early 20th century. It is used implicitly in

Fisher’s 1925 article on Maximum Likelihood, inter alia.
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2. Probabilistic Models of Incomplete Data

�e next subsection discusses the relation of this classical formulation

to the formulation used in the previous sections. It turns out that the

classical formulation potentially adds further structure to the “simple

device” so that the two formulations may provide contradictory results.

Furthermore, the classical formulation allows to de�ne the concept of

“completely coarsening at random” or CCAR rather naturally. But it turns

out that the concept is rather di�cult to formulate in general. Some of

the consequences are discussed in section 2.3.2. On the other hand, the

additional structure can sometimes be exploited to express information

present in incomplete data problems that can not be expressed in the

simple framework used previously. Moreover, there are situations that

are naturally described as incomplete data problems but that can not be

expressed in the language of subsets of the original sample space.�is is

discussed in the last subsection.

2.3.1. Coarsening Variables

�e early development of methods for censored duration data was based

nearly exclusively on the random censorship model where a censoring

variable, say R, was stipulated such that the coarsened (censored) ob-

servations are represented by (Y ′, δ) := (min(Y , R),1[Y < R]).�ere

is a natural one-to-one translation into the previous setup by setting

y∗ = {y′} if δ = 1 and y∗ = {y′, . . .} otherwise. In the other direction,
one would put y′ = min y∗ and δ = 0 if |y∗| > 1, and y′ = min y∗, δ = 1
otherwise. But it is not so obvious what the role of R is. In particular,

its value is not determined by the value of y∗: If (Y ′ = y′, δ = 1), the
value of R can not be inferred. Its inclusion extends the setup previously

discussed and it is plain that the additional structure needs justi�cation.

In the case of missing data, the additional variable is an indicator, say

R, which takes the value 1 if the data are complete, 0 otherwise. �e

incomplete variable is then a function Y∗ = g(Y , R) such that g(y, 1) =

{y} and g(y, 0) = Y . Knowing the underlying value of Y and the realised
value of R, the value of the observation can be computed by a known

function. In this case, one can indeed infer the value of r from the value

of y∗ so that nothing essential is added to the structure.
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Rubin’s article of 1976, following the tradition, uses the existence of

an indicator R to de�ne his version of MAR. In general, the idea is to

express MAR/CAR as a property of a procedure that from the random

variable Y plus a randomisation variable R produces the observed Y∗.
Such a formulation is obviously very closely connected to the idea of a

‘mechanism’ and the formulation of CAR in (2.28).

�e method can easily though rather vacuously be adapted to deal with

all partially complete data de�ned as set-valued observations. To see this,

de�ne a random variable R as

R : Ω −→ R := Y∗ (2.37)

where for ease of translation the range of R is chosen to equal Y∗.
Furthermore, the conditional distribution of R given Y can be de�ned as

Pr(R = y∗ |Y = y) := Pr(Y∗ = y∗ |Y = y) (2.38)

for all y such that Pr(Y = y) > 0.�is de�nes a joined distribution of

(Y , R). Now the function g(., .) can be de�ned as

g : Y ×R −→ Y∗

g(y, r) := r (2.39)

using just the second argument. Since (Y , Y∗) is consistent, Pr(Y ∈
g(Y , R)) = Pr(Y ∈ R) = Pr(Y ∈ Y∗) = 1 so that (Y , R, g) is consistent
as well.

�is is a trivial reformulation of the setup in the previous sections,

even though it introduces further elements that seem to be extraneous

to the situations. However, it is probably the easiest way to express

the idea that the incomplete data arise from the underlying data by

some randomisation expressed by R. Moreover, it may be used as a

�rst translation of the previous formulation into the more familiar

formulation used in the classical literature.�e construction shows that

to each incomplete data model in terms of (Y , Y∗) there is an equivalent
one in terms of (Y , R, g) though the translation need not be unique.

In the other direction, to any triple (Y , R, g) there is a tuple (Y , Y∗)
de�ned by (Y , Y∗) := (Y , g(Y , R)). One may call the joined distribution
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2. Probabilistic Models of Incomplete Data

of (Y , R) CAR if the joined distribution of (Y , Y∗) implied by (Y , R) and
g(., .) is CAR. It is now natural to inquire whether CAR can be directly

formulated in terms of (Y , R, g). Using (2.28) as a natural starting point,

(Y , R, g) might tentatively be called CAR if for all r ∈ R and all y of
positive probability

Pr(R = r |Y = y′) is constant on {y′ | y′ ∈ g(y, r), Pr(Y = y′) > 0}
(2.40)

With the trivial construction of a (Y , R, g) from the tupel (Y , Y∗) given
above, (2.40) certainly implies CAR. However, the appeal of the classical

formulation derives from a much simpler structure of R. In the case of

missing data, R is just an indicator. In the case of censored data, it is a

number giving censoring times. Both versions of R are much easier to

handle than the brute force translation that simply identi�es R with the

set-valued variable Y∗. Moreover, the classical formulation justi�es the
use of the face value likelihood by invoking stochastic independence of

their R from the underlying Y , a condition that is much easier to treat

than the respective CAR conditions or the clumsy (2.40).

However, this ease of characterising CAR can be deceptive in general

incomplete data models. Returning again to Example 1, one might de�ne

a random variable R taking the values 0, 1, 2 that speci�es the degree of

incompleteness.�en one can de�ne the variable Y∗ := g(Y , R) via

g(y, 2) = {y}

g(y, 1) =

{
{2, 3} y ∈ {2, 3}
{1, 2, 3} y = 1

(2.41)

g(y, 0) = Y

With this de�nition of g(., .) andR one recovers the joined CAR distri-
bution of (Y , Y∗) by setting the joined distribution of (Y , R) to

Y 1 2 3

R 0 5/80 3/80 3/80 11/80

1 5/80 4/80 4/80 13/80

2 1/2 8/80 8/80 56/80

10/16 3/16 3/16
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Note that the joined distribution of (Y , R) and therefore the marginal of

R is not unique for one might as well choose

Y 1 2 3

R 0 0 3/80 3/80 6/80

1 1/8 4/80 4/80 18/80

2 1/2 8/80 8/80 56/80

10/16 3/16 3/16

without changing the joint distribution of (Y , Y∗).

Obviously, the choice of g(., .) is not unique either, even when the setting

of R := Y∗ is discarded in favour of more concise representations. In
Example 1, another possible choice is

g(y, 2) = {y}

g(y, 1) =

{
{2, 3} y ∈ {2, 3}
{1} y = 1

(2.42)

g(y, 0) = Y

where now the joined distribution of (Y , R) might be

Y 1 2 3

R 0 1/8 3/80 3/80 16/80

1 0 4/80 4/80 8/80

2 1/2 8/80 8/80 56/80

10/16 3/16 3/16

�e obvious non-uniqueness of the (Y , R, g) representation of incomplete

data creates a problem for the de�nition of CAR in terms of a missingness

indicator. If the �rst choice of g(., .) is combined with either of the two

joined distributions of (Y , R) proposed above, then both violate the

condition (2.40), because

Pr(R = 0 |Y = 1) = 5/80
50/80

=
1

10
6= Pr(R = 0 |Y = 2) = 3/80

15/80
=
1

5
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in the �rst case and

Pr(R = 0 |Y = 1) = 0 6= Pr(R = 0 |Y = 2) = 3/80
15/80

=
1

5

in the second case.�us there are (Y , R, g) that imply a CAR distribution

for (Y , Y∗) but that are not CAR according to (2.40).

On the other hand, the second choice of g(., .) yields

Pr(R = 0 |Y = 1) = 2/16
10/16

=
1

5
= Pr(R = 0 |Y = 2) = 3/80

3/16

and similarly for Pr(R = 0 |Y = 3). Furthermore,

Pr(R = 1 |Y = 2) = 4/80
3/16

=
4

15
= Pr(R = 1 |Y = 3)

covering all cases required by (2.40). Not too surprisingly, therefore,

condition (2.40) strongly depends on the choice of R and g(., .). Even if

the joined distribution of (Y , Y∗) is CAR according to the de�nitions in
the previous sections, this need not be the case according to 2.40 based

on the conditional distribution of R given Y .

�e case of missing data is an exception in that in this simple case the

formulations in terms of a missing indicator and in terms of the tuple

(Y , Y∗) are in fact equivalent. When Heitjan and Rubin (1991) intro-
duced the term CAR, they de�ned it in terms of the joined distribution

of (Y , Y∗) using (2.28) as de�nition, even though the coarsening was
de�ned by a function such that Y∗ = g(Y , R). �eir corollary 1 then

stated that for ‘consistent’ g(., .) and those R that are functions of Y∗ the
formulation (2.40) is equivalent to CAR.

�ere have been several attempts to explicate ‘consistent’ choices of g(., .)

such that the relation to CAR can be stated in terms of (Y , R, g). First,

the consistency requirement Pr(Y ∈ Y∗) = 1 translates into

Pr(Y ∈ g(Y , R)) = 1 (2.43)

If Y is �nite, then this is equivalent to

Pr(g(y, R) 3 y |Y = y) = 1 (2.44)
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for all y ∈ Y with Pr(Y = y) > 0. If the roles of Y and R are reversed,

one obtains

Pr(Y ∈ g(Y , r) |R = r) = 1 (2.45)

for all r ∈ R such that Pr(R = r) > 0.

Jaeger (2005b: De�nition 2.5) explicitly strengthened the condition to

y ∈ g(y, r) (2.46)

for all y such that Pr(Y = y) > 0 and all r ∈ R. �is is a strictly
stronger condition than (2.43). In particular, (2.46) is violated by the

construction in (2.37)–(2.39). But it is sometimes easier to work with

this deterministic condition than with (2.43).�erefore much of the

literature concentrates on this case.45

Jaeger (2005b: De�nition 2.5) further assumes that

y′ ∈ g(y, r) =⇒ g(y′, r) = g(y, r) (2.47)

for all r and all y, y′ of positive probability. Note that (2.47) holds trivially
for the construction (2.37)–(2.39) since g(., .) depends only on r. Both

conditions also hold for the case of missing and censored data when the

latter are expressed in terms of y∗ instead of the more usual (y′, δ).

However, the conditions severely restrict the models that can be repre-

sented by the triple (Y , R, g). In fact, the set Y∗ corresponding to such
an (Y , R, g) must be a union of partitions of Y . To see this, �x an r ∈ R
and set

Y∗r := {y∗ ∈ Y∗ | ∃y ∈ Y : g(y, r) = y∗}

But g(., r) trivially induces a partition on Y and the conditions allow to
identify it with Y∗r . More precisely, by condition (2.46)

Y =
⋃
y∈Y

g(y, r) =
⋃

y∗∈Y∗r

y∗

45
Heitjan and Rubin (1991: 2247) use a similar condition. See Gill et al. (1997: 282) for

some remarks.
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Suppose further that there is a y ∈ y∗1 ∩ y∗2 for y
∗
1 , y
∗
2 ∈ Y∗r . �en

g(y, r) = y∗1 since there is a y
′ with g(y′, r) = y∗1 by the de�nition ofY∗r and

by (2.47), g(y, r) = g(y′, r) = y∗1 . Similarly, g(y, r) = y∗2 . Consequently,
y∗1 = y∗2 .�erefore, Y∗r is a partition of Y and hence Y∗ = ∪rY∗r a union
of partitions.�us, with the restrictions (2.46) and (2.47), the variable R

simply indicates a particular partition chosen to produce the coarsening

y∗.

Even though the restrictions (2.46) and (2.47) exclude Y∗ that are not
unions of partitions of Y (e.g. Example 3), they provide a closer connec-
tion between the (Y , R, g) formulation and the implied pair (Y , Y∗). So
one might try to de�ne the CAR condition in terms of (Y , R, g) by

Pr(R = r |Y = y) is constant on (2.48)

{y | g(y, r) = y∗, Pr(Y = y) > 0} (2.49)

or

Pr(R = r |Y = y) = Pr(R = r |Y ∈ {y | g(y, r) = y∗}) (2.50)

or

{Y = y}⊥⊥{R = r} | {Y ∈ {y | g(y, r) = y∗}} (2.51)

for all y∗ ∈ Y∗ where the conditions are only required to hold for y
of positive probability.�ese conditions parallel the CAR conditions

formulated in (2.28), (2.29), and a combination of (2.21) and (2.29),

respectively. I will call any of these equivalent conditions R-CAR.

�e example of g(., .) in (2.41) does not satisfy condition (2.47), but

(2.42) satis�es both conditions (2.46) and (2.47). It also satis�es the

R-CAR condition (2.48) as shown above.�us one might hope that the

implied tuple (Y , Y∗) is CAR if there exists an (Y , R, g) model satisfying
(2.46) and (2.47) that is R-CAR.�is is in fact true, since

Pr(Y∗ = y∗ |Y = y) = Pr(R ∈ {r ∈ R | g(y, r) = y∗} |Y = y)

=
∑

r : g(y,r)=y∗

Pr(R = r |Y = y) (2.52)

104



2.3. Coarsening Variables and Coarsening Completely at Random

But by (2.47), g(y′, r) = y∗ for all y′ ∈ y∗ so that the summation is over
the same set of values of r. From R-CAR (2.48), the Pr(R = r |Y = y) are

constant on y∗. It follows that Pr(Y∗ = y∗ |Y = y) is constant on y ∈ y∗

and thus CAR.

Jaeger (2005b:�eorem 2.9) claimed that the converse holds as well,

namely that if the distribution of (Y , Y∗) is CAR, then there is an R-CAR
model. But this is wrong since the conditions (2.46) and (2.47) rule out

the representation of CAR models where Y∗ is not a union of partitions.
As Example 3 demonstrates, even in this case there is a joined distribution

of (Y , Y∗) that is CAR.�e inconsistency arises because Jaeger uses
the trivial (Y , R, g) construction given at the beginning of this section

to prove the existence of R-CAR. However, this construction violates

restriction (2.46) which Jaeger presupposes in his De�nition 2.5.

�ere is another way in which (Y , R, g) representations together with the

conditions (2.48)–(2.51) may fail to be equivalent to CAR.�e restric-

tions (2.46) and (2.47) insure that g(., .) is sensitive to the y argument so

that examples like the trivial construction at the beginning of the section

are ruled out. In that case, g(., .) did not even depend on y. But it may as

well be that g(., .) is insensitive to values of r. In that case, the conditions

(2.48)–(2.51) would be either void (using any independent distribution

of R) or false (using a distribution of R contradicting (2.48)–(2.51))

without changing the implied joined distribution of (Y , Y∗). A simple
example was provided by Jaeger (2005b: 895). Suppose that Y = (Y1, Y2)

is a two-dimensional binary variable and that the corresponding Y∗
is just {{(0, 0), (0, 1)}, {(1, 0)}, {(1, 1)}}. Here, Y2 is missing if Y1 = 0.
Otherwise, all values are present. Now one may choose

g((0, 0), r) := g((0, 1), r) := {(0, 0), (0, 1)}
g((1, 0), r) := {(1, 0)}
g((1, 1), r) := {(1, 1)}

so that g(., .) does not depend on r at all. IfR = {r}, then (2.48)–(2.51)
are trivially true. But withR = {r1, r2} one may easily produce examples
that falsify the R-CAR conditions. E.g., one might choose

Pr(R = r1 |Y = (1, 0)) = Pr(R = r1 |Y = (1, 1)) = 1
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Pr(R = r1 |Y = (0, 1)) = 1/3, Pr(R = r1 |Y = (0, 0)) = 2/3
Pr(R = r2 |Y = (0, 1)) = 2/3, Pr(R = r2 |Y = (0, 0)) = 1/3

Since g(., .) does not depend on r, the implied distribution of (Y , Y∗)
stays the same, whatever distribution is assumed for Y . Now

Pr(R = r1 |Y = (0, 1)) = 1/3 6= Pr(R = r1 |Y = (0, 0)) = 2/3

and also

Pr(R = r2 |Y = (0, 1)) = 2/3 6= Pr(R = r1 |Y = (0, 0)) = 1/3

so that (2.48) is violated.

In consequence, one might try to restrict the setup even further by asking

that g(y, .) is injective for all �xed y.�en r is a function of y∗ such that
for y ∈ y∗

y∗ = g(y, r)⇐⇒ r = h(y∗) (2.53)

for some function h(.).46 In this case, (2.52) reduces to

Pr(Y∗ = y∗ |Y = y) = Pr(R = h(y∗) |Y = y)

so that if the le� hand side is constant on y∗ then so is the right hand
side and vice versa. In this special case, CAR and R-CAR are equivalent:

If there is a representation of a (Y , Y∗) pair in terms of a triple (Y , R, g)
satisfying (2.46) and (2.47), and such that R is a function of Y∗, then the
joined distribution of (Y , Y∗) is CAR if and only if (Y , R, g) is R-CAR.

However, this is a very special situation. Not only is Y∗ the union of
partitions indexed by r, say Y∗r , but the intersection of the Y∗r must
be empty. Measurements at di�erent levels of precision, i.e. unions of

strict re�nements of partitions provide an example. On the other hand,

46
If the condition holds, then Jaeger (2005b: 894) calls R ‘observable’. But this is an

unfortunate choice of term since it con�ates the “simple device” and its modelling

methods with the observations obtained in a survey.
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Y∗ = {{1, 2, 3}}, {{1}, {2, 3}}, {{1}, {2},{3}} from Example 1 neither
is a union of strict re�nements nor does it permit a function h(.) since

{1} appears in two of the partitions and there is no other way to arrange
the partitions. Hence, a function h(.) that would select a partition based

only on y∗ can not exist. Similarly, neither Example 2 nor Example 3 are
of this form, nor are censored data.47

�us, the CAR and R-CAR conditions are guaranteed to be equivalent

only if R is a function of Y∗. But this condition severely restricts the
structure of Y∗. If the restriction does not hold or if another (Y , R, g)
structure is deliberately chosen, then there are CAR situations that are

R-CAR or not depending on the choice of R and g(., .). If this variable

is just an addition to the original probability model, a randomisation

device that only involves the distribution of (Y , Y∗) and that simply
serves as a shortcut in computations involving the joined distribution,

then there is no criterion to choose between competing possible versions

and the choice can be based on the equivalence given above. However,

more o�en than not, R is given some more or less intuitive interpretation.

In that case, one must be aware that the statement of the CAR condition

can not safely be formulated within the (Y , R, g) framework alone.

A particularly interesting case arises from censored data where the

censoring is generally constructed from an extra variable R of censoring

times such that

g(y, r) =

{
{y} r > y

{r, . . . , τ} r ≤ y
(2.54)

so that the variable is censored if R ≤ Y . Here, R is not a function of

Y∗, but g(., .) at least satis�es (2.46) and (2.47).�is last requirement
also motivates the de�nition of censored sets by r ≤ y even though the

47
Note that unions of strict re�nements form a graded partially ordered set with

respect to set inclusion in that all maximal linearly ordered subsets (�ags) of Y∗
have the same number of elements |R|. Of course, unions of strict re�nements are
not the only possible forms of Y∗.�e requirement (2.53) says only that no element
of Y∗ is contained in more than one of the partitions Y∗r . A situation somewhat dual
to that of strict re�nements arises when no element of a partition Y∗r is the union of
elements from another partition. Y∗ = {{1}, {2, 3}} ∪ {{2}, {1, 3}} provides an
example. Obviously, there are intermediate cases as well.
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more traditional choice would take r < y. But with the latter convention,

(2.54) would be violated when y = r. With this choice, if the model is

assumed to be R-CAR, then the implied distribution of (Y , Y∗) must be
CAR.

In the history of the analysis of censored data, the most prominent model

certainly is that of a random censoring variable R that is independent

of Y .�e presumption is that there is a random variable R such that

R⊥⊥Y and such that Y∗ = g(Y , R). Within this setup, CAR follows since

(Y , R, g) trivially satis�es (2.48), so it is R-CAR, and since g(., .) is of the

right kind, it is also CAR. In consequence, the “simple device” sanctions

the use of the face value likelihood that ignores how censored data come

about.48

�ere are many drawbacks of this formulation that actually hampered the

development of a clear understanding of censored datamethods. A rather

obvious problem occurs when the event of interest in a clinical study is

the time of death of a patient. In that case, ‘censoring a�er death’ (the case

R > Y) generally makes no sense when R refers to drop-out decisions or

depends (possibly by protocol) on particular values of clinical variables.

A possible remedy is to rede�ne R by setting R := τ + 1 if |Y∗| = 1 (Y
is exactly observed) and R := minY∗ otherwise.�is convention does
not change the status of R-CAR since R-CAR is trivially true when

|Y∗| = 1. Moreover, the rede�ned R is a function of Y∗ so that if this
model is not R-CAR then it can not be CAR by the previous equivalence

result. However, the rede�nition destroys the global condition R⊥⊥Y ,
a condition that makes working with the (Y , R, g) model so attractive.

In particular, if Y∗ = {y} then R = τ + 1 so that independence can not

hold.49

48
Remember that the present framework is completely nonparametric so that problems

connected with parameter dependence do not arise.
49
See the remarks in van der Laan and Robins (2003: 23–24) as well as Rubin (2006)

and the discussion of his article. Further discussion can be found in Egleston et al.

(2007). A particular case is taken up by Frangakis et al. (2007) and Imai (2008).

�ose articles include references to arguments about counterfactual models and

their connexion to the “simple device”.

A super�cially similar example with quite di�erent consequences occurs when time

to divorce (say Y) is of interest and death of a partner is treated as ‘censoring’.�is

is just the reverse of the situation contemplated previously, where the value of an
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As shown in the previous section, to any distribution of Y∗ there is a
joined distribution of (Y , Y∗) that is CAR. Since for censored data the
set Y∗ is hierarchically ordered, the solution of the CAR equations is
straightforward. Moreover, the solution is unique on the �nest partition

with positive y∗ probability. Of course, the latter two properties hold only
when all elements of Y∗ = {{0}, . . . , {τ}, {0, . . . , τ}, {1, . . . , τ}, . . .}
have positive probability. Note that Example 1 has the required structure

except that other forms of g(., .) were considered.

Reformulating the example slightly by using Y = {0, 1, 2} instead of
{1, 2, 3} and giving all elements of Y∗ the probability 1/5, the joined CAR
distribution of (Y , Y∗) is:

{0} {1} {2} {1, 2} {0, 1, 2}
0 1/5 0 0 0 2/40 1/4

1 0 1/5 0 1/10 3/40 3/8

2 0 0 1/5 1/10 3/40 3/8

1/5 1/5 1/5 1/5 1/5

In this case, it is easy to see that both distributions

R 0 1 2 R′ 0 1 2

Y 0 2/40 1/15 2/15 2/40 4/40 4/40 1/4

1 3/40 4/40 8/40 3/40 4/40 8/40 3/8

2 3/40 4/40 8/40 3/40 4/40 8/40 3/8

3/15 4/15 8/15 2/10 3/10 5/10

imply the joined CAR distribution of (Y , Y∗) and that both are R-CAR.
However, only in the le� table are R and Y stochastically independent,

while in the right table Pr(Y = 0, R′ = 1) = 4/40 6= Pr(Y = 0) Pr(R′ =
1) = 1/4 · 3/10 and similarly for Pr(Y = 0, R′ = 2). Here, R is a function
of (Y , Y∗) on {Y ∈ {1, 2}} × Y∗ ∪ {Y = 0} × {0, 1, 2} so that only

assumed R was not well de�ned. It is now Y that is not a well de�ned quantity

because it presupposes that a time to divorce Y is de�ned even if one of the partners

died previously. But this is more an example of incompetent modelling than a

problem of the random censoring model.
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the probabilities Pr(R = 1 |Y = 0) and Pr(R = 2 |Y = 0) are unde�ned
by the requirement that the joined distribution of (Y , Y∗) should be
reproduced by the (Y , R, g) model. Hence, all feasible (Y , R, g) models

are R-CAR in this situation, but some do not arise from independent

censoring.

In fact, the situation presented above and its solution hold generally:

When g(., .) is of the form (2.54), then to any Y∗ representing censored
data (i.e. when Y∗ contains only sets of the form {y, . . . , τ} and the
singletons) and any distribution of Y∗ there are random variables R such
that (Y , R, g) is R-CAR and implies the CAR distribution of (Y , Y∗). To
see this, one has only to note that CAR and R-CAR are restrictions only

for the censored sets in Y∗. But for these (and g(., .) of the given form),
R is a function of Y∗ so that the argument for strictly invertible g(., .)
applies here as well.�e general condition of invertibility (2.53) is too

strong. It is enough to require that r is a function of y∗ only for those y∗

with |y∗| > 1.

Furthermore, the conditional independence of these R-CAR models

implied by (2.51) can be extended to unconditional independence (just

counting equations) and this extension de�nes an independent censoring

model (i.e. R⊥⊥Y).�us to any censored data model there is one that
can be represented by an independent censoring variable R.

�is simple fact, while known for special cases (e.g. Berman 1963), was

in some generality only observed in 1977 by Williams and Lagakos.

In particular, they showed that a CAR distribution of (Y , Y∗) (in the
absolutely continuous case) can always be represented by an independent

censoring model (Williams and Lagakos 1977: �eorem 3.1). �eir

constant sum condition has prompted the development of quite a few

reformulations of conditions where likelihood inference based on the

face value observations is valid (Kalb�eich/MacKay 1979, Ebrahimi et

al. 2003).�e existence of several R-CAR distributions in the (Y , R, g)

model was also noted for interval censoring (when only a random interval

is known during which the event of interest happened) and for current

status data (when it is only known whether an event happened before

a random inspection time or not). See Oller et al. (2004, 2007) and

Lawless (2004) for the case of interval censoring and Betensky (2000)
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for current status models. For competing risks, Langberg et al. (1978)

noted the usefulness of constructing independent representations of

the type (Y , R, g) for the handling of many questions in the description

of stochastic systems. But only much later, Crowder (1996, 1997, 2000)

clari�ed the situation also for discrete and mixed time models.

�e relation of the (Y , R, g) formulation to CAR becomes even more

complex when multidimensional censored times are considered. In this

case, one may consider a g(., .) as in (2.54) applied coordinate-wise: If

(Y1, Y2) and (R1, R2) are times and censoring times, then

g(y1, y2, r1, r2) =


{(y1, y2)} r1 > y1, r2 > y2
{r1, . . . , τ1} × {y2} r1 ≤ y1, r2 > y2
{y1} × {r2, . . . , τ2} r1 > y1, r2 ≤ y2
{r1, . . . , τ1} × {r2, . . . , τ2} r1 ≤ y1, r2 ≤ y2

(2.55)

But now it may happen that a CAR distribution can not be represented

by independent pairs (Y1, Y2)⊥⊥(R1, R2). For an example, suppose that
(Y1, Y2) are times to consecutive events so that the event times are

(Y1, Y1 + Y2). Let R be an independent variable that censors (Y1, Y1 + Y2)

in calendar time.�en either R > Y1 + Y2 so that Y
∗ = (Y1, Y1 + Y2), or

Y1 < R ≤ Y1 + Y2 so that Y
∗ = {Y1} × {R, . . . , τ}, or, lastly, R ≤ Y1 so

that Y∗ = {R, . . . , τ} × {R, . . . , τ}. When g(., .) is chosen as in (2.55),
then one may say that (R, R) censors (Y1, Y1 + Y2).�is model is trivially

R-CAR and since r is a function of y∗ for the censored elements of Y∗ it
is also CAR.

If one is interested in the joined distribution of (Y1, Y2) (each episode

starts from time 0), then the correspondingly transformed Y∗ consists of
either complete observations (y1, y2), or the half lines {y1}×{y2, . . . , τ2},
or the half spaces {y1, . . . , τ1} × Y2.�e form of incomplete elements of
Y∗ is illustrated in Figure 2.13.

�e model clearly is still CAR. A�er all, it is just a one-to-one transform

of the original model. If one constructs an (R1, R2) for the g(., .) in (2.55),

then one gets R1 := R, R2 := max(0, R − Y1). But if (Y1, Y2)⊥⊥R, then
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y2

y1

Figure 2.13.:�e possible forms of coarsened regions in a two-dimensional
censored data model.

this can not be the case for (Y1, Y2) and (R1, R2): R2 is a function of Y1
unless Pr({R < Y1} ∪ {R > Y1 + Y2}) = 1.

It follows that there are CAR models that can not be represented by

independent censoring variables (R1, R2). Modelling bivariate censored

data by an independent censoring model (Y , R, g) restricts the class of

CAR models. Gill et al. (1997: 270–272) note the statistical consequences:

When only CAR is assumed, then one must use the non-parametric

maximum likelihood estimator (see also Chapter 8). On the other

hand, when only the smaller set of models that assume independent

censoring according to (2.55) is contemplated, then there are competing,

non-equivalent estimators that may be even better (or at least more

stable) than the non-parametric maximum likelihood estimator in small

samples.

Moreover, R1 is not a function of y
∗ when y∗ is the half line {y1} ×

{r2, . . . , τ2}. Onemay therefore change the conditional distribution ofR1
givenY on {R1 > y1} so that it depends on the values of y2 ∈ {r2, . . . , τ2}
without changing the joined distribution of (Y , Y∗). �us there can
be (Y , R, g) models that are not R-CAR according to (2.48) but that

imply a joined distribution of (Y , Y∗) that is CAR. R-CAR is not a
necessary condition for CAR. Working within a (Y , R, g) model for

multidimensional censored data makes it di�cult to decide whether the

CAR condition can be stipulated, even for rather restricted structures of
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Y∗.

2.3.2. Completely Coarsening at Random

A further consideration in connection with the (Y , R, g) model of con-

siderable recent interest is a strengthening of the R-CAR condition. It

is a condition that has been termed coarsening completely at random

(CCAR). It is a rather obvious extension in the case of missing data

where it simply states that incompleteness does not depend on any other

information in the model.�e standard example is that of a missing

dependent variable in a regression model where CCAR says that the

probability of a missing dependent variable does not depend in any way

on the values of the covariates.�e extension to general incomplete data

models was suggested by Heitjan (1994).

�e CCAR condition can be easily de�ned in terms of (Y , R, g) models

by strengthening condition (2.48) to

Pr(R = r |Y = y) is constant (2.56)

or equivalently—strengthening condition (2.51)—as

{Y = y}⊥⊥R (2.57)

for y of positive probability. When CCAR is de�ned using the (Y , R, g)

model I call any one of the conditions the R-CCAR condition.

�e condition (2.57) asking for stochastic independence of Y and R is

arguably the most famous notion of CAR cited in the applied literature.

�e fame of this strong version of R-CAR stems from the fact that far

reaching conclusions can be drawn from it with ease.

In view of the di�culties of R-CAR conditions to provide an unanimous

de�nition of CAR it would be very convenient to have a formulation that

could be based on the distribution of (Y , Y∗) without recourse to some R.
It turns out that this is an extremely di�cult task. A little contemplation
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reveals that for a strengthening of the condition (2.28) one would need

to require

Pr(Y∗ = y∗ |Y = y) is constant (2.58)

which is self-contradictory unless the variable Y∗ would only take the
value Y so that the incomplete variable carries no information at all.�e
reason is that for some y and an y∗ not containing y the probability must
be 0. It follows that the probability is 0 for all y and thus the marginal

probability of any y∗ 6= Y must be 0.�e same problem shows up in all
the alternative formulations of the CAR conditions.

�ere were a few attempts to remedy the situation. An obvious one was

suggested by Jaeger (2005b) who in parallel with the CAR situation

de�ned amodel distribution to beCCAR if there was at least one R-CCAR

version of (Y , R, g) compatible with (Y , Y∗).

I will argue here that CCAR is properly viewed as a condition on the

structure of Y∗ that extends CAR and not as a stronger version of the
CAR condition itself. If CAR is equivalent to a factorisation of the fully

non-parametric incomplete data likelihood as in (2.32) then there can

be no further information that would ameliorate the estimation problem.

CAR without any further conditions permits to use only the variable of

interest part of the likelihood while disregarding the coarsening model,

at least for likelihood inference. In fact, most examples for R-CCAR in

contrast to CAR introduce further variables into a problem and equate R-

CCAR then with the ability to drop the relation of these extra variables to

the variable R and thus the relevant likelihood factors from consideration.

But this is more like a re-expression of the standard CAR condition

extended to more complicated models. Examples of R-CCAR that are

not just barely disguised versions of CAR hint in another direction:

Loosely speaking, R indicates the degree of incompleteness.�us the

R-CCAR condition says that it is possible to determine the degree of

incompleteness without knowledge of the actual y drawn in a procedure.

�erefore, CCAR should single out a certain class of procedures to

generate incomplete data.�ese procedures should not depend in any

way on the procedures used to create the values of Y . If that was the case,

then the outcome of combining the independent procedures to create
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the coarsening and to create the variable of interest would be a special

case of CAR, or so one would hope.

Such independent coarsening procedures certainly exist: If Y∗ is a
union of partitions P1, . . . ,Pk one can do the following: select one
of the partitions with probability pr. Next generate an y according

to the marginal distribution of Y and report as y∗ the element of the
chosen partition into which y falls. As Jaeger (2005b:�eorem 2.14)

shows, this is also the only way R-CCAR may come about: It follows

from the restrictions (2.46) and (2.47) on g(., .) already discussed in the

previous subsection. As shown there, any R-CAR model (Y , R, g) where

g(., .) satis�es (2.46) and (2.47) implies that Y∗ is a union of partitions
indexed by r ∈ R. If the model is R-CCAR as well, then R and therefore
the partition chosen is independent of Y and so the above algorithm

applies. In the other direction, one needs only to setR = {1, . . . , k} and
Pr(R = r |Y = y) = pr for all y of positive probability.�is is obviously

R-CCAR.

2.3.3. Coarsening Variables as Additional Data

Even though the (Y , R, g) model and the R-CAR conditions can only

be made equivalent with CAR under very restrictive conditions on

Y∗ and the form of g(., .) andR, there is a sense in which it might be
more general than the model solely based on (Y , Y∗). Consider the case
of censored data represented by a censoring time R. Occasionally it

is possible to identify such a variable with further information in the

situation.�is might be the case when all censoring events are recorded

even when they happen a�er the event of interest. In that case the value

of R would always be known and should be introduced into the model.

�is can not be represented in terms of the original variables (Y , Y∗)
alone. One must at least expand the set of contemplated observations to

someZ , say.�en CAR and similar concepts must relate to the common
distribution of (Y , Z) where Z is a random variable with values in Z . To
connect this general setup with models of incomplete data, there must

be a function

α : Z −→ P(Y) (2.59)
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that presents the coarsened values of Y such that consistency holds, i.e.

Pr(Y ∈ α(Z)) = 1

�e generalisation �ts well with the (Y , R, g) formulation of the previous

section. Now one would set

g : Y ×R −→ Z

and put

α(z) := {y ∈ Y | ∃r ∈ R : g(y, r) = z}

An obvious advantage of using a general spaceZ together with a function
α(.) instead of Y∗ is the ability to use mathematically convenient spaces
in place of sets of subsets. In the censored data case I have already used

informally the standard notation (Y ′, δ).�e corresponding α(.) is the

one-to-one transformation with α(y, 1) = {y} and α(y, 0) = {y, . . . , τ}.
Furthermore, the move allows to work with situations where the set of

subsets is too large to allow a reasonable probabilistic treatment. An

example is the arbitrary grouping of a continuous variable to subsets of

the real line. If the subsets can be taken to be intervals, one can replace

the sets by their upper and lower bounds so that one can conveniently

work in R2.50

Mathematical convenience aside, the impact of additional ‘information’

on the concept of CAR is of primary interest here.51 A direct gener-

alisation of the CAR conditions (2.21), (2.28), and (2.30) gives either

Pr(Y = y |Z = z) = Pr(Y = y |Y ∈ α(z)) (2.60)

50
�e translation into manageable random variables Z was used by Gill et al. (1997:

Sections 6–9) to formulate CAR when Y is in�nite, and in particular when Y = R.
�e most appropriate way to do so is still debated. See Jacobsen and Keiding (1995),

Nielsen (2000), and Cator (2004) for some critical remarks.
51
�e term ‘information’ is used in quotes here, since random variables and conditional

distributions have properties that sometimes contradict the properties the term

carries in informal use. See Dubra and Echenique (2004) for an example similar to

Billingsley’s (1979: Example 33.11).

116



2.3. Coarsening Variables and Coarsening Completely at Random

or

Pr(Z = z |Y = y) is constant on y ∈ α(z) (2.61)

or

{Y = y}⊥⊥{Z = z} | {Y ∈ α(z)} (2.62)

for y of positive probability.�e equivalence of these conditions follows

as in the previous, simple case. I will call this generalised CAR condition

augmented CAR or A-CAR.

From the last condition, since Y∗ is a (measurable) function α(.) of

Z, the simple CAR condition (2.30) ({Y = y}⊥⊥{Y∗ = y∗}|{Y ∈ y∗})
follows from the condition (2.62).�e requirements (2.60)–(2.62) can

therefore be strictly stronger than the CAR condition discussed thus far.

Consequently, one can not expect that the slogan ‘CAR is everything’ will

hold in this situation.�ere may well be distributions of Z (and functions

α(.)) such that no joined distribution of (Y , Z) satisfying (2.60)–(2.62)

exists. It is clear that adjoining further ‘information’ to Y∗—whether in
the form of an explicit random variable R in a generalised model (Y , R, g)

or simply as a joined distribution of (Y , Z)—will generally destroy the

conditional independence relation that can always be established for

simple CAR. A�er all, knowing {Z = z}might entail muchmore detailed
‘information’ than knowing {Y∗ = α(z)}.

�e Monty Hall problem illustrates the expressiveness of A-CAR: Until

now I took as starting point the moment when the contestant has an-

nounced his choice of door 2. In that case one might take Y = {1, 2, 3}
and Y∗ = {{1, 2}, {2, 3}} as before. Now suppose that we step back to
the situation just before the contestant chooses a door.�en there is

a new element that needs to be represented in the model:�e initial

choice of the door number by the contestant. Denote this choice by C.

Furthermore, denote by R (the number of) the remaining door, the one

not opened by Monty and not chosen by the contestant (this is known

a�er the contestants choice and Monty’s reaction).�en, according to

the rules of the game, the price must be either behind door C or behind

door R. One may de�ne Z := (R,C) as the relevant information.
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2. Probabilistic Models of Incomplete Data

A�er all, both the choice of the contestant and the choice of the show

master might be regarded as part of the probability model describing the

Monty Hall problem. With both parts of ‘information’ available—the

choice of the contestant and the choice of the host—one should be able

to represent the outcome as {(C = c, R = r)} .�e function α(.) maps

the ordered pair to the set {R,C} with the same interpretation as before:
�e doors that may hide the price a�er Monty opened the door with the

goat. Suppose that C, the choice of the contestant, is independent from

Y . Now

Pr(R = 1 |Y = 1,C = 2) = 1

since Monty has no choice when the price is not behind the door chosen

by the contestant. If he has a choice, suppose it is not deterministic so

that

Pr(R = 1 |Y = 2,C = 2) =: p1 /∈ {0, 1}

�en

Pr(Y = 1 |Z = (1, 2)) = Pr(C = 2) Pr(Y = 1)∑
y Pr(Z = (1, 2) |Y = y) Pr(Y = y)

=
Pr(Y = 1)

Pr(Y = 1) + p1 Pr(Y = 2)

6= Pr(Y = 1 |Y ∈ {1, 2})
= Pr(Y = 1 |Y ∈ α((1, 2)))

so that (2.60) is wrong unless Pr(Y = 2) = 0 or Pr(Y = 1) = 0. By a

similar computation, Pr(Y = 3 |Z = (3, 2)) 6= Pr(Y = 3 |Y ∈ {2, 3})
unless Pr(Y = 3) = 0 or Pr(Y = 2) = 0.�us on {C = 2}A-CAR can only
hold when Pr(Y = 2) ∈ {0, 1}.�is is of course the same result as the
one obtained earlier. A�er all, the derivation was basically conditional on

{C = 2}. But the previous discussion could only proceed unambiguously
by conditioning on the choice of the contestant. Otherwise, using the

possible locations of the price as the coarsened information could be

misleading:�e set {1, 2}might come about because the contestant has
chosen door 2 and Monty had opened door 3, or because the contestant
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2.3. Coarsening Variables and Coarsening Completely at Random

had chosen door 1 and Monty opened door 3, a di�erence that can not be

expressed in the subset formulation. With A-CAR, we can now speculate

explicitly about both C, the choice of the contestant, and R, Monty’s

choice.

First, if one considers di�erent choices of the contestant, the CAR (or A-

CAR) condition requires Pr(Y = 1) ∈ {0, 1} if C = 1, Pr(Y = 2) ∈ {0, 1}
if C = 2, and Pr(Y = 3) ∈ {0, 1} if C = 3. If at least two of the three
choices have positive probability, then the second CAR solution (Pr(Y =

2) = 0 and Pr(Y = 1) = Pr(Y∗ = {1, 2}), Pr(Y = 3) = Pr(Y∗ = {2, 3}))
is ruled out. Note that I still use the weak version of CAR where the

condition is trivially true for degenerate distributions of Y .

Secondly, one may consider Monty’s behaviour.�e above argument

worked only if he decided non-deterministically. Now suppose he always

chooses the larger number if he has a choice. So he opens door 3 (and

never door 1) when the contestant has chosen door 2 and the price is

behind that door.�en

Pr(R = 1 |Y = 2,C = 2) = 1

and therefore

Pr(Y = 1 |Z = (1, 2)) = Pr(C = 2) Pr(Y = 1)∑
y Pr(Z = (1, 2) |Y = y) Pr(Y = y)

=
Pr(Y = 1)

Pr(Y = 1) + Pr(Y = 2)

= Pr(Y = 1 |Y ∈ α((1, 2)))

in accordance with A-CAR. But now

Pr(R = 3 |Y = 2,C = 2) = 0

so that if he does open door 1 and thus R = 3, the price must be behind

door 3,

Pr(Y = 3 |Z = (3, 2)) = 1 6= Pr(Y = 3)

Pr(Y = 2) + Pr(Y = 3)
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2. Probabilistic Models of Incomplete Data

unless Pr(Y = 2) = 0 (or Pr(Y = 3) = 0, in which case the condition is

irrelevant), a weaker condition then the previous result. Such possibilities

are generally overlooked when the Monty Hall problem is discussed

using some kind of simulation.

While A-CAR can be much more expressive and easier to work with, it

is not obvious what the role of R should be. If it represents additional

‘information’, then presumably it should be incorporated into the model

by adding it to Y . Here it should make no di�erence whether R is

completely speci�ed (R is ‘observable’ in Jaeger’s terminology) or only

partial given as in the (Y , R, g) formulation. In this perspective, A-CAR

is not a generalisation of CAR.�e introduction of R or other auxiliary

variables is simply an indication that the original model was chosen too

small. In the properly enlarged model, A-CAR reduces to CAR.

On the other hand, such an argument disregards the requirement that Y

ought to represent particular facts within the model. When Y and Y are
used to express the social facts of interest, extensions of the de�nition ofY

can not be justi�ed by particular considerations of aspects of the “simple

device”. But now the additional random variable R certainly introduces

further structure beyond the one present in the simple probability model,

at least when R is not just a function of a possibly extended Y∗. And as
was demonstrated in the last section, the corresponding R-CAR and

A-CAR conditions need not be equivalent with CAR. In particular, when

R is used to represent genuine further ‘information’ that nevertheless

should not be incorporated into a larger model, then A-CAR will o�en

fail.�e slogan ‘A-CAR is everything’ is certainly not correct. A-CAR can

be rejected empirically. It can not be invoked in the same way as CAR

can, as a simple extension of the “simple device”. It is not a modelling

decision.

Note, however, that the decision to distinguish between Y and R is a

modelling decision. It will almost always rest on an idea of a ‘mechanism’

that brings about incompleteness. R is used to represent aspects of this

‘mechanism’ and, since the ‘mechanism’ is thought to operate a�er the

fact represented by Y came about, it can not be part of Y itself. While I

do not think that the idea of a ‘mechanism’ acting independently from Y

can be given a reasonable interpretation in social science applications,
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2.4. Conclusions: CAR Modelling

the distinction it hints to might still be relevant when versions of A-CAR

are contemplated.

2.4. Conclusions: CAR Modelling

Even though the connection with empirical investigations still needs

clari�cation and the discussion up to now was con�ned to the model

world, the results for the “simple device” are much stronger than could be

expected from a discussion within the framework of classical sampling

theory. First of all, I have shown that the introduction of a probabil-

ity model does not restrict the possible underlying values beyond the

consistency requirement so that the “simple device” does not preju-

dice certain solutions against others. Secondly, it is possible to show

the mathematical equivalence of several formalisations of randomly

coarsened data. �is can’t be done in the sampling framework since

in that case decompositions and independence relations can hold at

most approximately. And it is possible to deduce that the distribution of

randomly coarsened variables will imply a unique distribution of the

variable of interest.�e latter result is more or less obvious in the case

of either exact or completely missing data where it may be formulated

within the classical framework of sampling as well. But in all other cases,

and thus in situations of much larger practical relevance, this could only

be done within the probability model.

Since to any distribution of the coarsened variables there always exists a

(weak) CAR model, it is impossible to reject the suggestion by referring

to observations of the coarsened variables. CAR is always a viable choice

in the model framework that can not be criticised on empirical grounds.

CAR can therefore serve as a reference point for further speculations

about the modelling within the probabilistic framework. Such specula-

tions are not arbitrary.�ey are constrained by the very construction of

probability models. But they clearly are not assumptions about reality.

�ey can de�nitely only be formulated within the probability model.

�ey thus presuppose the “simple device”.
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2. Probabilistic Models of Incomplete Data

It is however possible to judge the merits of such a model by appeal to

other principles.�e existence of a ‘mechanism’ may serve to exclude

some cases where CAR would seemingly imply more than the validity of

taking the coarsened variables at face value. When a ‘mechanism’ in the

strong sense of a well de�ned transition kernel from Y to Y∗ does not
seem to be appropriate, one must be cautious when CAR implies several

(degenerate) solutions. Similarly, extensions of CAR like R-CAR and

A-CAR introduce further elements that might be used to judge model

adequacy. But it turns out that these extensions can not be employed as a

general reference point in the same way as simple CAR does.

While it is reassuring to learn that the “simple device” works without

prejudicing certain solutions, it must be remembered that the critics

refer to answer patterns of real people in real surveys.�e theoretical

analysis provided here can do no more than to show that the “simple

device” is not inadequate by construction. An answer to the concerns

of the critics, however, will also need a critically appraisal of empirical

work.
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3

A Case Study: Parent’s Length

of Life

�is Chapter studies a particular case of incomplete data. It does not aim

to provide an appraisal of empirical work using the “simple device”. Rather,

it provides a view of the working of the “simple device” in a complicated

setting, a setting not covered by the now classical applications to missing,

grouped, truncated, or censored data. Moreover, the relation of the

“simple device” to classical survey statistics is examined.

�e practical problem posed here is how to gain insight into mortality

conditions during the early 20th century from current survey data. While

o�cial statistical agencies routinely provide life tables since the late 19th

centuries, these are naturally restricted in scope and detail. Survey data

may provide more background information and apply also to times and

geographical areas not covered by the o�cial statistics. More precisely,

additional information about mortality in the early 20th century can be

gained from current surveys when respondents were asked to provide

information about their parents, in particular about their parent’s birth

years, whether they were still alive at the interview date, and, if not, about

their respective years of death. Both the German Life History Study

(GLHS) and the Socio-economic Panel (SOEP) provide such information

and onemight try to use this type of information to enlarge the knowledge

about mortality conditions in earlier periods.1

1
For previous analyses of the SOEP data about the life lengths of parents see Schepers
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3. A Case Study: Parent’s Length of Life

On the other hand, survey data on mortality of the parent generation

naturally su�er from incompleteness for various reasons. Since the

information about parents is supplied by their children, life length of

childless persons is unavailable. It is not just missing: From survey data

alone even the number of such persons can not be estimated. Moreover,

the information is only available when the children themselves survived

up to the survey date. And the chance of this to happen will also depend

on the number of children of the parents.�us, even though the focus is

on the mortality of the parent generation, the mortality of the current

generation must be taken into account. A further complication arises

from the possibility that the same person is included several times in the

survey because several of her or his children were questioned.�is will

in general be di�cult or impossible to check using survey methodology.

Relatedly, people with many children have a higher probability to be

included in the survey. Lastly, it should not be forgotten that migration

and expulsion as well as changes of territorial borders make it di�cult

to maintain the idea of a uniquely de�ned target population. In this

Chapter, however, I will cling to the idea in order not to overburden the

discussion.

3.1. �e Structure of Descent

�e �rst problem to be treated is that of possible dependence by descent

and of unequal inclusion probabilities. In this Section and the next, I

will abstract from all other aspects of the data and consider only what

this type of incompleteness implies for the analysis strategies.

An extremely simpli�ed model of the situation is depicted in Figure 3.1.

Members of a generation are represented on horizontal lines by circles

and Wagner (1989), and Klein (1993). In some cases, survey data about about

life lengths of relatives or household members are the only source of information

on mortality available. See Gakidou and King (2006) for further references to

applications and a discussion of of standard methods.
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3.1. �e Structure of Descent

(for women) and squares (for men).2�e generations follow each other

through time t = -2, -1, 0 down the Figure. Arrows point from parents

to children.�us all generations are exactly aligned, there is no overlap

of generations. Moreover, members of a generation are distinguished by

sex and the number of their o�springs only. Life length will be thought

of as an additional attribute of the nodes of the graph, de�nable without

regard to either the placement into a certain generation or the number

of o�springs.

t

0

-1

-2

Figure 3.1.: A complete ancestry graph. Time runs from the oldest
generation at top down to the youngest. Men andWomen are distinguished

as circles and squares. Looking backwards in time, information on the two

empty circles is unavailable.

Looking forward in time, starting at t = -2 and following the arrows

down the Figure allows to trace out all ancestral dependencies between

members of di�erent generations. I will call the graph representing the

complete ancestral dependencies the ancestral graph.3 However, looking

backward in time, starting at t = 0 and following the arrows in the

opposite direction will recover only a part of the ancestral graph. In the

Figure, the two empty circles can not be reached from any member of

the population at time t = 0.�e resulting graph will be called pedigree

2
It should be obvious that the terms ‘generation’ as well as ‘parent’, ‘child’, ‘men’, etc.

pertain to the model entities presented here. I have therefore abstained from making

additional typographical distinctions.
3
�is use of the word “ancestral graph” should not be confused with the ancestral

graphs used in the theory of graphical models. See Richardson and Spirtes (2002,

2003) for the latter concept.
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3. A Case Study: Parent’s Length of Life

graph.4

Suppose the members of a generation can be listed in the form

Ut := {ut,1, . . . , ut,Nt}

so that the size of a generation is |Ut| = Nt. Also, let the generations be

partitioned into their male and female members so that

Ut = U t
f ∪ Um

t and U t
f ∩ Um

t = ∅

Further write U := ∪tUt for the set of members of all generations
considered.�en the ancestral graph is technically speaking a directed,

acyclical, bipartite graph whose nodes are the elements of U f ∪ Um.

Translating the conditions of an ancestral graph into the language of

graph theory, all nodes of positive indegree must have indegree exactly 2

(all people have two parents, up to the oldest generation considered).

Furthermore, if there is an edge (ut,i, ut+1) from ut,i to one ut+1 and a

di�erent edge (ut,j, uu+1) to ut+1, then either ut,i ∈ U t
f and ut,j ∈ Um

t ,

or ut,i ∈ Um
t and ut,j ∈ U t

f (all people have a mother and a father).

Note that the subgraphs that arise from deleting either all nodes U f or

all nodes Um and the respective edges gives a forest, a union of trees.

�us, retricting attention to either fathers or mothers simpli�es analyses

considerably.

In order to deal with the ancestral information from a statistical point

of view, de�ne a pair of statistical variables that record the mother and

father of each member of a generation as

m : Ut+1 −→ U t
f

f : Ut+1 −→ Um
t

4
�e reconstruction of pedigree or ancestral graphs from partial information is

an important topic in biology.�ere is a large specialised literature dealing with

super�cially similar problems. See Tavaré (2004) for a vivid account of probability

models for pedigree graphs and Steel and Hein (2006) for a particular application.

However, the focus of that literature is on many generations and rarely touches

statistical problems. �ere is also a formal connexion to the theory of random

re�nements of intervals (see e.g. Bertoin 2006), which, however, also concentrates

on long sequences.
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3.1. �e Structure of Descent

giving the mothers (elements of U t
f ) and fathers (elements of Um

t ) of all

members of the generation Ut+1.�is is a well de�ned function since
everyone has both a father and a mother. Now the set of parents can be

written as

Up
-1
:= {m(u0) | u0 ∈ U0} ∪ {f (u0) | u0 ∈ U0}

and one of the problems to be discussed can now be formulated as

Up
-1 ( U-1

i.e., the parent generation Up
-1 is in general a strict subset of the previous

generation U-1.

To make reference to children easier, it is convenient to introduce the set

valued function

c : Ut −→ P(Ut+1)

c(ut) :=

{
m-1({ut}) if ut ∈ U t

f

f -1({ut}) if ut ∈ Um
t

�us, c(ut) is just the set of children of ut and the set of parents can also

be written as Up
-1 = {u-1 ∈ U-1 | c(u-1) 6= ∅}.

To complete the description of this simpli�ed model, a variable repre-

senting life length is attributed to each member of the population:

T : U −→ T := {0, 1, . . . , τ}

where in accordance with the discussion in Chapter 2 life length is

supposed to take a �nite number of values. Note that I here do not

impose any restrictions on T(.), it may take any value. In particular,

T(u) = 0 and |c(u)| > 0 is not ruled out. Also, T(u) is assumed to be
de�ned for all u, even for the currently living generation.

Finally, in the following I will drop the reference to the generation

subscript whenever there is no danger of confusion. In particular, Up
-1

will be denoted by Up and U c := U0 will denote the set of members of
the current generation, the children of Up. Similarly, subscripts to the

elements of these sets will be dropped when possible.
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3. A Case Study: Parent’s Length of Life

3.2. Sampling from the Children Generation

In this Section, I will ignore the problem that in general Up ( U . Instead,
I will pretend that interest actually centres on the parent generation.�is

rede�nes the original question by excluding childless persons from the

target population.�en only two related di�culties remain: First, the

more children someone of the parent generation has, the higher the

probabilty of obtaining information about her or his life length. Secondly,

he or she may be included as many times in the survey as she has children,

but this will generally be unknown to the survey statistician.

To discuss the impact of these features on the sampling approach, let

a sample be any subset of the population U c. A collection of samples

S := {s1, s2, . . .} together with a probability distribution de�ned on the
elements of S is called a design. Furthermore, let S denote a random
variable on some probability space, say (ΩS,A, Pr), with values in S
whose distribution equals the design distribution.�us

S : ΩS −→ S = {s1, s2, . . .}
Pr(S = s) := Pr({ω ∈ ΩS | S(ω) = s})

where measurability is taken for granted. In order to distinguish this

probability from other distributions—speci�cally those used by the

“simple device”—I will write p(s) for Pr(S = s). Suppose for simplicity

that the design is that of a simple random sample without replacement,

i.e. all samples s ∈ S are of equal size |s| =: n, say, and all samples have
the same probability.�en Pr(S = s) = p(s) = 1/

(
N0
n

)
and the inclusion

probabilities of the �rst and second order are

π(u) := Pr(S 3 u) =
∑
s∈S

1[s](u)p(s) =
n

N0

π(u, u′) := Pr(S 3 u ∩ S 3 u′) =
n(n− 1)

N0(N0 − 1)
for u 6= u′

�ese inclusion probabilities are the backbone on which most computa-

tions in the classical sampling theory rest.
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3.3. Induced Sampling from the Parent Population

When a sample is chosen according to this probability distribution (using

some appropriate random device), one proceeds to ascertain the the life

lengths of the parents of all sampled persons, i.e. T(m(u)) and T(f (u))

for all u ∈ S.5

3.3. Induced Sampling from the Parent Population

A natural next step is to consider {m(u) | u ∈ s} ∪ {f (u) | u ∈ s}, the
fathers and mothers of the people included in the sample s, as a sample

from Up.�is is super�cially similar to sampling with replacement in

that parents of several children may be included several times. �e

multiplicities of inclusion do not, however, result from a sequential

drawing from the complete population as in most sampling designs with

replacements.

I will denote the set of sampled parents by s∗.�us,

s∗ := {m(u) | u ∈ s} ∪ {f (u) | u ∈ s}

which I will call the set-sample from Up.�e multiplicities of elements

u of s∗ will be denoted by N({u}). �e set s∗ together with the map
u 7→ N({u}) for u ∈ s∗ will be called a multiset, denoted by s∗∗.6

5
Textbooks more o�en than not liken the values of sample statistics to random

variables, possibly adding even stronger quali�cations like independence or identical

distributions.�e reasoning seems to be that even if T(u) is a �xed quantity for each

u, whether it is included in a sample will only depend on the sampling design. In

consequence, one might conceive of a random sample as a probability sample from

T , or so the reasoning goes.
But on closer inspection, the reference should be to the function T∗ : ΩS → T n

which is the composition of T and S. Since T is �nite and S(.) is assumed to be
measurable, the function T∗ is in fact a well de�ned random variable. But since the

values of this function will be unknown for all ω ∈ ΩS
except for the one used in the

actual sample, nothing more can be said about this function.�e use of the de�nite

article when referring to such a function will be easily misleading. It seems much

better to think of T∗(.) as a whole class of random variables.
6
See Stanley (1997: Chap. 1.2) for some conventions about multisets.�e multiset

s∗∗ is called an ordered sample by Särndal et al. (1992: 49) because they consider

sequential draws from a population with replacement. Since this is not what actually
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3. A Case Study: Parent’s Length of Life

An examplemaymake the situation clear. Suppose the following pedigree

graph is given: Suppose further that a sample of size 3 is drawn without

u-1,1 u-1,3 u-1,5u-1,2 u-1,4 u-1,6

u0,1 u0,2 u0,3 u0,4 u0,5

Figure 3.2.: An example of a pedigree graph.

replacement from the 5 children.�en a possible sample comprises only

the children of the �rst couple, s = {u0,1, u0,2, u0,3} and this induces a
sample s∗∗ = {u3-1,1, u3-1,2} of the parent generation, where the multiplici-
ties are noted as superscripts.�is is obviously the sample of minimal

e�ective sample size |s∗| = 2. If the sample is s = {u0,1, u0,4, u0,5}, then
s∗∗ = {u1-1,1, u1-1,2, u1-1,3, u1-1,4, u1-1,5, u1-1,6}, with e�ective sampling size 6.

It is convenient to extend the de�nition of the counting function N(.)

so that it counts the number of people included in the sample s∗∗ from
arbitrary subsets of A ⊆ Up, counting multiplicities. Any given sample

of children s will then induce a counting measure, a function de�ned on

all subsets of parents, by:

N : P(Up) −→ N

N(A) :=
∑
u∈A

N({u}) ∀A ⊆ Up

that associates to a subset of parents A the total number of times they are

included in the sample. Here, of course, N({u}) := 0 if u is not included
in the sample of parents s∗.7

happens here, I prefer to call the resulting sample a multiset.�e reduced set s∗

that only enumerates the unique elements of the sample is also called set-sample by

Särndal et al. (1992: 49).
7
�is justi�es the rather clumsy notation N({u}) used above.
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3.3. Induced Sampling from the Parent Population

Finally, the dependence ofN(.) on the underlying sample of children and

therefore on ω ∈ ΩS must be made explicit. To do so, one can further

extend the de�nition of N(.) to the two-place function

N∗ : ΩS × P(Up) −→ N

N∗(ω,A) :=
∑
u∈A
|c(u) ∩ S(ω)| ∀A ⊆ Up (3.1)

�at is, N∗(ω,A) counts the number of times members of the subset A
of the parent generation are included in the sample S(ω). In this way,

N∗(., .) becomes a point process on Up.

Note that since everyone in the sample of children has both a father

and a mother, and since the sample of children is a simple random

sample with �xed sample size n, the sample size n∗ := |s∗∗| (i.e. counting
multiplicities) of the parent generation is

n∗(ω) :=
∑
u∈U p

N∗(ω, {u}) = 2
∑

u∈S(ω)
1 = 2n

for all outcomes of the sampling procedure ω.

�e advantages of using the notion of point processes in the context of

the induced sampling from the parent generation stem from the ease

with which the dependencies between subsets of Up can be handled and

the possibility to incorporate multisets of observations.8 In particular,

one can de�ne generalisations of the inclusion probabilities introduced

in the previous Section. To do so, let

ν({u}) := E(N∗(., {u})) =
∫
ΩS

N∗(ω, {u}) d Pr(ω)

where the expectation is taken with respect to the probability distribution

of the sampling design.�us, ν({u}) is the expected number of times
that u ∈ Up is included in the sample of parents. It would equal the

8
A point process is called simple if N∗(., {u}) ≤ 1 with probability 1.�us, we are
dealing with non-simple point processes.�is must be born in mind since many

introductory texts on point processes concentrate on simple processes.
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3. A Case Study: Parent’s Length of Life

inclusion probabilities π(.) if parents would be included at most once

into the induced sample. More generally, for subsets A ⊆ Up of parents,

ν(A) := E(N∗(.,A)) is called the intensity measure of the point process

N∗(., .).

To put themachinery of point processes into action, consider the problem

of how to estimate the mean life time of all persons of the parent genera-

tion Up. Whether this is possible is not at all clear at the outset. A�er

all, people with more children will be included with higher probability

in the sample and the number of children will normally be connected

to survival (or to life time). On the other hand, the sampling theory

approach should be agnostic about any such relation between numbers

of children and life lengths. In fact, for any parent u, the number of

children of u, |c(u)|, and her or his life time T(u), are not constrained in
any way, not even probabilistically, in the present set-up.

Looking �rst at the sample total sum of life lengths of parents, one may

consider the function

M̂(ω, T) :=
∑

u∈S∗(ω)
T(u)N∗(ω, {u}) =

∑
u∈U p

T(u)N∗(ω, {u})

�is is a random function depending on the sampling design.�e second

expression extends the sum to all parents and makes the handling of

M̂(., T) particularly simple and transparent.�e expectation of M̂(., T)

with respect to the design is

E
(
M̂(., T)

)
=
∑
u∈U p

T(u)ν({u})

because of the additivity of expectations.9 To compute the intensity

measure for singletons, note that

ν({u}) = E(N∗(., {u})) =
|c(u)|∑
k=0

kPr(N∗(., {u}) = k)

9
�is is a trivial version of Campbell’s theorem in point process theory (e.g. Reiss 1993:

Chap. 5.3) or Robbin’s formula in the theory of random sets (e.g. Nguyen 2006: Chap.

2). Both are obviously related since samples of the parent generation are random

(multi-) subsets of the underlying U p
.
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3.3. Induced Sampling from the Parent Population

To see how the probability of being exactly k times included in the sample,

Pr(N∗(., {u}) = k), can be computed, one may look back at the example

presented at the beginning of the Section. Of the 10 =
(
5

3

)
di�erent

samples of children, exactly one induces the sample s∗∗ = {u3-1,1, u3-1,2}
of parents and 3 samples (taking one of the children of the �rst couple

and both the children of the second and third couple) of the form

s∗∗ = {u1-1,1, u1-1,2, u1-1,3, u1-1,4, u1-1,5, u1-1,6}. In the remaining 6 cases, the
�rst couple has multiplicities 2 (2 of their 3 children are chosen) and

one of the other couples appears once.�us, ν({u-1,1}) = ν({u-1,2}) =
1/10 · 3 + 6/10 · 2 + 3/10 · 1 = 1.8, while ν({u-1,j}) = 6/10 · 1 = 0.6 for all
other members of the parent generation. Note that indeed

∑
ν({u}) =

2 · 1.8 + 4 · 0.6 = 6, so that the sum of the expected multiplicities gives
twice the number of sampled children.

Now consider the slightly more general case where monogamy is no

longer assumed, as in the following Figure 3.3. Here, ν({u-1,1}) = 3/10 ·

u-1,1 u-1,3 u-1,5u-1,2 u-1,4 u-1,6

u0,1 u0,2 u0,3 u0,4 u0,5

Figure 3.3.: An example of a pedigree graph without monogamy.

2 + 6/10 · 1 = 1.2 but ν({u-1,2}) = 1/10 · 3 + 6/10 · 2 + 3/10 · 1 = 1.8 and
ν({u-1,3}) = 3/10 · 2 + 6/10 · 1 = 1.2 while ν({u-1,j}) = 0.6 for the rest of
the parents. Once again,

∑
ν({u}) = 6.

�e general pattern follows from observing how the multiplicities of a

given parent umight arise: She will be included exactly k times in the

sample of parents (k ≤ |c(u)|) if exactly k of her children are included
in the sample of children.�ere are

(|c(u)|
k

)
ways of selecting k of her

children. Setting these aside in sampling the children, one has only to

consider the number of samples of size n− k from all the N0 − |c(u)|
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3. A Case Study: Parent’s Length of Life

children that are not hers. It follows that

Pr(N∗(., {u}) = k) =

(
|c(u)|
k

)(
N0 − |c(u)|

n− k

)/(
N0

n

)
�is is just the hypergeometric distribution. It follows that

ν({u}) = n|c(u)|
N0

and

E
(
M̂(., T)

)
=

n

N0

∑
u∈U p

T(u)|c(u)|

�is suggests to use the estimator

M̂
∗
(ω, T) :=

N0

n

∑
u∈U p

T(u)N∗(ω, {u})
/
|c(u)| (3.2)

which will be design unbiased for the population total
∑

T(u).�is is

called the Hansen-Hurwitz estimator of a total (e.g. Tillé 2006: Chap. 2).

It is not the better known Horvitz-�ompson estimator which would

use weights equal to the inclusion probabilities π(.), which in this case

would be Pr(N∗(., {u}) > 0). Since the Horvitz-�ompson estimator
correspondingly uses only the set-sample s∗, it can in general not be
computed from the sample information available in general surveys:

It would require either access to a complete list of labels of the parent

generation (and an identi�cation of the label from the respondents) or

the possibility to identify siblings among the respondents.

In contrast, despite its apparent dependence on the frame Up and on

N∗(., .), neither of which will be known in general, (3.2) can be computed
from the sample information provided by the children alone. It therefore

is a valid statistic for most sampling situations.�e only prerequisite is

that the number of siblings of the children (the respondents) is known.

To see this, note that

M̂
∗
(ω, T) =

N0

n

∑
u∈U c

1[S(ω)](u)

(
T(m(u))

cm(u)
+
T(f (u))

cf (u)

)
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3.3. Induced Sampling from the Parent Population

where now cm(u) and cf (u) refer to the number of siblings of u (in-

cluding herself) on her mothers resp. her fathers side.�e distinction

between maternal and paternal siblings is of course necessary unless

strict monogamy is assumed. To illustrate this point, reconsider the last

example where the sample of children is s = {u0,1, u0,2, u0,3}.�en the
sample of parents is s∗∗ = {u2-1,1, u3-1,2, u1-1,3}.�us M̂

∗
expressed in terms

of the parents becomes

M̂
∗
=
5

3

(
T(u-1,1) · 2

2
+
T(u-1,2) · 3

3
+
T(u-1,3) · 1

2

)
Now in terms of the children’s sample, the �rst term arises from both

u0,1 and u0,2 reporting the age of their common mother, so it is reported

twice. Furthermore, there are two siblings of this mother.�e second

term arises similarly. Finally, there is only one report on the age of u-1,3
(from u0,3), there is, however, a half-brother of u0,3 (through his mother)

that must be taken into account and so the denominator is also 2. Note

that only the values of cm(.) and cf (.) for the respondents are needed

in the calculation. On the other hand, neither the labels of the parent

generation (the elements of Up) nor the multiplicities of their inclusion

in the sample (the values of N∗(., {u})) are needed for the calculation of
M̂
∗
.

To get an estimate of the mean life length of the parents, the size of the

parent generation N := |Up| is needed. Now clearly

∑
u∈U c

1

cf (u)
= |Um| and

∑
u∈U c

1

cm(u)
= |U f

-1|

so that a design unbiased estimator of |Up| is

∑
u∈U c

1[S(ω)](u)
1

π(u)

(
1

cf (u)
+

1

cm(u)

)

Once again, for the property of design unbiasedness, it is not necessary

to know the actual relatedness of the respondents.
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3. A Case Study: Parent’s Length of Life

�e ratio estimator of the mean life time of the parent generation thus

becomes∑
u∈S(ω)

(
T(m(u))

cm(u)
+
T(f (u))

cf (u)

)
∑

u∈S(ω)

(
1

cf (u)
+

1

cm(u)

) (3.3)

where the factor π(.) cancels since simple random sampling was assumed.

�is is no longer design unbiased, but will be approximately so, at least

to �rst order and when both n andN0 are large (Särndal et al. 1992: Chap.

5.6).

In summary, the classical sampling theory approach provides a design

unbiased estimate of the total life time of the parent generation and an

approximately design unbiased estimator of the mean life time even

though nothing is assumed about the connection between survival times

and number of children. But this result should not be overstated: First of

all, design unbiasedness is not a panacea, and design unbiased estimators

can behave rather erratic. Secondly, the classical sampling theory presup-

poses at least some knowledge of the underlying labels of the population.

�is is not in general available in the current problem so that many of

the standard estimators (and/or evaluations of their performance) are

unavailable. And lastly, up until now the estimators constructed from

the sampling theory perspective presuppose an extremely simpli�ed and

restrictive model world to work at all.

3.4. Assumptions about Independence

One of the restrictions used at the outset in the constructions of the

previous two Sections was that instead of the life lengths of the previous

generation only the life length of the parent generation was of interest.

But such inferences would only rarely be useful. To extend the results to

all members of the previous generation, one may assume that mortality

is in a reasonable sense ‘independent’ of whether or not someone of the
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3.4. Assumptions about Independence

previous generation had children. Such an assumption would open the

possibility to draw at least partial inferences about the mortality of the

whole previous generation.10

But how can the notion of ‘independence’ be made precise so that it can

serve its purpose? What is meant when it is assumed that two variables

are independent? �ere are basically two di�erent approaches to an

explication. A �rst one conceptually refers to the process that brings

about the facts recorded by statistical variables. �is might be what

most statisticians and econometricians have in mind when they speak

of a data generating process.�ere is, however, some ambiguity in this

expression because one needs to distinguish between processes which

create data and processes which bring about the facts that, subsequently,

can be recorded as data. I propose to use the expression ‘data generating

process’ only in the former sense, for example, when referring to a survey,

and speak of “social processes” when referring to processes that one can

sensibly think of as creating facts.

A second approach avoids speculations about social processes and

concentrates instead on the recorded facts.�e approach follows closely

the survey sampling tradition where one considers a two-dimensional

variable

(X, Y) : U −→ X × Y (3.4)

In this context, the presumption is that (X, Y) records the facts prevailing

in the populationU according to some categorisation expressed byX×Y .
�is is a particular way to record the facts, a way which I have called

a statistical variable. �e approach avoids to say anything about how

facts are brought about. It only stipulates that the facts are reasonably

recorded by using X × Y and that the facts can be ascertained for any
person in the population U .

�e �rst approach has to add further structure to (3.4) in order to express

‘independence’. It must express the idea that values of X and Y result

from some processes and then assume that these processes develop

10
�e inferences will still be partial since it will not be possible to estimate survival

probabilities for children and young adults below the minimum child bearing age.
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3. A Case Study: Parent’s Length of Life

independently. In other words, a model for the social processes that

create facts must be proposed. In addition to the assumption that the facts

are reasonably described by X ×Y , one needs a particular way to model
the emergence of these facts. If a probabilistic model—as in the “simple

device”—is adopted, then the emergence of values can be described

by a probability space and a reasonable explication of independence

becomes stochastic independence between random variables de�ned on

that probability space.

�e mathematical de�nition of stochastic independence requires (a�er

the introduction of a suitable probability space) that all joint probabilities

are equal to the product of the respective marginal probabilities.�is

might be done by writing

(X, Y) : U ×Ω −→ X × Y (3.5)

where Ω is equipped with a set of subsets of Ω, say B, for which a
probability Pr(.) is de�ned.�en a probability distribution for (X, Y)

can be introduced by setting

Pr((X, Y)(u, .) ∈ A) := Pr({ω ∈ Ω | (X, Y)(u, ω) ∈ A})

provided that {ω ∈ Ω | (X, Y)(u, ω) ∈ A} is an element of B.

For each member u of the population, stochastic independence can now

be de�ned by

∀A ⊆ X ∀B ⊆ Y : Pr(X(u, .) ∈ A |Y(u, .) ∈ B) = Pr(X(u, .) ∈ A)

(3.6)

where both X(u, .)−1(A) and Y(u, .)−1(B) are elements of B so that prob-
abilities for these ‘events’ can be deduced. Note that stochastic indepen-

dence can be de�ned for each member of the population U . And it is
an extra assumption that independence holds for all u ∈ U . It must
be stressed that independence of (X, Y)(u, .) from (X, Y)(u′, .), while
de�ned in parallel to the de�nition (3.6) in probabilistic approaches, is

used for purposes quite di�erent from the de�nition of the independence

of X from Y . �e former is a constitutive decision about the model
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3.4. Assumptions about Independence

structure andmust be distinguished from assumptions like independence

of X(u, .) from Y(u, .) for all u ∈ U .11

Mathematicians and statisticians o�en call elements of B ‘events’ even
though, of course, nothing has to happen for such ‘events’ to be de�ned.

Rather, the notion of ‘events’ described by a system of subsets B is a
static notion quite far removed from dynamic concepts. While such

parlance can only present stylised facts and not their bringing about, the

mathematical de�nition of independence can be turned into a procedu-

ral explication by referring to random generators that work physically

independent from each other. For example, one might create values for

X with a die, and values for Y with another die, and assume that both

processes work independently from each other.�e procedural explica-

tion of stochastic independence refers to causally unrelated methods of

producing real events that can be described by a probability model.

�is approach presupposes a probabilistic model for the social processes

that create facts. While the introduction of a probability space might

seem to be an extraneous and arti�cial addition to the description of

the emergence of social facts, the obvious advantage of the approach is

that it can rely on the calculus of probability, including the many results

known about independent variables.

On the other hand, the approach may be judged to be far to restrictive,

presupposing that probability models accurately describe the constitution

as well as the changes of statistical variables recording social facts. An

alternative approach should therefore refer only to the eventually realised

data, i.e. the data generating process in the restricted sense. Turning

back to the formulation (3.4), a description of social facts, one may try

to de�ne independence not with respect to some probability space but

with respect to the relative frequencies that describe social facts. To this

11
While the condition (3.6) seems innocuous and is o�en treated in textbooks as a

basic de�nition that does not deserve much comment, the mathematical strength

of the condition can not be overemphasised. E.g., Holbrook (1981) shows that if

(X(ω), Y(ω)) are independent uniform random variables de�ned on Ω = [0, 1] with

Lebesgue measure, then (X, Y) : Ω→ [0, 1]× [0, 1] is a space-�lling curve. Further
examples from many areas of mathematics are discussed by Kac (1959).
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end, write P(X ∈ A) for the relative frequency, i.e.

P : P(X ) −→ [0, 1]

P(X ∈ A) := |{u ∈ U |X(u) ∈ A}|
/
|U| ∀A ∈ P(X ) (3.7)

�is is, of course, a probability measure, albeit a special one.�ere is no

additional probability space Ω needed for its construction. Furthermore,

it is de�ned not for each member of U but only for the population U as a
whole. It simply counts subsets of the population U and relies only on
the statistical variables introduced in (3.4).

�e intuition behind this approach, rather di�erent from the probabilistic

version, is that X is ‘independent’ from Y if the distribution of X does

not depend on subsets of U that can be selected by considering values of
Y alone.�e advantage of such a de�nition is that an explicit reference

to the processes creating the values of X and Y would be super�uous.

One may then try to copy the de�nition of stochastic independence from

the probabilistic version (3.6) by requiring

∀A ⊆ X ∀B ⊆ Y : P(X ∈ A |Y ∈ B) = P(X ∈ A) (3.8)

�ere is, however, a problem resulting from the fact that the equality

formulated in (3.8) can not, in general, be satis�ed. A small example will

show this. Assume that X := Y := {0, 1}, U has 10 members, and the
marginal distributions are as follows:

X = 0 X = 1

Y = 0 n11 n12 4

Y = 1 n21 n22 6

3 7 10

(3.9)

I now want to make the assumption that X and Y are independent.

Following the de�nition given in (3.8), one would need to �nd, for

example, values of n11 and n12 such that

n11 + n12 = 4,
n11

4
=
3

10
, and

n12

4
=
7

10
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But no integral values of n11 and n12 can be found that satisfy these

requirements.�e simple consequence is that (3.8) can not, in general, be

used to postulate assumptions about independence in �nite populations.

In fact, there are four tables with the given marginal frequencies:

a) 0 4 b) 1 3 c) 2 2 d) 3 1

3 3 2 4 1 5 0 6
(3.10)

�e corresponding relative frequencies of these tables can be embedded

in the simplex {(p1, p2, p3, p4) | pi ≥ 0,
∑

pi = 1}. In Figure 3.4, the four
points are shown together with the surface of all points that satisfy the

independence formulation 3.8. It is plain that it will be the exception

rather than the rule to �nd a point on the surface of independence for

any given set of marginal frequencies.

Figure 3.4.: �e simplex of probabilities in 2 × 2 tables, the surface of
independence, and the 4 tables with margins given by Example 3.9.

If one nevertheless wants to follow this second approach one needs

a weaker formulation that allows for approximate equalities between

conditional distributions. I will use the following de�nition:
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X is ∆-independent from Y w.r.t. the partition Yp of Y if

max{|P(X ∈ A |Y ∈ B)−P(X ∈ A)| |A ⊆ X , B ∈ Yp} ≤ ∆
(3.11)

�e idea behind this de�nition is that conditional distributions of X

should be approximately equal among the subsets of U induced by a
given partition of Y .�e partition Yp (instead of the singletons of Y)
�gures in the de�nition since it will o�en only be necessary to distinguish

less detail than could be achieved with the full information from Y . E.g.

in the problem treated here, Y(u) would correspond to the names (and

numbers) of children of u. But what is needed, at least in this Section,

is only the information whether u had children or not (|c(u)| > 0 or
|c(u)| = 0).

�e earlier formulation in (3.8) can then be seen as a limiting case where

∆ = 0 and Y is partitioned into its one-element subsets. But, as the
example has shown, these strong requirements are rarely ful�lled. On

the other hand, given any partition of Y , one can always �nd a minimal
∆ such that X is ∆-independent from Y . To illustrate with the example,

one �nds for the table b) in (3.10):

|P(X = 0 |Y = 0)− P(X = 0)| = |1/4− 3/10| = 0.050
|P(X = 0 |Y = 1)− P(X = 0)| = |2/6− 3/10| = 0.033
|P(X = 1 |Y = 0)− P(X = 1)| = |3/4− 7/10| = 0.050
|P(X = 1 |Y = 1)− P(X = 1)| = |4/6− 7/10| = 0.033

�e minimal ∆ is therefore 0.05 w.r.t. the partition of Y into the sets {0}
and {1}.

Note the asymmetry of the de�nition: While X is 0.05-independent from

Y , the minimum of ∆ for Y given X follows from

|P(Y = 0 |X = 0)− P(Y = 0)| = |1/3− 4/10| = 0.0667
|P(Y = 0 |X = 1)− P(Y = 0)| = |3/7− 4/10| = 0.0286
|P(Y = 1 |X = 0)− P(Y = 1)| = |2/3− 6/10| = 0.0667
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|P(Y = 1 |X = 1)− P(Y = 1)| = |4/7− 6/10| = 0.0286

�us, Y is only 0.0667-independent from X.�e asymmetry may seem

unfortunate. But the formulation accurately re�ects what is needed

in the application: �ere is information on the relative frequencies

of life times of members of the previous generation given that they

have children, i.e. P(T = . | |c| > 0) is (approximately) known, and this
should provide a clue for the frequencies of life lengths of all members

of the previous generation, P(T = .). When it can be stipulated that

T is ∆-independent of {|c| > 0}, then the frequencies are close by
de�nition, P(T = . | |c| > 0) ≈ P(T = .). If further T is �nite, then the
closeness of relative frequencies implies closeness of conditional means

to marginal means and the same holds true for many other functions of

the frequencies.

A few immediate implications of the de�nition are:

a) If X is ∆-independent from Y w.r.t. a partition Yp, then this is also
true for all ∆′ ≥ ∆.

b) For a �xed B ∈ Yp,

max
A⊆X
{|P(X ∈ A |Y ∈ B)−P(X ∈ A)|} =: ‖P(X ∈ . |Y ∈ B)−P(X ∈ .)‖

is o�en called the total variation distance between P(X ∈ . |Y ∈ B)

and P(X ∈ .).�is distance can be expressed in terms of the densities
P(X = x) and P(X = x |Y ∈ B):

max
A⊆X
{|P(X ∈ A |Y ∈ B)− P(X ∈ A)|} =

1

2

∑
x∈X
|P(X = x |Y ∈ B)− P(X = x)|

�is shows that the computation of ∆ for a given B can be carried

out running only through the singletons of X .�ere is no need to
consider all subsets of X . Only |X | · |Yp| absolute di�erences must
be computed.12

12
Strasser (1985: 5–7) proofs this and similar relations in a rather general setting.
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c) If X is ∆-independent from Y w.r.t. a partition Yp, and B1 and B2 are
both elements of Yp, then

max{|P(X ∈ A |Y ∈ B1 ∪ B2)− P(X ∈ A)| |A ⊆ X} ≤ ∆

�is follows since if B1 6= B2, then B1 ∩ B2 = ∅ ( Yp is a partition) so
that

P(X ∈ A |Y ∈ B1 ∪ B2) =

P(X ∈ A |Y ∈ B1)
P(Y ∈ B1)

P(Y ∈ B1) + P(Y ∈ B2)

+ P(X ∈ A |Y ∈ B2)
P(Y ∈ B2)

P(Y ∈ B1) + P(Y ∈ B2)

d) As an implication of (b) one �nds: IfX is ∆-independent from Y w.r.t.

a partitionYp, thenX is also ∆-independent from Y w.r.t. any coarser

partition of Y .13 In particular, if X is ∆-independent from Y w.r.t.

to the partition of Y into one-element subsets, it is ∆-independent
from Y w.r.t. to any partition of Y .

I therefore simply say that X is ∆-independent from Y if this is true w.r.t.

the partition of Y into one-element subsets.

As shown by the example of the 2× 2 table, one can not expect a small ∆
even when the data are as close as possible to stochastic independent. It is

natural to ask for the smallest possible ∆ achievable in a �nite population

of size n and a given set of conditional frequencies P(X = x |Y = y). I.e.

given the distribution of the life lengths of the parent generation and the

total size n of the previous generation, what is the smallest achievable

value of ∆? To facilitate the discussion, suppose that X = Y = {0, 1} so
that we deal with a 2×2 table. Suppose further that both P(X = 0 |Y = 1)
and P(Y = 1) are �xed at some rational numbers and that n is given. Now

choose natural numbers closest to nP(Y = 1) and nP(X = 0, Y = 1) and

choose nP(X = 0, Y = 0) in such a way that ∆ is minimised. It might be

13
A partition Y ′p is coarser than a partition Yp, denoted by Yp ⊆p Y ′p, if for each
B ∈ Yp there is an element B

′ ∈ Y ′p such that B ⊆ B′.

As a consequence, one can extend ∆-independence w.r.t. Yp to ∆-independence w.r.t.

the σ-algebra generated by the partition Yp .
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Figure 3.5.: �e minimal ∆ achievable. a) P(Y = 1) = 6/10, P(X = 0 |Y =
1) = 1/3 corresponding to 3.10b). b) X = {0, 1, 2, 3}, P(Y = 1) = 313/521,
P(X = 0 |Y = 1) = 14/313, P(X = 1 |Y = 1) = 41/313, P(X = 3 |Y =
1) = 149/313.�e smooth curve is proportional to 1/

√
n, and thus also

proportional to the standard errors computed either for a simple random

sample or for n independent realisations of respective random variables.

conjectured that ∆ converges rapidly with n to 0. But this is not true, the

convergence is far from uniform, and it is not as fast as is o�en suggested

by statistical reasoning. Figure 3.5 shows the minimal ∆ for n from 50 to

300 together with an indication of the order of the estimated standard

error. Also indicated is a case with |X | = 4, where the behaviour is even
less regular.

A further example may help to illustrate the conceptual di�erence be-

tween ∆-independence and stochastic independence. Values of the

variable (X, Y) are created with a pair of dice such that the dice operate

independently.�rowing the pair of dice 60 times, again independently,

the following values might arise:

Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 Y = 6

X = 1 4 3 0 1 2 1 11

X = 2 3 1 0 3 0 2 9

X = 3 3 0 0 3 3 1 10

X = 4 2 1 4 2 0 1 10
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Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 Y = 6

X = 5 3 1 0 3 2 0 9

X = 6 2 4 1 1 2 1 11

17 10 5 13 9 6 60

Now, from a procedural point of view, the processes creating the values

of X and Y are clearly independent, and this provides one possible

explication of the independence of the two variables: that their values

are generated by independent processes. Note that this explication

completely ignores the actually realised values. On the other hand, one

might as well ask for the degree of independence exhibited by the realised

data. Given a partition ofY , I can ask to which degreeX is ∆-independent
from Y w.r.t. this partition. Using the partition Yp := {{1}, . . . , {6}},
the task is to �nd the smallest ∆ such that X is ∆-independent from

Y w.r.t. this partition. In a �rst step, one may consider the restricted

maximum

max
x∈X ,y∈Y

{|P(X = x |Y = y)− P(X = x)|}

that only takes into account one-element subsets of Y .�is is easy to
calculate and yields 0.633 (arising from the entry X = 4, Y = 3). Such a

large value is hardly useful and the conditional density of X changes

heavily with the value of y chosen.

To compute the �nal value of ∆, one has to compute the maximum

with respect to all subsets of X . By property b) above, it is enough to
compute the sum of the absolute di�erences between the conditional and

marginal densities for all �xed y.�is gives 0.115, 0.333, 0.650, 0.226, 0.316,

0.183.�us, the smallest value of ∆ achievable is 0.65.�e conditional

distribution behaves only slightly worse than the conditional density.

In summary, ∆-independence of one variable from another is conceptu-

ally di�erent from stochastic independence. Statistical variables with

small ∆-independence obviously need not be created from stochastically

independent random variables. In fact, ∆-independence is de�ned

without reference to an additionally introduced probability space Ω. It

only refers to the recorded data.
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Nor does stochastic independence imply ∆-independence for a rea-

sonably small ∆.�is is clear from the dice example. It is only within

the model world, and only when further assumption are made, that

∆-independence nearly follows from stochastic independence, using

a form of the strong law of large numbers. If data are generated by an

appropriate random device, if draws from the device are stochastically

independent, if both X and Yp are �nite, if the number of draws is
potentially in�nite, and, of course, if X⊥⊥Y , then the event that

max
yp∈Yp

‖Pn(X ∈ . |Y ∈ yp)− Pn(X ∈ .)‖ > ∆

will have probability 0 for all ∆ > 0 and n large enough. Here, ‖.‖ is the
total variation distance and Pn(.) is the empirical distribution of the �rst

n elements of a sequence (X, Y)1, (X, Y)2, . . . , (X, Y)n, . . . of realisations

of (X, Y). But this result has no operational meaning:�e conclusion

can only be formulated within the probability model.

On the other hand, the concept of ∆-independence can be used easily

to formulate assumptions about the distribution of life lengths of the

previous generation based on knowledge of the distribution of the life

lengths of the parent generation. If it can be argued that the distribution

of life lengths T is ∆-independent from {|c(.)| > 0} for a small enough
∆, then knowledge of the life lengths of the parent generation implies

knowledge of the distribution of life lengths of the previous generation

up to an error of at most ∆.

A claim of ∆-independence is a claim pertaining to the facts recorded by

the variables under consideration.�erefore, arguments in favour of

the claim—and its criticism—must rest on references to other pertinent

facts, e.g. information on life lengths of the generation from other

sources.14 Arguments referring to genetic inheritance, living conditions,

and historical circumstances are irrelevant in the discussion of such

claims. �ey can not even be incorporated into the formulation of

∆-independence.

14
It should be clear, however, that the arguments are constrained by the framework

introduced in Section 3.1.
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3.5. �e “Simple Device”

In contrast to the approach based on statistical variables, the “simple

device”—when taken as the general advice to express everything in terms

of a probability model—would require to account for the emergence of

all the facts including the development of the ancestral graph.�is is

sometimes attempted in the biological sciences (e.g.Whittemore/Halpern

1994), but it would be certainly too much to require such a detailed

model only to answer a simple question on the distribution of life lengths.

In fact, the “simple device” can be made to work within a much more

limited scope. Considering only the previous generation (ignoring the

sampling from the children’s generation), one may construct a family of

random variables

(T ,C) : U ×Ω −→ T × {0, 1, . . . ,K}

where (T ,C)(u, .) represents life length and number of children of the

element u ∈ U , respectively. �e probability space (Ω,B, Pr) and
the random variable (T ,C) is such that there is at least one ω such

that (T ,C)(u, ω) equals the life length and number of children for all

u ∈ U . Suppose further that the random variables constructed for
di�erent members u of the population are stochastically independent and

identically distributed (a constitutive model assumption). Following the

notation developed in Chapter 2, the coarsened variables (representing

information on the parents only) can be written as

(T ,C)∗ : U×Ω −→ {{(0, 1)}, {(1, 1)}, . . . , {(τ,K)}}∪{T ×{0}}
⊂ P(T × {0, . . . ,K})

i.e. (T ,C)(u, .) is observed exactly if and only if C(u, .) > 0 (u has at least

one child). Otherwise, any value of T might have happened.�e implied
probabilities for (T ,C) can conveniently be arranged in a table

Pr(T = 0,C > 0) . . . Pr(T = τ,C > 0) Pr(C > 0)

∗ . . . ∗ Pr(C = 0)

∗ . . . ∗
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where the ∗ indicate unknown probabilities and the values of C(u, .) are
coarsened to the set {0, 1} with 1 indicating C(u, .) > 0.

As introduced up to now, the “simple device”, by expressing the situation

in terms of random variables, forces the assumption that the probability

of having children is known.�is follows since random variables are

functions on the known domain U × Ω so that both the number of
elements of U and the probability of {C(u, .) > 0} is supposed to be
known. Even the values of C(u, ω) must be supposed known for all

u ∈ U and the realised ω. �e assumption contradicts the original

description of the problem where the size of the previous generation is

unknown. Of course, the model may be amended by restricting attention

to the subset of U such that C(u, .) > 0. In probabilistic terms, one needs
to consider the conditional distribution of (T ,C)(u, .) given the event

{C(u, .) > 0}.�e existence of (and reference to) elements of childless
members of the previous generation then becomes part of the probability

model itself, further separating the “simple device” from its sampling

theory counterpart. However, I will discuss the conditional version of

the model only in the next Section.

In order to facilitate the comparison with results from Chapter 2 and to

ease the notational burden, I will for the rest of the Section drop the

reference to individuals u so that (T ,C) and (T ,C)∗ are just pairs of
random variables de�ned on a common probability space. Within the

present model, the set of underlying distributions of (T ,C) compatible

with a given distribution of (T ,C)∗ is easily described: it is the simplex
{Pr(T = t,C = 0) | t ∈ {0, . . . , τ}}. It is also easy to see that there is a
unique CAR solution: Remember from 2.21 that the joined distribution

of (Y , Y∗) satis�es CAR if

Pr(Y = y |Y∗ = y∗) = Pr(Y = y |Y ∈ y∗)

In the present situation, C(ω) = 0 (no children) is equivalent to T∗(ω) =
T , so that {C = 0} := {ω ∈ Ω |C(ω) = 0} = {ω |T∗(ω) = T }. Now

Pr(T = t,C = 0 | (T ,C)∗ = T × {0})
= Pr(T = t |T∗ = T ,C = 0)
= Pr(T = t |C = 0)
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and

Pr(T = t |C = 0) = Pr(T = t) = Pr(T = t |T ∈ T )

if and only if T and C are stochastically independent (T⊥⊥C). It follows
that ((T ,C), (T ,C)∗) is CAR if and only if T⊥⊥C. Since the conditional
distribution of T given {C > 0} is known, the CAR condition uniquely
identi�es the joined distribution of (T ,C) from the known (estimated,

approximated, assumed, . . . ) distribution of (T ,C)∗.15

Within the present rather simplistic probabilistic model, stochastic

independence or, equivalently, the CAR condition takes the role of

∆-independence in the approach based on relative frequencies. But what

exactly is the role of the probability model?�e model as presented does

not pretend to refer to the process by which life lengths are determined.

It does not even provide the means to express pedigree, or inheritance,

or when people do have children. And certainly life lengths are not

created by the roll of a die. An argument in favour of such a model

must necessarily rely on an “as if ” reasoning: that the distribution of life

lengths may be treated for the current purpose “as if ” generated by a

random device. As argued in section 2.2.1, the adoption of a particular

probabilistic model is best seen as decision taken by the researcher.

Arguments in support of the decision for using a probabilistic model

can not simply refer to reality or data. But what kind of arguments can

provide justi�cations for the decision?

Jerzy Neyman (1960: 629) explicitly argued for the use of stochastic

models acknowledging their “as if ” character:

�e essence of dynamic indeterminism in science consists in

an e�ort to invent a hypothetical chance mechanism, called

a “stochastic model”, operating on various clearly de�ned

hypothetical entities, such that the resulting frequencies of

the various possible outcomes correspond approximately to

those actually observed.

15
But note that this joined distribution can not, in general, coincide with any frequency

distribution realised using the same model (cf. Example 3.9).
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He also emphasises that the term ‘indeterminism’ relates “not to the phe-

nomena themselves but to our approach to these phenomena” (Neyman

1960: 626).

He then goes on to formulate criteria for the ‘scienti�c value’ of such

models: ‘broad applicability’ and ‘identi�ability’. He introduces these

criteria only by example. But even a cursory reading shows that the

model introduced here is neither broadly applicable nor identi�able

in his sense. In particular, the “simple device”, expressing incomplete

observations in a particular way, is the only aspect of ‘broad applicability’

of the model. However, this is a methodological recipe, a mere template.

As such it has no ‘scienti�c value’. It must be amended within a given

context. But then its merits must be judged separately in each application.

�is can be done in the present case. But it can only be done within

a much more elaborate model where it is possible to argue about the

details of the model based both on consequences of the model and the

known facts. It is only in relatively rich models that the strengths of the

“simple device”, the possibility to discuss in a principled way consequences

of di�erent assumptions of missingness, can be achieved.�e “simple

device” per se will not necessarily provide such a framework.

To be more precise, the set of distributions of (T ,C) compatible with

(T ,C)∗ is the simplex

{Pr((T ,C) = (t, 0) | t ∈ T ,
τ∑
t=0

Pr(T = t,C = 0) = Pr((T ,C)∗ = T × {0}}

In the absence of further model details, the CAR solution is but a

particular point in this set.�ere is no way to argue persuasively for a

subset of compatible distributions, let alone for one particular solution,

except, of course, that the CAR condition would justify a particularly

simple statistical treatment. But simplicity of statistical treatment can

not be an argument in judging facts.

Furthermore, if the probability Pr((T ,C)∗ = T × {0}) is set equal to the
observed frequency P(|c(.)| = 0), then the set of compatible distributions

151



3. A Case Study: Parent’s Length of Life

of the “simple device” coincides with the set-valued sample based solution

favoured byManski (2003) and others. As argued in the previous Chapter,

the equality is reassuring from a conceptual point of view:�e probability

model does not introduce additional aspects that prejudice the solution

of the incomplete data problem. But many who think of the “simple

device” as a mere statistical “method” for solving their problem will be

dissatis�ed with this equality since it generally generates rather large

intervals of possible values.16

But the problem turns out to be worse. As witnessed by the dice example

of the previous Section, the connection between an assumed probability

model and (realised) values is rather weak, and in general, the connec-

tion is even weaker when the model is confronted with observations:

Even if observations are generated from a given probability model with

probability measure Pr(.) and assuming that n observations are inde-

pendently generated from this measure, then there is no function of

the observations (i.e. a statistic) such that the maximum deviation of

empirical frequencies (or kernel estimators etc.) from their theoretical

counterparts converges to 0 in the variation distance with the number of

observations.17 �e result applies in particular to the “simple device”. No

amount of observations will allow to narrow the gap between data and

model. Neither the rather broad set of compatible distributions nor the

CAR condition can be justi�ed by reference to the observations alone.

�erefore, arguments for adopting the CAR condition must be sought

based on the probability model itself.�is can be done, but it requires

an elaborated model that goes beyond the mere introduction of some

random variables. Note the contrast to the sampling perspective: there,

the set of compatible frequencies can be directly compared to frequencies

derived either from further data or from other sources. Accordingly,

both, arguments for the assumption of ∆-independence and its criticism

16
E.g., in the discussion ofManski andHorowitz (2000: 86), Raghhunathan complained:

“I am afraid that I agree with Cochran (1977) that such an approach is so conservative

as to be of little value in most practical settings for inferential purposes.”
17
�is might appear to be a somewhat trivial result since empirical distributions

always have maximal variation distance from an absolutely continuous probability

measure.�e negative result is, however, not restricted to the divide between discrete

and absolutely continuous distributions. See Section 2.2.1 for general comments.

Devroye/Győr� (1990) present further details on the general negative result.
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can be assessed based on empirical information alone.

�ere is yet another problem with the “simple device” in the present case:

As I argued in Section 3.3, sampling the children induces the possibility

of including a parent several times without this being known to the

surveyor. Even within a probabilistic model, one strategy to deal with the

issue is to keep with the classical sampling approach. One would treat

the sampling of the children (and the induced sampling of the parents) as

a process independent of the underlying probability space of the “simple

device”.�is is what is regularly done in the model assisted approach to

sampling.18 But since the argument in Section 3.3 includes a reference to

the number of children, and since values of statistical variables are �xed

numbers, one would be induced to treat that number as �xed as well in

the probabilistic model of the “simple device”.�is in turn would require

a reformulation of the CAR condition, and of stochastic independence,

where the number of children may now only appear on the right side of

the conditioning bar.

One might, however, try to follow the opposite strategy and formulate

the problem completely within a probabilistic framework. A�er all, not

knowing the number of times a particular sample member is included in

the sample might be seen as a further level of incompleteness. But this

approach turns out to be di�cult at best, without o�ering an appreciable

advantage. In fact, in trying to do so one has to model the ancestral graph

and its development. In consequence, one can not take the reference

to individuals (the sets Ut and Ut+1) as �xed.�eir coming about must
become part of the model. One can then condition on the realised units

of the children’s generation and look backwards in time to produce

realisations of the complete previous generation (not only the parents).

�is would provide a model both for the multiplicities in a sample and

the number (and life lengths) of childless people. But the childless people

of the model are now just creations of the model without an identi�able

counterpart in (partially) recorded data.19 It is at least di�cult to see

18
See e.g. Särndal et al. (1992). For a more comprehensive discussion of a joint sampling

and probabilistic approach see Rubin-Bleuer/Schiopu Kratina (2005) and Hansen et

al. (1983).
19
McCullagh (2008) discusses problems arising from randomly labelled units in the

context of binary random e�ects models. In his his article of 2005 he brie�y refers to
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how even summary statistics about these phantoms could be related

to known facts. Even if this problem is dismissed in favour of a purely

model based interpretation, the problem of multiple inclusion into the

sample still has no obvious solution. In particular, the analysis of the

weighted solution (3.3) appears to be extremely di�cult.

3.6. Le� Truncated Data

In order to arrive at a more realistic model, one further aspect has to

be incorporated into the description of the situation. Up to now, no

restrictions between life lengths and number of children were considered.

But children and young adults below the minimum child bearing age

can not have children.�erefore, no deaths before the minimum child

bearing age can be recorded in the parent sample and nothing can be

said about the distribution of very short life lengths.20

To discuss the issue, consider a slight extension of the previous model

where the statistical variables (T ,C) are de�ned as

(T ,C) : U −→ T ×
(
T ∪ {−1}

)
(3.12)

As before, T(u) denotes u’s life length for each u ∈ U . In contrast to
the previous Section, however, C(u) now records the age at which u

became for the �rst time mother (or father) of a child. If u stays childless

throughout his or her lifetime,C(u) is set to -1. To facilitate the discussion,

I will subsequently only deal with women (and still denote the population

by U , the population of mothers by Up etc.).21

what he calls “block factors”, i.e. unlabelled factors in a regression that just indicate

membership in an otherwise uncharacterised group. He shows that in both cases

unlabelled units do create problems of reference and interpretation.�e present case

may be considered as even worse since the labels only exist within the model, while

in McCullagh’s cases they do have a real counterpart.
20
I still assume that information from all children is available, ignoring their mortality

up to the interview date.
21
�e same reasoning, however, applies to men with obvious minor modi�cations.
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�e available data still refer to the subset of women that had at least one

child, say

Up := {u ∈ U |C(u) ≥ 0}

But with the introduction of the variableC(.) (the age at which a �rst child

was born) it is now possible to discuss the impact of a lower truncation

point of observed life times on the assessment of the distribution of life

lengths.

Following the basic idea of the Kaplan-Meier procedure, one may use

rates to assess the distribution of T. Assuming complete observations it

would be possible to de�ne both a risk set

Ut := {u ∈ U |T(u) ≥ t}

i.e. the set of all members of U who are alive just before age t, and an
event set

{u ∈ Ut |T(u) = t}

consisting of those members of Ut who actually died at age t.22 From
these sets one can calculate rates

r(t) :=
|{u ∈ Ut |T(u) = t}|

|Ut|
= P(T = t |T ≥ t)

which can be used to �nd the survivor function

P(T ≥ t) =: G(t) =

t−1∏
j=0

(1− r(j))

But since the data only refer to Up, neither the cardinality of the risk set

nor that of the event set is known and consequently one cannot calculate

the rates r(t). One can only try to estimate these rates, but this will then

require an assumption.�e assumption will roughly be that mortality

22
I am once again slightly misusing notation by reusing the symbol Ut to denote not
the (previous) generation but a subset of U , the set at risk of dying.
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does not depend on whether and when people became mothers and

fathers. More precisely, the assumption is

r̃∗(t) := P(T = t |T ≥ t, 0 ≤ C ≤ t) =
|{u ∈ Up

t |T(u) = t}|
|Up

t |

≈ |{u ∈ Ut |T(u) = t}|
|Ut|

= P(T = t |T ≥ t) = r(t)

where the risk set on the le�-hand side is now de�ned by

Up
t := {u ∈ Up |T(u) ≥ t, 0 ≤ C(u) ≤ t}
= {u ∈ U |T(u) ≥ t, 0 ≤ C(u) ≤ t}

Looking at the expression of the rates in terms of conditional frequencies

P(T = t |T ≥ t, 0 ≤ C ≤ t) ≈ P(T = t |T ≥ t)

it becomes apparent that this is just a dynamic version of ∆-independence

introduced in Section 3.4. In other words, {T = t} is ∆-independent
from {0 ≤ C ≤ t} within the subset of women surviving at least to age t.

Since both this risk set and the corresponding event set can be calculated

from data restricted to Up, it is possible to approximate the rates r(.) by

r̃∗(.). Of course, this will be possible only for ages

t ≥ a+ := min{C(u) > 0 | u ∈ Up}

which implies that only the conditional survivor function G(. |T ≥ a+)

can be estimated:

G(t |T ≥ a+) ≈
t−1∏
j=a+

(1− r̃∗(j)) =: G∗(t) (3.13)

Notice that in general

Up
t = {u ∈ Up |T(u) ≥ t, 0 ≤ C(u) ≤ t} ( {u ∈ Up |T(u) ≥ t} = Up

because a women in Up might have her �rst child later than t. In order

to create suitable risk sets Up
t one has to apply the same conditioning as
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used for the event sets to meet the assumption that mortality does not

depend on whether and when women become mothers.

�e following example illustrates the reasoning. Assume that U refers to
a set of 1000 women and consider, in turn, �ve age classes:

0 In the age class t = 0 all 1000 women are at risk of dying, and I

assume that 100 women actually die.

1 �ere remain 900 women. 200 of them will bear a �rst child in

the age class t = 1. Also, 100 of the 900 will die. Implied by the

assumption that mortality does not depend on becoming a mother,

approximately

100

900
200 ≈ 22

of the mothers will die.

2 �ere remain 800 women in the age class t = 2. I assume that

200 of these women die and 300 women become mothers of a

�rst child.�e assumption of equal mortality implies that about

300 / 4 = 75 of these women also die. In addition, there are 178

women who became mothers in age class t = 1, and of these about

178/4 ≈ 45 will die.

3 �e remaining number of women is 800 − 200 = 600, and I
assume that 200 of these women die in the age class t = 3. Again,

200 women bear children for the �rst time. Consequently, about

200/3 ≈ 67 of these women will die. Of the 358 women who
became mothers before t = 3, 119 will die.

4 Finally, the remaining 400 women are supposed to die in the oldest

age class.

Since in this example the complete data are available, one may calculate
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the survivor function explicitly:

t |Ut| |{u ∈ Ut |T(u) = t}| r(t) G(t)

0 1000 100 1/10 1.00

1 900 100 1/9 0.90

2 800 200 1/4 0.80

3 600 200 1/3 0.60

4 400 400 1 0.40

Obviously, the survivor function is simply proportional to the number of

women in the risk set. In a next step, I assume that data are only available

for Up, that is, for women who gave birth to at least one child. In the

example, there are altogether 200 + 300 + 200 = 700 women. I now

perform the same calculations for these women using the risk and event

sets as de�ned above.�is can be summarised in the following table:

t |U p
t | |{u ∈ U p

t |T(u) = t}| r̃∗(t) G∗(t)

0

1 200 22 0.110

2 478 120 0.251 0.890

3 558 186 0.333 0.667

4 372 372 1.000 0.445

For t = 0, the risk set is empty and a death rate can not be calculated.

Consequently, the value of the survivor function for t = 1 is not estimable

either. For t > 0 it is possible, however, to create risk and event sets and

calculate corresponding rates r̃∗(t). And these rates can �nally be used
to derive the values of the conditional survivor function

G(t |T ≥ a+) =
G(t)

G(a+)
≈ G∗(t)

where a+ = 1 and G(a+) = 0.9 in the present example. Here, G∗(.) refers
to the conditional survivor function estimable from the risk sets Up

t .

Note in particular that the cardinality of risk sets may increase with

increasing life times, a feature not encountered with right censored
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data. In contradistinction to the latter case, the statistical precision of

estimates may be rather low for the young ages. �is fact may cause

severe practical problems of identi�cation and robustness. Some aspects

of these di�culties are taken up in the next Section.

How does the “simple device” deal with the current problem? As a �rst

step, again, a probability space is introduced and random variables in

parallel with (3.12) are de�ned:

(T ,C) : U ×Ω −→ T ×
(
T ∪ {−1}

)
(3.14)

If T(u, .) was stochastically independent from C(u, .) (T(u, .)⊥⊥C(u, .)),
then the model restricted to the event {0 ≤ C(u, .) ≤ T(u, .)} is called a
random le� truncation model.23

Mandel (2007) provides a vivid discussion of the distinction between

truncation and censoring. He states: “Whereas censoring is a model

of missing observations . . . , truncation is a model of selection bias.” (p.

322). Since my setup includes an explicit reference to members of the

population and assumes that at least the cardinality of U is known, the
truncation model has the additional consequence that the probability

model must be extended to a model that includes at least the population

size as a random variable.

For a single (possibly hypothetical) mother u the joint distribution of

T(u, .) and C(u, .) conditional on {a+ ≤ C(u, .) ≤ T(u, .)} (u has at
least one child) becomes

Pr(T(u, .) = t,C(u, .) = s | a+ ≤ C(u, .) ≤ T(u, .))

=
Pr(T(u, .) = t) Pr(C(u, .) = s)

Pr(a+ ≤ C(u, .) ≤ T(u, .))
1[a

+ ≤ s ≤ t]

=
Pr(T(u, .) = t) Pr(a+ ≤ C(u, .) ≤ t)

Pr(a+ ≤ C(u, .) ≤ T(u, .))

23
More details on the le� truncation model are presented in Chapter III.3 of Andersen

et al. (1993).�ey also discuss conditions that are less restrictive than stochastic

independence. Keiding/Gill (1990) re-parametrise the le� truncationmodel as a three

state Markov model, enabling them to provide another relaxation of independence.
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× Pr(C(u, .) = s)

Pr(a+ ≤ C(u, .) ≤ t)
1[a

+ ≤ s ≤ t]

=
Pr(T(u, .) = t) Pr(C(u, .) ≤ t |C(u, .) ≥ a+)

Pr(C(u, .) ≤ T(u, .) |C(u, .) ≥ a+)

× Pr(C(u, .) = s | a+ ≤ C(u, .) ≤ t)1[a
+ ≤ s ≤ t]

where T(u, .)⊥⊥C(u, .) is used in the �rst equation.�e �rst factor in the
last line is the distribution of T(u, .) in the coarsened model, the second

one the conditional distribution of C(u, .) given {T(u, .) = t} ∩ {a+ ≤
C(u, .) ≤ T(u, .)}.�is suggests a simple estimation strategy:�e �rst
factor can be estimated by the empirical distribution of the observed

death times, i.e. from the distribution of T(u, .) in the coarsened data

model. Since also the distribution function Pr(C(u, .) ≤ t |C(u, .) ≥ a+),

the distribution of the age at �rst birth of all women who had at least one

child, can be estimated, the empirical distribution of the observed death

times T(u, .) weighted by the inverse of the latter distribution function

should be a reasonable estimator of the marginal distribution of the

death time T(u, .).

While the problem of reference to population members u with C(u, ω) =

−1 as discussed in the previous Section persists, there is an additional
problem with the “simple device” as presented up to now: �e “as-

sumption” of stochastic independence, which by itself is “untestable”,

is simply and obviously wrong, at least when the model is to be re-

alistic. For then the random variables (T(u, .),C(u, .)) must satisfy

both Pr(C(u, .) ≤ T(u, .)) = 1 (either children are born before the

death of their mother or there are no children to that woman) and

Pr(C(u, .) = −1 |T(u, .) < a+) = 1 (there are no children to women

dying before the reproductive age).

It may help here to bemore explicit about the distinction of “assumptions”

within the “simple device” and assumptions about facts that are to be

represented by the model. Suppressing again the reference to individuals,

it is certainly possible to produce a joint distribution of a random vector

(T ,C) such that T⊥⊥C and such that the requirements Pr(C ≤ T) = 1

and Pr(C = -1 |T < a+) hold. One possibility is to simply restrict the
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range of (T ,C) such that the minimum of the range of T is larger than the

maximum of the range of C. In that case, T and Cmay be independent

while still ful�lling the consistency requirements.�at is, this form of

“independence assumption” is not self-contradictory. It is, moreover,

“untestable” for any given data set since by the very construction of the

observation scheme neither {T < a+} nor {C = -1} are ever observed.
Nevertheless, this model of independence is plainly wrong. It is obvious

that there are deaths before age a+ in human populations. And there

are deaths during the reproductive ages. �us, range restrictions on

(T ,C) are counter to fact. But if the ranges C , T of T and C overlap and
|C ∩ T | ≥ 2, then independence T⊥⊥C forces Pr(C > T) > 0. But giving

birth to a child a�er death is equally counter to fact. While in many

cases model assumptions counter to fact do not rule out the usefulness

of the models concerned, in the present case the very assumptions, even

if taken only as an “approximation”, would undermine the very goal of

estimating relevant aspects of the distribution of life lengths of a previous

generation.

�us the simple minded reference to stochastic independence will not

do. One has to replace the condition of stochastic independence by a

dynamic, local condition similar to the dynamic form of ∆-independence

used above. In the latter case, the construction of the risk sets Up
t (and

the derived rates r̃∗(t)) take into account the temporal evolution of
membership in Up. Women become members of Up a�er the birth of

her �rst child.�is can be mimicked in a probability model by asking

for a dynamic and local form of independence:24

Pr(T(u, .) = t |T(u, .) ≥ t)

= Pr(T(u, .) = t |T(u, .) ≥ t ≥ a+, a+ ≤ C(u, .) ≤ t)

i.e. {T(u, .) = t}⊥⊥{a+ ≤ C(u, .) ≤ t} given {T(u, .) ≥ t ≥ a+}.�is
condition might be used to justify the construction of consistent es-

timators of the conditional survivor function within the framework

of the “simple device”. However, there is no obvious, non-trivial joint

24
Further details concerning concepts of dynamic or local independence are discussed

in Chapter 5.
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distribution of (T(u, .),C(u, .)) that obeys this form of local indepen-

dence.�e “simple device”, while illuminating in the context of simple

(and important) examples, becomes rather cumbersome in the present

context.

3.7. Selection by Survival

�e problem of “le� truncation” is not the last problem that must be

tackled before a reasonable use of information from the children genera-

tion for inference on the distribution of the life length of the previous

generation can be proposed. As already indicated in the introductory

remarks to this Chapter, the available information from survey data will

depend on the survival of the children up to the interview date. While

the problem can be discussed in a similar way as was done up to now,

in this Section I will propose a simulation model that simultaneously

takes into account the problem of selection by survival and most of the

previously discussed problems.�e aim is to construct a background

against which the “simple device” can be judged.�e construction of

the simulation model will be based on a probabilistic formulation. It is

therefore favourable to the “simple device” and allows for the introduc-

tion of further probabilistic elements whose merits for arguments and

speculations within the “simple device” can then be judged.

At the same time, I will try to build the many features characteristic for

the present problem into the generating procedure. Moreover, data from

o�cial sources will be used as templates for the distributions employed

for the data generation.�is will allow for a comparison of the simulation

results with the empirical results from survey data reported later in this

Chapter.

3.7.1. �e Simulation Model

�e basic idea is to simulate data for a set of women according to a

known survivor function and then to compare this known function with

estimates based on information from the women’s children who survived
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until some �xed interview date. In the �rst version of the model I refer

to a set of N = 10000 women all born in the year t0 := 1900; this set will

be denoted by U . I assume that these women survive according to the
1891–1900 period life table for Germany (see Table 3.3); the corresponding

age-speci�c death rates will be denoted by δt
f . Further, the life tables

for their children will be considered.�e following table describes the

o�cial period life tables available for Germany:

Period Publication

1871 – 1880 Statistik des Deutschen Reichs, Vol. 246 (pp. 14∗-17∗).

1881 – 1890 Statistik des Deutschen Reichs, Vol. 246 (pp. 14∗-17∗).

1891 – 1900 Statistik des Deutschen Reichs, Vol. 246 (pp. 14∗-17∗).

1901 – 1910 Statistik des Deutschen Reichs, Vol. 246 (pp. 14∗-17∗).

1910 – 1911 Statistik des Deutschen Reichs, Vol. 275. Statistisches

Jahrbuch für das Deutsche Reich 1919 (pp. 50-51).

1924 – 1926 Statistik des Deutschen Reichs, Vol. 360 and 401. Statisti-

sches Jahrbuch für das Deutsche Reich 1928 (pp. 38-39).

1932 – 1934 Statistik des Deutschen Reichs, Vol. 495 (pp. 86-87).

Statistisches Jahrbuch für das Deutsche Reich 1936

(pp. 45-46).

1949 – 1951 Statistik der Bundesrepublik Deutschland, Vol. 75

and 173. Statistisches Jahrbuch für die Bundesrepublik

Deutschland 1954 (pp. 62-63).

1960 –

1962

Statistisches Jahrbuch für die Bundesrepublik Deutsch-

land 1965 (pp. 67-68).

1970 – 1972 Fachserie 1, Reihe 2, Sonderhe� 1. Allgemeine Sterbeta-

fel für die Bundesrepublik Deutschland 1970/72.

1986 – 1988 Fachserie 1, Reihe 1, Sonderhe� 2. Allgemeine Sterbeta-

fel für die Bundesrepublik Deutschland 1986/88.

All tables are period life tables. Until 1932 – 34, they refer to the territory

of the former Deutsches Reich; all other tables refer to the territory of
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the former FRG. Methods of table construction have slightly changed

throughout the years.

�e following table 3.3 gives the surviving number of women at age t

from these life tables.

Table 3.3.: Female survivor functions. German period life tables.

t 1871/ 1881/ 1891/ 1901/ 1910/ 1924/ 1932/ 1949/ 1960/ 1970/ 1986/
1881 1890 1900 1910 1911 1926 1934 1951 1962 1972 1988

0 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000
1 78260 79311 80138 82952 84695 90608 93161 95091 97222 98016 99298
2 73280 74404 76137 79761 82070 89255 92394 94749 97027 97888 99241
3 70892 72073 74482 78594 81126 88743 92026 94545 96922 97810 99201
4 69295 70514 73406 77867 80523 88422 91761 94390 96845 97745 99174
5 68126 69377 72623 77334 80077 88169 91535 94270 96782 97690 99153
6 67249 68537 72038 76924 79730 87975 91338 94177 96728 97641 99136
7 66572 67881 71577 76587 79445 87817 91160 94100 96682 97597 99119
8 66035 67358 71206 76301 79206 87683 91003 94041 96643 97558 99103
9 65599 66942 70903 76058 79001 87563 90870 93986 96609 97523 99088

10 65237 66601 70646 75845 78816 87452 90753 93937 96579 97492 99073
11 64926 66309 70420 75651 78642 87347 90650 93893 96552 97465 99058
12 64649 66049 70210 75467 78476 87243 90557 93850 96525 97439 99044
13 64390 65801 70003 75285 78311 87134 90467 93805 96498 97413 99029
14 64136 65555 69789 75094 78131 87013 90373 93756 96468 97384 99013
15 63878 65306 69562 74887 77930 86877 90270 93701 96434 97349 98995
16 63609 65045 69319 74661 77710 86719 90152 93637 96395 97305 98974
17 63322 64764 69060 74411 77470 86534 90016 93564 96351 97251 98947
18 63013 64468 68787 74143 77216 86319 89858 93484 96301 97189 98916
19 62681 64160 68500 73861 76945 86075 89680 93394 96246 97124 98881
20 62324 63838 68201 73564 76659 85808 89490 93295 96188 97059 98843
21 61941 63500 67888 73254 76362 85523 89287 93188 96128 96996 98806
22 61534 63142 67559 72929 76052 85226 89072 93073 96068 96934 98768
23 61102 62762 67212 72586 75730 84920 88849 92955 96008 96874 98731
24 60648 62360 66848 72225 75397 84602 88622 92834 95948 96815 98694
25 60174 61937 66467 71849 75043 84275 88390 92711 95884 96755 98657
26 59680 61497 66072 71463 74668 83943 88151 92586 95814 96694 98619
27 59170 61042 65666 71070 74283 83610 87904 92457 95739 96632 98579
28 58647 60570 65249 70669 73896 83274 87653 92324 95660 96567 98538
29 58111 60082 64822 70261 73513 82937 87397 92185 95575 96499 98493
30 57566 59584 64385 69848 73115 82597 87139 92039 95485 96429 98446
31 57010 59076 63937 69432 72703 82254 86876 91887 95390 96355 98395
32 56445 58554 63479 69008 72291 81909 86607 91729 95290 96276 98340
33 55869 58018 63010 68575 71876 81559 86329 91565 95184 96190 98280
34 55282 57473 62533 68132 71457 81205 86044 91396 95071 96098 98216
35 54685 56921 62047 67679 71020 80847 85754 91221 94949 95997 98146
36 54078 56360 61549 67215 70554 80482 85455 91039 94818 95886 98071
37 53462 55789 61041 66744 70080 80105 85145 90850 94676 95764 97988
38 52837 55215 60524 66266 69610 79720 84819 90651 94524 95632 97896
39 52207 54638 59998 65779 69139 79324 84481 90443 94360 95488 97796
40 51576 54054 59467 65283 68659 78917 84135 90225 94184 95331 97685
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Table 3.3.: Female survivor functions. German period life tables.

t 1871/ 1881/ 1891/ 1901/ 1910/ 1924/ 1932/ 1949/ 1960/ 1970/ 1986/
1881 1890 1900 1910 1911 1926 1934 1951 1962 1972 1988

41 50946 53467 58931 64779 68172 78498 83779 89995 93995 95161 97564
42 50320 52880 58391 64269 67689 78068 83410 89749 93792 94975 97431
43 49701 52297 57848 63754 67194 77627 83027 89486 93573 94773 97286
44 49090 51720 57302 63238 66692 77175 82630 89204 93337 94551 97127
45 48481 51146 56751 62717 66187 76704 82211 88901 93081 94308 96954
46 47870 50569 56195 62181 65661 76210 81763 88574 92803 94042 96766
47 47248 49983 55628 61628 65105 75688 81282 88221 92500 93750 96562
48 46605 49385 55040 61053 64510 75136 80767 87841 92173 93427 96341
49 45939 48765 54423 60449 63883 74557 80213 87432 91821 93072 96102
50 45245 48110 53768 59812 63231 73943 79620 86991 91442 92683 95842
51 44521 47418 53078 59138 62547 73289 78990 86516 91035 92260 95559
52 43767 46692 52354 58418 61827 72592 78322 86003 90597 91806 95252
53 42981 45934 51594 57648 61048 71854 77613 85451 90125 91323 94918
54 42162 45136 50791 56837 60219 71071 76855 84860 89615 90813 94553
55 41308 44293 49938 55984 59350 70236 76038 84225 89063 90272 94156
56 40414 43396 49032 55077 58441 69342 75162 83540 88464 89696 93723
57 39472 42448 48072 54106 57468 68383 74225 82796 87814 89078 93252
58 38476 41462 47054 53067 56398 67357 73221 81989 87105 88411 92738
59 37418 40415 45971 51959 55245 66257 72142 81115 86331 87689 92179
60 36293 39287 44814 50780 54016 65076 70984 80166 85484 86903 91569
61 35101 38087 43582 49524 52713 63809 69745 79131 84556 86044 90903
62 33843 36823 42272 48176 51320 62448 68409 77994 83538 85101 90178
63 32521 35497 40880 46725 49816 60973 66960 76744 82420 84062 89387
64 31140 34102 39398 45178 48199 59377 65396 75374 81191 82915 88526
65 29703 32628 37828 43540 46484 57671 63712 73875 79839 81647 87587
66 28217 31088 36179 41816 44693 55852 61895 72232 78352 80250 86565
67 26686 29506 34460 40007 42782 53901 59933 70428 76720 78713 85451
68 25118 27897 32675 38111 40773 51813 57822 68455 74932 77027 84236
69 23521 26252 30826 36129 38663 49597 55568 66312 72976 75179 82909
70 21901 24546 28917 34078 36448 47255 53184 63994 70840 73157 81459
71 20265 22786 26956 31963 34191 44799 50652 61491 68513 70948 79869
72 18617 21000 24957 29777 31830 42248 47951 58794 65981 68539 78124
73 16960 19204 22938 27535 29379 39609 45118 55905 63235 65920 76206
74 15307 17416 20914 25273 26933 36869 42182 52837 60267 63084 74096
75 13677 15645 18900 23006 24517 34024 39132 49605 57076 60033 71775
76 12090 13892 16919 20745 22106 31126 35989 46226 53674 56774 69230
77 10569 12219 15000 18526 19673 28217 32820 42721 50082 53323 66447
78 9131 10661 13163 16372 17336 25335 29670 39118 46331 49702 63419
79 7795 9192 11417 14299 15112 22487 26559 35457 42458 45934 60148
80 6570 7815 9773 12348 12981 19711 23500 31787 38507 42046 56640
81 5464 6550 8252 10539 11016 17075 20527 28163 34529 38076 52912
82 4479 5408 6869 8864 9184 14624 17691 24642 30579 34071 48992
83 3614 4394 5626 7329 7499 12353 15026 21282 26717 30091 44916
84 2867 3511 4524 5955 6030 10262 12561 18132 23004 26204 40734
85 2232 2756 3568 4752 4794 8372 10323 15225 19500 22478 36501
86 1705 2124 2764 3719 3746 6712 8324 12582 16258 18974 32282
87 1276 1605 2104 2850 2856 5290 6567 10213 13319 15744 28146
88 935 1189 1571 2138 2140 4101 5075 8132 10705 12826 24160
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Table 3.3.: Female survivor functions. German period life tables.

t 1871/ 1881/ 1891/ 1901/ 1910/ 1924/ 1932/ 1949/ 1960/ 1970/ 1986/
1881 1890 1900 1910 1911 1926 1934 1951 1962 1972 1988

89 671 862 1149 1571 1574 3128 3857 6335 8147 10245 20393
90 471 612 821 1131 1126 2356 2868 4815 6480 8016 16903
91 323 424 573 797 786 1736 2083 3567 4872 6139 13738
92 217 288 390 549 534 1256 1476 2571 3580 4597 10935
93 142 191 260 370 354 891 1019 1814 2571 3362 8511
94 90 123 169 244 228 620 683 1253 1805 2409 6468
95 56 78 107 157 142 423 445 846 1240 1671 4792
96 34 48 66 99 87 283 281 559 834 1134 3457
97 20 29 40 61 51 185 172 361 550 750 2425
98 11 17 24 38 29 119 101 227 356 483 1651
99 6 10 14 22 16 74 58 140 227 303 1090

100 3 6 8 13 9 45 31 84 142 185 697

Additionally, the birth of children must be considered. While women

as well as men may become parents in a legal sense in many di�erent

ways, I will only consider women who gave birth to children. Age- and

parity-speci�c birth rates are given by

βt,k :=
Number of women giving birth to a further child at age t

Number of women aged t and having k children

In order to arrive at a simulation model that roughly corresponds to the

historical situation these rates are calculated from a subsample of the

census that took place in Germany in the year 1970.25

�e census of 1970 was conducted on May 27 of that year in the territory

of the former FRG.26 As part of this census a subsample of 10% of the

population was asked to provide additional information, in particular,

all women with a German citizenship who participated in the 10%

subsample were asked for dates of marriage and birth dates of all their

marital children, regardless of their current marital status.27 Several

25
�e birth rates normally reported by the statistical o�ce refer only to marital births,

starting parity counts afresh with each marriage.�e non- or under-reporting of

births per woman will at least continue to the next planned census in 2011.
26
For a detailed description, including a presentation of the questionnaire see Schubnell

and Herberger (1970).
27
Some results from these additional questions were published, albeit in highly

aggregated form, by the Statistisches Bundesamt in Fachserie A.
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years ago, o�cial statistics in Germany agreed to make available an

anonymised 10% subsample of the 1970 census.28�is 1% subsample of

all women who lived in May 1970 in the territory of the former FRG and

had a German citizenship is used in the sequel.�e number of cases is

314993. If multiplied by 100, this is roughly the number of women with a

German citizenship living in the former FRG in May 1970.

For the calculation of age- and parity-speci�c birth rates I have used all of

the women born between 1870 and 1925, altogether 131135 cases.29While

these ratesmay not be very accurate, are spanning very di�erent historical

contexts, and are themselves subject to selection- andmigration problems

(including possible di�erential mortality due to childbearing etc.), the

main issue here is to provide a historically reasonable background to

judge statistical methods, a task that may be accomplished by these

numbers. An accurate account of the demography of the period is not

intended here.

Table 3.4.: Parity-speci�c birth rates per 10000 women

t 1 2 3 4 5 6 7 8 9 10 11 12

16 10 286 0 0 0 0 0 0 0 0 0 0
17 39 185 0 0 0 0 0 0 0 0 0 0
18 102 432 99 0 0 0 0 0 0 0 0 0
19 196 628 318 769 0 0 0 0 0 0 0 0
20 332 885 644 482 2000 0 0 0 0 0 0 0
21 455 999 776 651 0 0 0 0 0 0 0 0
22 598 1123 902 905 897 1250 0 0 0 0 0 0
23 702 1245 1040 1128 737 870 0 0 0 0 0 0
24 800 1299 1073 988 1045 923 2222 0 0 0 0 0
25 860 1317 1109 1090 897 1260 1304 4000 0 0 0 0
26 911 1278 1088 1121 1167 1133 816 1429 3333 0 0 0
27 905 1304 1009 1138 1238 1148 1237 556 0 10000 0 0
28 883 1255 1028 1150 1307 1395 1230 500 2000 0 0 0
29 844 1224 975 1103 1179 1589 954 1884 588 0 0 0
30 753 1176 922 1074 1263 1398 1835 1172 1818 1250 0 0
31 679 1078 886 1004 1191 1384 1442 1682 2031 1000 0 0

28
More information on these data sets are available from the Zentrum für Umfragen,

Methoden und Analysen (ZUMA, Mannheim), Abteilung für Mikrodaten; see:

http://www.gesis.org/Dauerbeobachtung/GML.
29
I thank Bernhard Schimpl-Neimanns (ZUMA) who prepared the basic counts used

here. I still had to delete one woman with a negative age at birth.
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Table 3.4.: Parity-speci�c birth rates per 10000 women

t 1 2 3 4 5 6 7 8 9 10 11 12

32 597 1016 792 890 1177 1320 1675 2143 1333 2059 2727 0
33 510 937 740 914 1071 1304 1371 1628 2262 1231 0 5000
34 433 823 675 834 1074 1326 1480 1470 2087 1800 1515 1667
35 355 711 610 726 997 1198 1242 1587 1870 1985 1852 667
36 305 588 537 692 863 1133 1500 1476 1280 1905 2222 2000
37 259 499 466 626 772 993 1136 1529 1408 2247 1875 2619
38 197 373 422 523 713 914 998 1520 1574 1290 1981 2115
39 164 315 316 444 613 792 911 1352 1565 1486 1587 1803
40 122 243 245 355 510 642 868 1383 1126 1447 1600 1486
41 91 154 187 275 439 544 782 1017 1057 851 1494 930
42 59 102 133 179 275 451 539 765 930 1212 1371 1667
43 39 64 83 119 200 309 435 581 747 732 787 808
44 25 43 51 81 130 177 231 459 389 543 761 1143
45 14 20 28 48 60 141 159 214 255 548 316 707
46 8 12 11 23 27 42 62 122 211 28 432 400
47 7 7 6 12 20 23 31 47 31 56 0 306
48 5 3 4 6 14 12 13 9 15 84 110 0
49 2 3 3 2 3 5 9 9 15 0 0 0
50 1 1 1 1 2 5 18 0 0 0 0 0

From a starting set of identifying numbers U of women born in 1900,
their children are represented by a second set U c := ∪u∈U c(u) containing
identi�cation numbers of all children born to the women in U . �e
number of members of U c is not known in advance but depends on both

the death rates δt
f and the birth rates βt,k. Given these rates, I created two

lists. One list contains for each woman in U her identi�cation number,
her death year, and her number of children. Another list contains for each

child in U c an identi�cation number, the birth year, and the identi�cation

number of the mother. In addition, in order to simulate a retrospective

survey, I assume that the children survive according to the 1960–1962

period life table for women (see Table 3.3); the corresponding age-speci�c

death rates will be denoted by δct . Using these rates, a simulated death

year is added for each child in the second list.

Box 3.7-1 summarises the algorithm used to generate the simulated data.

In the description, the є. refer to draws from random numbers uniformly

distributed in the unit interval. Using this algorithm I get a �rst list with
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Box 3.7-1 Skeleton of the simulation model.

For each u ∈ U do:
n(u) := 0; # counter for u’s children

For (t = 0, . . . , 100 ) {
Generate a new, independent random number єt ,b(u);
If (єt ,b(u) ≤ βt ,n(u))

increase n(u) by 1; create a new entry in U c,

and record the mother’s identi�cation number and age;

Get, independently, another random number єt ,d(u);

If (єt ,d(u) ≤ δt
f )

goto L1;

}
L1:

Record that u died at age t and has given birth to c(u)
children, also record for all children the mother’s age at death;

For each u ∈ U c do: # Simulate childrens survival

For (t = 0, . . . , 100 ) {
Get another, independent random number єt ,c(u);
If (єt ,c(u) ≤ δc

t )

goto L2;

}
L2:

Record that u died at age t;

N = 10000 entries that records the identi�cation numbers of the women,

U , their age at death, and their number of children. In one run of the
algorithm, presented below, 4776 of these 10000 women have at least one

child.30�e second list contains entries for 11407 children. Figure 3.6

shows a frequency distribution of the years in which the women in U
died on a historical time axis. Also shown are frequency distributions

of the birth and death years of the children. Note that the algorithm is

based on the assumption that women’s survival is locally independent of

their giving birth to children.�e algorithm provides an operational

30
Note that according to the 1891–1900 period life table, only 68% of the women

survived age 20, and only 60% survived age 40.
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Figure 3.6.: Frequency distributions of birth and death years in the
simulated data set.

explication of this notion in discrete time: given survival to age t, the

draws of random numbers єt,b and єt,d used to simulate births and deaths

at age t are stochastically independent. 31

3.7.2. Considering Le� Truncation

Before using the model to discuss the question of how to recover the

survivor function of the members of U based on information resulting
from a retrospective survey of their children, I illustrate the importance

31
Problems arising from a violation of this assumption can not be checked within this

model. However, it can be adapted rather easily to allow for some form of (local)

dependence. Also, dependence of life lengths of mothers and children (both local

and global) might be incorporated.

It is of some theoretical interest to investigate whether a simulation algorithm may

be conceived that does not involve a �xed starting population U of potential mothers.
A�er all, the surveyor will never have access to that population nor even direct

information about its size. Such an algorithm ought to be able to reproduce all

reasonable distributions of the life lengths of the previous generation without any

extraneous assumptions on the dependence of life length across generations.
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of correctly taking into account le� truncated observations and discuss

some complications arising from real data limitations.

�e goal is to recover (some part of) the distribution of the statistical

variable

T : U −→ T := {0, 1, . . . , τ}

that records the life length of the members of U from observations on
a selected subset of U .�e subset is not determined by some random
device under the control of the survey administrator or some process

that may be judged similar to such a device. Instead, the observations

refer to the subset of members of U having given birth to at least one
child.�is subset will be denoted by Up. In parallel to the de�nition of

T one may de�ne a statistical variable

T∗ : Up −→ T

that records the life length of the members of Up.�en the statistical

variable T∗ is the restriction of the function T : U → T to the subset Up.

In the simulation model of the previous Section, the distribution of T is

de�ned by the death rates δt
f .�e survivor function of T is therefore

given by

G(t) =

t−1∏
j=0

(1− δ
f
j )

One possibility to recover (some part of) this survivor function is to

somehow estimate the death rates δt
f . However, these death rates may be

systematically di�erent from the naively computed death rates derived

from the statistical variable T∗

r∗(t) :=
|{u ∈ Up |T∗(u) = t}|
|{u ∈ Up |T∗(u) ≥ t}|

= P(T∗ = t |T∗ ≥ t)

�e rate function r∗(.) refers to deaths among those women who ever
became mothers. But in order to �nd estimates of δt

f , one needs to take
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into account that women only become members of Up when they have

given birth to a �rst child and not on the fact that they ever gave birth.

Recalling the framework of Section 3.6, consider the two-dimensional

variable

(T ,C) : U −→ T ×
(
T ∪ {−1}

)
As before, T(u) denotes u’s life length and C(u) refers to the age at

which u became for the �rst time mother of a child. If u stays childless

throughout her lifetime, C(u) is set to -1. In a temporal perspective,

therefore, the value of C(u) is only determined a�er u’s death.

Remember further the de�nitions of the temporarily evolving popula-

tions

Ut := {u ∈ U |T(u) ≥ t} and Up
t := {u ∈ Up |T(u) ≥ t, 0 ≤ C(u) ≤ t}

One may then de�ne the rate function

r̃∗(t) :=
|{u ∈ Up

t |T(u) = t}|
|Up

t |
= P(T = t |T ≥ t, 0 ≤ C ≤ t)

which refers to the death rates in the population of mothers conditional

on a previous birth.

Generally, r̃∗(t) ≥ r∗(t), and thus using r∗(.) underestimates the rate and
the survivor function is overestimated.�is can be seen by comparing

the denominators in the de�nitions of r∗(.) and r̃∗(.) (the numerators
are equal):

|{Up |T(u) ≥ t, 0 ≤ C(u) ≤ t}| ≤ |{Up |T(u) ≥ t}|

Now r̃∗(t) is the death rate of women who actually are members of Up at

the age of t and, as I have construed the model, it is a reasonable estimate

of δt
f , at least in the extended probability model:�e random variables

corresponding to (T ,C) are

(T ,C) : U ×Ω −→ T ×
(
T ∪ {−1}

)
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Figure 3.7.: Survivor functions, conditional on t ≥ 21, from the 1891–1900
period life table (solid line) and from women with at least one child in the

simulated data set (dotted line).

�e simulation proceeds by stepping forward through time. At each

age t, the process ends if єt,d(u, ω) ≤ δt
f and T(u, ω) is set to t, other-

wise it proceeds to the next age t + 1. �us the simulation provides

realisations of life lengths T(u, .) with Pr(T(u, .) = t |T(u, .) ≥ t) = δt
f

and Pr(T(u, .) ≥ t) = G(t) for all u. With T �nite and U large, ‘most’
empirical distribution functions derived from the simulations can be

expected to be close to G(.).

�e simulation does not directly produce a random variable C(u, .). In

order to use the results also for the discussion of more complicated

situations, it proceeds to simulate data for all births of u. However,

the random variable C(u, .) as de�ned above is a simple function of

the random variables n(u, .) and the birth dates recorded in the list of

children. And since the simulation for any u ∈ U stops with a death
event, C(u, .) ≤ T(u, .) is ensured. Furthermore, also by construction

Pr(T(u, .) = t |T(u, .) ≥ t) = Pr(T(u, .) = t |T(u, .) ≥ t, 0 ≤ C(u, .) ≤ t)

But the former quantity is δt
f and the latter quantity is the one estimated

by r̃∗(.) so that r̃∗(.) should be close to δt
f in reasonably large samples.
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In principle, it would be possible to obtain estimates r̃∗ from the earliest
observed age at �rst birth onward. Since this rate is zero up to the age of

the �rst observed death in Up, one might as well start at this age, say

a+. On the other hand, due to the small number of cases in a sample

of observations, r̃∗(a+) might not be a good estimate of δt
f (a+) and one

should condition on some later age. In fact, it might even happen that

r̃∗(a+) = 1 so that one cannot �nd a reasonable estimate of a survivor
function beginning at a+.

Having chosen a reasonable a+, the conditional survivor function derived

from the estimates r̃∗(.) becomes

G̃∗a+(t) :=

t−1∏
j=a+

(1− r̃∗(j))

It might be taken as an estimate of the conditional survivor function

G(. |T ≥ a+). In the simulated data set, the earliest death occurs at age

19. However, this occurs only once, and at t = 20 there is no death at all.

I therefore de�ne a+ := 21.�e estimate G̃∗a+(.) is shown in Figure 3.7 as
a dotted line together with G(. |T ≥ a+) calculated from the 1891-1900

period life table for women. Obviously, both curves agree quite well.

On the other hand, if I had not taken into account the fact that women

become members of Up only a�er having given birth to a �rst child, but

estimated the survivor function of T∗, the result would be systematically
biased as a consequence of the inequality r∗(t) ≤ r̃∗(t).�is is illustrated
by Figure 3.8 where the solid line shows G̃∗a+ and the dotted line shows
P(T∗ ≥ . |T∗ ≥ a+).

�e fact that women become members of Up only a�er the birth of a

child is formally equivalent to treating the observations as le� truncated

at the age at �rst birth. Of course, nothing is wrong with estimating

the survivor function of T∗ instead of using G̃∗a+(.).�e argument has
only shown that one should use the latter if the interest is in recovering

part of the distribution of T. One might also notice that, while T∗

refers to a well-de�ned statistical variable, there is no statistical variable

of which G̃∗a+(.) is a conditional survivor function. I.e., the de�nition
of G̃∗a+(.) (based on r̃

∗(.)) refers to a risk set that changes not only in
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Figure 3.8.: Conditional survivor functions G̃∗a+ (.) (solid line) and P(T
∗ ≥

. |T∗ ≥ a+) calculated from the simulated data set with a+ = 21.

accordance with the mortality of (a �xed subset of) women. It also

depends dynamically on the fertility of the women. In fact, r̃∗(.) is a
mixture of rate functions de�ned for subsets of Up. To see this, partition

Up into subsets

Up

[a]
:= {u ∈ Up |C(u) = a} = C-1({a})

consisting of those members of Up who had a �rst birth at the age a.

�e mortality experience of this subset can be summarised by the rate

function

r̃∗a(t) :=
|{Up

[a] |T(u) = t}|
|{Up

[a] |T(u) ≥ t}|
= P(T = t |T ≥ t,C = a)1[t ≥ a]

�e rate function r̃∗(.) arises as a mixture of the rate functions r̃∗a(.):

r̃∗(t) =
∑
a≤t

r̃∗a(t)wa(t)

where the weights, de�ned as

wa(t) := P(C = a |C ≤ t, T ≥ t)1[t ≥ a]
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re�ect the composition of the risk set at t.�at there is in general no �xed

subset of women in Up whose mortality experience is ‘representative’

of the mortality experience of U re�ects the di�culties created by the
dynamic selection of Up.

3.7.3. Using Information from Children

Turning to the question of how to estimate conditional survivor functions

for the members of U when only information from their children (mem-
bers of U c) is available, one needs to take into account the relationship

between U c and Up. Recall from Section 3.1 the de�nitions of a few

functions that describe generational dependencies:

m : U c −→ Up ∩ U f

where for each child u ∈ U c, m(u) refers to the mother of u in Up.

Conversely, for each woman u ∈ Up,m-1({u}) is the set of her children
in U c.

Now let s denote a simple random sample from U c. �is induces a

random sample from Up, namely

s∗ := {u ∈ Up | there is an u′ ∈ s withm(u′) = u}

But s∗ is not a simple random sample from Up because women with

more children are more likely to be included in s∗.�is should be taken
into account when estimating r̃∗(t) from information provided by the
children in the sample s.

�e further problem, considered in Section 3.7.2, of the temporal nature

of the membership of women in Up, can be traced from survey responses

of children if the variable C referring to the age at the �rst birth of

the mothers (alternatively, the birth dates of all siblings) is recorded.

Accordingly, if u is included in s, one should not condition on her

mother’s age when giving birth to u, but on the age of her mother’s

�rst child-bearing. To illustrate the di�erence, I use the data from the

simulation model and compare two �ctitious samples: s1 contains all

�rst-born children from U c, and s2 contains all last-born children from
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Figure 3.9.: Comparison of conditional survivor functions calculated
from two di�erent samples from the simulated data set.

U c. Of course, both samples provide the same information about the

life length of women in Up. But there are now di�erent ways to select

truncation times. If I condition on the age of the mothers when giving

birth to the children in the samples, I get the results shown in Figure 3.9.

Obviously, conditioning on the mother’s age when giving birth to her

last child would result in an extremely biased estimate.

In order to avoid this mistake, ideally, the following statistical variables

should be available from a sample of children:

(T ,C,N) : s∗ ⊆ U −→ T × T × {1, 2, 3, . . .}

where T(m(u)) records the life length of u’s mother, C(u) denotes

mother’s age at �rst child-bearing, andN(u) counts the mother’s number

of children. Since N will be used to provide weights for the observations

in the sample s∗, this should be the number of children surviving up to
the time when the sample is drawn. Assuming that this information is

available from a simple random sample s and in conformance with the

discussion in Section 3.3 (now restricted to mothers), the rates r̃∗ can be
estimated by:
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Figure 3.10.: Comparison of conditional survivor functions estimated
with, and without, weights from the simulated data set.

r̃∗(t) ≈ r̃∗w(t) :=

∑
u∈s

1

N(u)
1[T = t,C ≤ t](u)

∑
u∈s

1

N(u)
1[T ≥ t,C ≤ t](u)

To illustrate, I use again data from the simulation model. Figure 3.10

compares conditional survivor functions calculated from estimated

rates r̃∗w(t) and from analogously de�ned rates where the weights are
dropped.32�e �gure clearly indicates that one should use the weights

1/N if this information is available.

However, general surveys o�en do not provide this information. It

is therefore important to explore another way to arrive at reasonable

estimates. In order to explain this possibility consider the risk set

Up
t = {u ∈ Up |T(u) ≥ t,C(u) ≤ t}

32
In the calculation I have used all observations from U c

, but basically the same

di�erences would result from a simple random sample from U c .
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at t.�e death rates to be estimated can then be written as

r̃∗(t) =
|{u ∈ Up

t |T(u) = t}|
|Up

t |
= P(T = t |T ≥ t,C ≤ t) ≈ δt

f

By assumption, these rates do not depend on the number of children

born of members of Up
t until t, and also do not depend on the children’s

birth dates. To make this explicit, partition the risk sets into subsets

according to the number of children born until t. Let K∗t (u) denote
the number of children born of u until t. Each risk set Up

t may then be

written as a union of subsets

Up

t,k
:= {u ∈ Up

t |K∗t (u) = k}

taken over all possible values of k. Furthermore, I can de�ne death rates

for these subsets,

r̃∗k (t) :=
|{u ∈ Up

t,k |T
∗(u) = t}|

|Up

t,k|

However, by assumption these rates are all (approximately) identical to

the death rate r̃∗(t). Consequently, I do not need weights when I only
use information from children born until t. Instead, I can directly refer

to the sets of children born of women in Up

t,k which can be de�ned by

U c
t,k := m-1(Up

t,k)

�e death rates r̃∗k (t) may then be written as

r̃∗k (t) ≈
|{u ∈ U c

t,k |T
∗
c (u) = t}|

|U c
t,k|

and, since these rates are approximately identical across the subsets, I

might �nally write

r̃∗(t) ≈ r̃∗c (t) :=
|{u ∈ U c |T∗c (u) = t, S∗c (u) ≤ t}|
|{u ∈ U c |T∗c (u) ≥ t, S∗c (u) ≤ t}|

(3.15)
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Figure 3.11.: Conditional survivor function estimated from the rates r̃∗c (t),
compared with a conditional survivor function from the 1891-1900 period

life table.

where now S∗c (u) is the age of u’s mother at the birth of u. Notice that this
approach does not require any weights and also requires no information

about the mothers age at her �rst child-bearing.

To illustrate the argument I use again data from the simulation model.

Taking into account all children in U c but, for the calculation of the rates

r̃∗c (t) only use information from children born not later than t. Of course,
this simply means to use all information from U c and, for each u ∈ U c,

treat the observation about u’s mother as le� truncated at S∗c (u).33 Figure
3.11 shows the conditional survivor function calculated from the rates

r̃∗c (t).�is function obviously agrees quite well with the 1891-1900 period
life table that was used to generate the data. Of course, the result would

be basically the same if I had used a simple random sample from U c.

33
One can use, therefore, any standard Kaplan-Meier procedure that allows for le�

truncated data. I have used TDA’s dple procedure.
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3.7.4. Retrospective Surveys

In the previous Section I assumed that I have data from a simple random

sample from the complete set of children, U c. However, the data actually

result from a retrospective survey performed in some speci�c year, say

τ, and I therefore have to take into account that not all members of U c

survive until τ. Fortunately, the approach to estimate δt
f via the rates

r̃∗c (t) that was discussed in the previous Section can also be applied to a
retrospective sample if I make the additional assumption that children’s

life lengths are independent of their mother’s life length.34 To explain the

argument, let Tc denote the life length of children in the reference set U c.

On a historical time axis, if mothers are born in the year τ0, each child

u ∈ U c survives until τ0 + S
∗
c (u) + T

c(u) (as already introduced, S∗c (u) is
the age of the mother when u was born).�e set of children who survive

at least until the year τ is therefore given by

U c[τ] := {u ∈ U c | τ0 + S∗c (u) + Tc(u) ≥ τ}

In the simulation model introduced in Section 3.7.1 I assumed τ0 = 1900.

Based on this assumption, Figure 3.6 shows the survival of children in

historical time.

Now assume a retrospective survey performed in the year τ.�e sample

is then drawn from the reference set U c[τ]. Following the approach

discussed in the previous Section, I can calculate rates

r̃∗c,τ(t) :=
|{u ∈ U c[τ] |T∗c (u) = t, S∗c (u) ≤ t}|
|{u ∈ U c[τ] |T∗c (u) ≥ t, S∗c (u) ≤ t}|

which are de�ned analogously to the rates r̃∗c (t) introduced in (3.15). In
order to see that the rates r̃∗c,τ(t) are reasonable estimates of the rates
r̃∗c (t), their de�nition might be written in the following way:

r̃∗c,τ(t) =
|{u ∈ U c |T∗c (u) = t, S∗c (u) ≤ t, S∗c (u) + T

c(u) ≥ τ − τ0}|
|{u ∈ U c |T∗c (u) ≥ t, S∗c (u) ≤ t, S∗c (u) + T

c(u) ≥ τ − τ0}|
34
�is assumption, already built into the simulation model in Section 3.7.1, is probably

not completely true. However, for the moment I will base my argument on this

assumption.
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�e further argument proceeds in terms of conditional frequencies.

Using an abbreviated notation, one may write:

r̃∗c,τ(t) =
Pr(T∗c = t, S∗c ≤ t, S∗c + T

c ≥ τ − τ0)

Pr(T∗c ≥ t, S∗c ≤ t, S∗c + T
c ≥ τ − τ0)

=
Pr(S∗c + T

c ≥ τ − τ0 |T∗c = t, S∗c ≤ t)

Pr(S∗c + T
c ≥ τ − τ0 |T∗c ≥ t, S∗c ≤ t)

× Pr(T
∗
c = t, S∗c ≤ t)

Pr(T∗c ≥ t, S∗c ≤ t)

= r̃∗c (t)
Pr(S∗c + T

c ≥ τ − τ0 |T∗c = t, S∗c ≤ t)

Pr(S∗c + T
c ≥ τ − τ0 |T∗c ≥ t, S∗c ≤ t)

Now, given the assumption mentioned at the beginning, that, conditional

on S∗c ≤ t, the survival of children does not depend on the survival of their

mothers, the last term on the right-hand side becomes approximately

Pr(S∗c + T
c ≥ τ − τ0 | S∗c ≤ t)

Pr(S∗c + T
c ≥ τ − τ0 | S∗c ≤ t)

and may be omitted.

�ere is, however, a further di�culty resulting from retrospective surveys.

�e later the year τ in which the survey is performed, the smaller is the

number of childrenwhomight participate in the survey, and consequently

also the risk set to be used for the estimation of the death rates r̃∗c,τ
becomes smaller.�is is shown in Figure 3.12 which is based on the data

from the simulation model. Shown are the functions

t −→ U c
t [τ] := {u ∈ U c[τ] |T∗c (u) ≥ t, S∗c (u) ≤ t}

as they result from four �ctitious retrospective surveys performed in the

years τ = 2000, 2010, 2015, and 2020.�e possible problem concerns

estimation with le� truncated data. Contrary to the standard Kaplan-

Meier procedure with right censored data only, the risk set is very small

at the beginning and may not allow reliable estimates of the death rates.

Due to the cumulative nature of the calculation of survivor functions

from these rates, any imprecisions introduced at the beginning will then

propagate to values of the survivor function at later ages. To illustrate,
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Figure 3.12.: Sizes of the risk sets U c
t [τ], depending on τ, calculated

from four retrospective surveys of the simulated data set in the years

τ = 2000, 2010, 2015, and 2020.

I use the simulated data set and perform a retrospective survey in the

year τ = 2010. I assume that all children who survive this year, that is

about 20% of the 11407 children in U c, participate in the survey and

provide information about their mothers. Nevertheless, I can only begin

to estimate a conditional survivor function at a+ = 25 as shown in Figure

3.13.

3.8. Inferences from the GLHS and SOEP Data

I now use the methods discussed in the previous Sections to draw some

inferences from the GLHS and SOEP data.

�e German Life History Study (GLHS) is a long-term project conducted

by the Max Planck Institute for Human Development (Berlin). �e

main data source of this project is a series of retrospective surveys in

which members of selected birth cohorts were asked to provide detailed

information about their life courses. Part of these data are accessible

for the general scienti�c public through the Zentralarchiv für empirische
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Figure 3.13.: Conditional survivor functions, estimated from U c[2010]

(dotted line) and calculated from the 1891–1900 period life table (solid

line), both beginning at a+ = 25.

Sozialforschung (Köln). Only the publicly accessible data are used in the

following.

a) Data from the �rst survey (LV I) were sampled during the years

1981 – 83 and included 2171 members of the birth cohorts 1929 – 31,

1939 – 41, and 1949 – 51.

b) Data from a second survey (LV II) were sampled in two parts,

both relating to persons born in the years 1919 – 21; a �rst part

was conducted in 1985 – 86 and included 407 persons (LV IIA), a

second part was conducted in 1987 – 88 and included 1005 persons

(LV IIT).

c) Data froma third survey (LV III) were sampled in 1989 and included

2008 members of the birth cohorts 1954 – 56 and 1959 – 61.

All surveys were conducted in the territory of the former FRG. For the

present study I include all female respondents from the surveys LV I,

LV IIT, and LV III (only cohort 1959 – 61) having a German citizenship.
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�e number of cases and their distribution across the �ve cohorts is

shown in the following table:35

Birth cohort Birth years Male Female Interview date

C20 1919− 21 373 632 1987− 88
C30 1929− 31 349 359 1981− 83
C40 1939− 41 375 355 1981− 83
C50 1949− 51 365 368 1981− 83
C60 1959− 61 512 489 1989

3.8.1. Description of the Data

Of the 2171 respondents interviewed in LV I, 2120 respondents were able

to provide a valid birth year of their mother. Of these mothers, 732 died

before the interview date, 1386 were still alive, and for two mothers I

have no information. Complete information is therefore available for

2118 mothers. In 8 cases this information is inconsistent or implausible,

for example, the birth year of the respondent is greater than the death

year of the mother. In addition to inconsistent cases I also exclude cases

with a life length greater than 105 years. For women I also require that

the age at which the women gave birth to her child (the respondent)

is not greater than 51 years. If these cases are excluded, there �nally

remain 2110 cases in which the birth year of the mother, whether she

died before the interview date, and, if she died, also her death year are

known. Similarly, I get valid information for 2044 fathers.

�e second study, LV IIwas conducted in two parts: LV IIAwith interviews

during 1985 – 86, and LV IIT with interviews during 1987 – 88. In the

same way as explained for LV I I get valid information about the lifetimes

of 387 + 956 = 1343 mothers and 382 + 943 = 1325 fathers.�e third

study, LV III, provides valid information about 1954 mothers and 1911

fathers.

35
Of the 632 women of birth cohort C20 three did not give valid birth years for their

children and will be excluded in further calculations.
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Table 3.5.: Information about lifetimes of mothers and fathers available in
the GLHS and SOEP data sets.

LV I LV IIA LV IIT LV III SOEP

Interview dates 1981-83 1985-86 1987-88 1989 1986

Respondents 2171 407 1005 2008 8021

Mothers

- valid birth year 2120 390 962 1954 7819

- still alive 1386 24 43 1766 4872

- known death year 732 366 919 188 2911

- no information 2 0 0 0 36

- complete information 2118 390 962 1954 7783

- dismissed 8 3 6 0 37

- remaining cases 2110 387 956 1954 7746

- still alive 1385 24 43 1766 4854

- died 725 363 913 188 2892

Fathers

- valid birth year 2062 386 955 1916 7699

- still alive 909 1 8 1460 3586

- known death year 1150 384 945 451 4053

- no information 3 1 2 5 60

- complete information 2059 385 953 1911 7639

- dismissed 15 3 10 0 25

- remaining cases 2044 382 943 1911 7614

- still alive 909 1 8 1460 3577

- died 1135 381 935 451 4037

Comparable information is available from the third wave of the SOEP

conducted in 1986. All members of subsample A of the SOEP were

asked to provide information about birth years of their parents, whether

parents died before the interview date and, if they died, about their death

years. In order to get data comparable with the GLHS, I selected only

persons with a German citizenship. As shown in Table 3.5, there are

8021 persons providing valid information about 7746 mothers and 7614

fathers. Taking the GLHS and SOEP data together, I �nally have valid

information about 13153 mothers and 12894 fathers.

I prepared two data �les for further analysis, one for mothers and the
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other one for fathers. Both �les contain values of four variables:

Bf := birth year of the mother

Pf := birth year of the child (respondent)

Ef := 1 if mother died before the interview date, 0 otherwise

Df := mother’s death year, or the year of the interview,

depending on the value of Ef

Variables in the data �le for fathers are de�ned accordingly and will be

denoted by Bm, Pm, Em, and Dm.

3.8.2. Survivor Functions of Parents

I now apply the method discussed in the previous Section to the data

introduced in Section 3.8.1. Since mortality conditions have substantially

changed during the last 100 years, I consider birth cohorts as de�ned in

Table 3.6.36 To develop the argument I consider variables T̂c
f and T̂m

c

representing the life length of women and men who belong to a birth

cohort indexed by c. Derivable from the variables introduced at the end

of Section 3.8.1, available data are given by variables

Cc
f := P

f
c − B

f
c and Cm

c := Pmc − Bmc

which record the ages at which persons belonging to birth cohort c

became mothers or fathers, and variables

Tc
f := D

f
c − B

f
c and Tm

c := Dm
c − Bmc

which record the knowledge about the life length. If E
f
c(u) = 1, Tc

f (u) =

T̂c
f (u) is the known life length of u; otherwise, the information is censored

and I only know that T̂c
f (u) ≥ Tc

f (u). For variables pertaining to men

the interpretation is analogous.

36
Compared with the �gures in Table 3.5 the total number of cases is slightly smaller

because persons born before 1870 or a�er 1939 have been omitted.

187



3. A Case Study: Parent’s Length of Life

Table 3.6.: De�nition of birth cohorts used in the estimation of survivor
functions.

Mothers Fathers

Cohort Birth years died alive total died alive total

C1 1870 – 1879 271 0 271 528 0 528

C2 1880 – 1889 1064 10 1074 1393 12 1405

C3 1890 – 1899 1698 170 1868 1591 101 1692

C4 1900 – 1909 1123 954 2077 1685 600 2285

C5 1910 – 1919 438 1456 1894 907 1011 1918

C6 1920 – 1929 272 2467 2739 464 2035 2499

C7 1930 – 1939 123 2219 2342 196 1773 1969

t (a) (b) (c) (d) t (a) (b) (c) (d)

15 1 0 0 1.000 52 1901 4 0 0.878

16 2 0 0 1.000 53 1897 15 0 0.876

17 3 0 0 1.000 54 1882 13 0 0.869

18 18 0 0 1.000 55 1869 21 0 0.863

19 45 0 0 1.000 56 1848 7 0 0.854

20 100 1 0 1.000 57 1841 17 0 0.850

21 183 1 0 0.990 58 1824 14 0 0.843

22 266 2 0 0.985 59 1810 18 0 0.836

23 347 0 0 0.977 60 1792 20 0 0.828

24 435 2 0 0.977 61 1772 19 0 0.818

25 556 1 0 0.973 62 1753 15 0 0.810

26 690 3 0 0.971 63 1738 23 0 0.803

27 781 4 0 0.967 64 1715 18 0 0.792

28 928 1 0 0.962 65 1697 33 0 0.784

29 1075 3 0 0.961 66 1664 23 0 0.769

30 1217 3 0 0.958 67 1641 36 0 0.758

31 1327 2 0 0.956 68 1605 32 0 0.741

32 1427 5 0 0.954 69 1573 24 0 0.727

33 1512 9 0 0.951 70 1549 41 0 0.715

34 1597 5 0 0.945 71 1508 39 0 0.697

35 1677 6 0 0.942 72 1469 54 32 0.679

36 1740 5 0 0.939 73 1383 53 53 0.654

37 1800 5 0 0.936 74 1277 56 57 0.629

38 1864 9 0 0.934 75 1164 53 43 0.601

39 1903 13 0 0.929 76 1068 55 30 0.574

40 1929 12 0 0.923 77 983 42 125 0.544

41 1945 2 0 0.917 78 816 57 96 0.521

42 1952 5 0 0.916 79 663 42 114 0.484
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t (a) (b) (c) (d) t (a) (b) (c) (d)

43 1957 7 0 0.914 80 507 33 85 0.454

44 1957 5 0 0.910 81 389 20 78 0.424

45 1956 13 0 0.908 82 291 12 70 0.402

46 1947 7 0 0.902 83 209 21 48 0.386

47 1943 10 0 0.899 84 140 12 34 0.347

48 1935 8 0 0.894 85 94 5 41 0.317

49 1928 8 0 0.891 86 48 0 39 0.300

50 1920 7 0 0.887 87 9 0 5 0.300

51 1913 12 0 0.884 88 4 0 4 0.300

Table 3.7.: Mortality data for mothers belonging to birth cohort C4 in the
merged GLHS and SOEP data set. (a) Size of risk set at age t. (b) Number
of deaths at age t. (c) Number of censored cases at age t. (d) Values of
the conditional survivor function at age t.

To illustrate the calculations I refer to women belonging to birth cohort

C4. �e data are shown in Table 3.7. �e column labelled (a) shows

the risk sets. As discussed in the previous Section, the risk set at age t

contains all women who did not die before t and became a mother not

later than t.37 In this example, the youngest age for which I know of a

child is 15; risk sets can therefore be calculated only for ages t ≥ t∗ = 15.
�e next column, labelled (b), shows the number of death events.�en

follows column (d) providing the number of censored cases which are

required to update the risk sets. As shown by the de�nition

R∗(t) := {u |Tc
f (u) ≥ t,Cc

f (u) ≤ t}

women belong to a risk set only until the maximal value of Tc
f , that is,

until a death event occurs or until the interview date (of their children).

�e information in Table 3.7 su�ces to calculate death rates. For example,

r∗(20) = 1/100 and r∗(80) = 33/507. �ese rates can then be used to

37
Of course, from the data I do not know when women actually gave birth to a �rst

child. Whether this has implications for the quality of the estimates will be discussed

in a later Section.
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estimate the survivor function

G∗(t) = gt∗

t−1∏
j=t∗

(1− r∗(j))

Of course, I do not know gt∗ , that is, the proportion of women who

survived age 14. So I can only estimate a conditional survivor function

G(Tc
f |Tc

f ≥ t∗) ≈
t−1∏
j=t∗

(1− r∗(j))

which is shown in the last column of Table 3.7 labelled (d).

Since this approach to estimate a conditional survivor function depends

on a previous estimation of rates, one should also consider the question

whether these rates can be reliably estimated. Formally, one can begin at

age t∗ which is 15 in the example. However, due to the small number of
cases in the risk sets at ages under 20, one might question the reliability

of these estimates. In fact, the estimation procedure implies estimated

death rates having a value of zero during ages from 15 to 19. But given

our knowledge about mortality and life tables from other sources, these

estimates will clearly be wrong. Moreover, the reliability of estimates of

death rates not only depends on the size of the risk sets but also on the

number of death events that can be observed. With regard to the data in

Table 3.7, it might be better to begin an interpretation of estimated death

rates only at some later age, for example, at age 26 or even later.

Conditional survivor functions can be represented graphically in two

possible ways:�e function can be plotted beginning at some age t with

arbitrary value gt; or one can try to �nd some estimate of gt and then

plot the conditional survivor function as part of a complete survivor

function. In any case one needs to decide where to start the plotting. For

the example I begin at age 26 and estimate g26 from the female survivor

function of the German period life table for the period 1901–10 (see Table

3.3). Beginning at age 26, I therefore multiply all values of column (d)

in Table 3.7 with the factor g26 = 0.71463/0.971 = 0.736.�e result is

shown in Figure 3.14.�e dotted line represents the female survivor
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Figure 3.14.: Female survivor function of the German period life table
1901/10 (dotted line) and conditional survivor function from Table 3.7.

function from the 1901–10 period life table; the solid line shows the

adjusted conditional survivor function from Table 3.7. By de�nition,

values are identical at age 26.�e di�erent development of both curves

re�ects the reduction of death rates that occurred during the period

from about 1930 until the end of the century. So I might use the latest

1986 –88 period life table for a further comparison. As can be estimated

from Table 3.7, the death rate at age 80 is about 0.065. A corresponding

estimate from the 1986 –88 period life table is 0.066.38 One should note,

however, that values of rates calculated from sample data for single years

o�en show high �uctuations and it might be better, therefore, to use

smoothed values based on larger age classes.

In the same way as has been discussed for women belonging to birth

cohort C4 (1900 –1909) one can estimate conditional survivor functions

for all birth cohorts in Table 3.6. Results are shown in Figure 3.15. To

allow for a comparison, all survivor functions are drawn conditional on

t∗ = 30.�e placement onto a historical time axis was done by using
the centres of the birth cohort intervals. For example, the value of the

38
Calculated from the data in Table 3.3.
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Figure 3.15.: Conditional survivor functions, beginning at age 30, for
men (solid lines) and women (dotted lines) belonging to speci�ed birth

cohorts.
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conditional survivor function for birth cohort C1 at age 30 is shown in

the year 1875 + 30 = 1905.�e changing shapes of the survivor functions

not only re�ect a general tendency of decreasing death rates, both for

men and women. Also clearly seen are period e�ects, especially the

substantial increases of male death rates during the years of World War

II.�is seems not to be the case with regard to female death rates. An

interpretation should consider, however, that the occurrence of death

events might not be independent for mothers and their children, in

particular during war time.�e death events of mothers might therefore

be substantially underrepresented in the data set.

3.8.3. Visualisation of Death Rates

In order to investigate period e�ects it is o�en preferable to directly

plot the rates from which (conditional) survivor functions are derived.

�e only drawback is that rates calculated from small samples are o�en

highly �uctuating. As an example I refer to death rates of men belonging

to birth cohort C5 (1910 –1919).�e solid line in Figure 3.16 shows the

death rates as directly calculated from the data, that is, for each year

of age, the number of deaths divided by the number of persons in the

risk set. �ere obviously are big �uctuations. One should therefore

apply some kind of smoothing procedure to provide a better view of the

general shape of the rate function.

Many such smoothing procedures have been proposed in the literature. In

the present context, smoothing will only serve to visualise rate functions.

It might therefore su�ce to simply use moving averages. Given a series

of values rt , for t = t1, . . . , tn, each value is then substituted by a mean of

neighbouring values. If the number of neighbours is denoted by 2k, the

smoothed values are calculated as

r
(k)
t :=

1

2k + 1

t+k∑
j=t−k

rj

At both ends of the series only the actually available values are taken into
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Figure 3.16.: Raw values (solid line) and smoothed values (dotted line) of
death rates of men belonging to birth cohort C5 (1910 – 1919).

account.�e complete formula may then be written as follows:

r
(k)
t :=

1

min{tn, t + k} −max{t1, t − k} + 1

min{tn ,t+k}∑
j=max{t1 ,t−k}

rj

where t1 and tn refer, respectively, to the �rst and last element of the

series.

Choosing k = 2, this procedure was used to calculate values for the

dotted line in Figure 3.16. It is seen how the smoothing removes the

�uctuations but preserves the global shape of the rate function.

I now compare the death rates of men belonging to birth cohorts

C1, . . . , C6. �e rate functions are shown in Figure 3.17 and placed

onto a historical time axis. To support visibility, the rate functions are

smoothed with the procedure just described (again, k = 2). Compared

with the survivor functions shown in Figure 3.15, the rate functions

provide a much better view of the impact of World War II.
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Figure 3.17.: Smoothed death rates of men belonging to the indicated
birth cohorts. (Moving averages with k = 2.)
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3.9. Conclusion

�e discussion in Section 3.7 and 3.8 was based on a rather simplistic

simulation.�e estimators derived from relative frequency analogues of

dynamic locally dependence conditions discussed in Section 3.6 could

be applied successfully within this context.�e dynamic independence

conditions is necessarily formulated within the context of probability

models that provide the connection between the ‘full data’ and ‘le� trun-

cated data’. In fact, the dynamic independence condition was explicitly

employed in the probabilistic description of the simulation algorithm

used to gauge the performance of suggested estimators. It is therefore

not surprising to �nd good agreement between the period survival rates

and estimates based on the simulated birth and death events.

�e fact that survival rates and their empirical analogues can be de�ned

without recourse to the number of children born to a woman (see Section

3.7.3) illustrates the di�erence from a pure sampling based argument

as developed in Section 3.3. While the latter does not depend on any

form of probabilistic independence assumption and the correctness of its

computations can be checked against empirical �ndings, Section 3.4 has

shown that this will be impossible for the dynamic local independence

condition incorporated in the construction of weights and estimators. An

argument for the correctness of the dynamic independence conditions

must necessarily refer to a probability model of the dynamic population

process. It presupposes the use of a probability model.�erefore, the

basic ingredients of any dynamic probability model are a necessary part

of a constitutive decision in Matheron’s sense, the decision to model

population dynamics in terms of dynamic probabilistic models.�e

appropriateness of the dynamic local independence assumption can only

be judged within such a framework.

But the model used in the simulation is a rather simplistic one and misses

one important ingredient inherent in any study of real populations:�e

simulation created sets U of potential mothers "‘born"’ at a �xed point in
time, without reference to their parent generation.�e arguments in

Section 3.7 then showed how the local independence condition allows

the development of reasonable estimators for such constructed cohorts.
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In the applications, the reasoning was applied to cohorts arti�cially

constructed from retrospective information. But real populations grow

or shrink depending on both birth and death rates of previous generations.

Even when ignoring possible dependencies between life length of parents

and their children, the procedure can only be justi�ed within a probability

model that posits a simple random process creating parents.�is has

been proposed by Brillinger (1986) who tried to justify a Poisson process

as a model of creating parents. A crucial consequence of such a proposal

was pointed out by Hoem in the discussion of Brillinger’s paper.

Unfortunately, the assumption of Poisson births disregards

essential aspects of the internal dynamics of real-life pop-

ulations. Results based on the Poisson assumption must

have little relevance for the analysis of statistics which in-

volve data for several generations . . . In normal populations,

children are borne by population members . . . Since real

populations are subject to the internal dependencies which

are made manifest by population waves, the assumption of

Poisson births is untenable in multigenerational analyses.

�e problem surfaces also in our problem of estimating parent’s length

of life: While the number and and ages at birth of a mother are of no

direct importance to the question posed, they necessarily appear in any

analysis of the probability model of parent’s life length. It is this direct

dependence of current populations on the timing and number of births

of previous generations that makes the Poisson models untenable. At the

same time, number of births and their timing are closely related to life

length.�us, they ought to be part of the probabilistic models. But their

mere presence changes the form of reasonable estimators.39

But reasonable probabilistic models are very di�cult to construct since

it turns out that Markov structures on a calender time basis are inappro-

priate and intergenerational dependencies invalidate transition models

39
In their discussion of the construction of likelihood functions, Bayarri et al. (1987) and

Bayarri and DeGroot (1992) use selection models of the present type to demonstrate

that various suggestions as to what ought to �gure in a likelihood function are ill

de�ned.
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based on individuals alone.40

If and in so far such an elaborated probabilistic model of population

dynamics can be combined with dynamic local independence condi-

tions, such models do satisfy the requirements for scienti�cally valuable

stochastic models in the sense of Neyman.�e repeated application

of local dynamic independence conditions does lead to manageable

estimators and manageable estimation strategies. But on its own the

independence condition does not provide arguments for its support.

Criticism of this condition must be based on a larger probability model

of population dynamics as proposed by Jagers (1989) or similar ones.

40
Jagers (1989) proposed a clever construction that allows to keep aMarkov assumption

for lines of descent. Life length, number of children, and other properties of

interest can then be modelled as attributes of elements of these lines of descent. He

himself describes the purpose of such a construction as "‘But one of the purposes

of mathematical population dynamics is to serve as a bridge between individual

properties and properties of the population as a whole. . . .�is presupposes a theory

of population evolution built upon a description of individual life. But individuals

vary . . . , i.e. we need a stochastic description."’ Jagers (1989). My interest here is of

course a di�erent one.
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4

Probabilistische

Selektionsmodelle

4.1. Summary

Missing or incomplete data are a pertinent to any social survey. Inter-

viewees do not answer some questions or refuse to participate at all.

Nowadays, response rates in surveys rarely reach 40%. Can the answers

of 40% of the selected individuals be treated as if one had answers from

all of them? Probabilistic selection models can be used to speculate

on the connexion between the attained information and the possible

answers of the non-responders.�ese models can be extended to cover

incomplete data such as grouped or censored data as well as processes

of self-selection and the evaluation of social programmes. A brief re-

view of some of these applications is given. Next, it is shown that the

assumptions used in probabilistic selection models necessarily refer to

concepts transcendenting empirically accessible social facts. However,

the amount and impact of these assumptions can be reduced if possibly

available additional incomplete information is fully used. �erefore,

probabilistic selection models are formulated in a form that allows for

grouped, censored and general coarsened data. Finally, several proposals

for the sensitivity analysis of probabilistic selection models are presented

and it is argued that approaches restricted to too small neighbourhoods

of a given model can be quite misleading.�roughout, responses on
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income questions obtained in the German ALLBUS 1996 are used as an

illustration.

4.2. Zusamenfassung

Fehlende oder unvollständige Angaben in Umfragedaten sind unver-

meidlich. Befragte geben manchmal keine Auskun� oder verweigern

das Interview. Der Anteil der vollständigen Antworten ist selten größer

als 40%. Was weiß man über die anderen 60%? Kann man problem-

los die Angaben der 40% so behandeln als hätte man Angaben von

allen ausgewählten Befragten? Probabilistische Selektionsmodelle sind

ein Hilfsmittel, über Zusammenhänge zwischen erhaltenen und nicht

erhaltenen Angaben nachzudenken. Ihre Anwendungsmöglichkeiten

beschränken sich nicht auf die Analyse fehlender Angaben in Umfragen.

Sie werden auch für die Untersuchung gruppierter, zensierter oder sonsti-

ger unvollständiger Daten sowie für die Modellierung von Prozessen mit

Selbstselektionen und die Evaluation von Maßnahmen benutzt. Nach

einem kurzen Überblick über verschiedene Anwendungen wird zunächst

diskutiert, welche Annahmen Selektionsmodellen zugrunde liegen. Es

zeigt sich, dass die Verwendung probabilistischer Modelle auf Voraus-

setzungen verweist, die über empirisch zugängliche Annahmen über

soziale Sachverhalte weit hinausgehen. Der Anteil modellimmanenter

Spekulation kann allerdings verringert werden, wenn auch partielle

Angaben der Befragten mit einbezogen werden. Die Grundlagen von Se-

lektionsmodellen werden daher nicht nur für fehlende, sondern auch für

gruppierte und vergröberte Angaben formuliert. Abschließend werden

verschiedene Möglichkeiten der Sensitivitätsanalyse für probabilistische

Selektionsmodelle dargestellt und die Beschränkungen enger Formulie-

rungen demonstriert. Fehlende und gruppierte Einkommensangaben im

ALLBUS 1996 dienen zur Illustration.
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4.3. Einleitung

Fehlende oder unvollständige Angaben in Umfragedaten sind unver-

meidlich. Schließlich steht es jedem Befragten frei, die Zumutung eines

Interviews zurückzuweisen oder auf einzelne Fragen nicht zu antworten.

Zudem mag ein Befragter nicht willens oder in der Lage sein, Aus-

kün�e in der gewünschten Präzision zu geben. In Umfragen ist der

Anteil vollständiger Angaben zu einer bestimmten Frage selten höher

als 40%. Dennoch sollen Umfrageergebnisse Aufschluss über soziale

Sachverhalte geben. Wenn dies nachvollziehbar gelingen soll, muss ein

Zusammenhang zwischen den erhaltenen Angaben und den potentiellen

Angaben aller ausgewählten Befragten hergestellt werden. Denn allein

aufgrund der vollständigen Angaben soll es möglich sein, Aussagen über

statistische Sachverhalte zu tre�en, die sich auf alle Befragten beziehen.

Wenn aber über 60% der Befragten nichts oder wenig bekannt ist, dann

sind zur Rechtfertigung solcher Aussagen o�enbar starke Annahmen

erforderlich. Probabilistische Selektionsmodelle sind ein Hilfsmittel,

solche Annahmen explizit zu formulieren und über ihre Konsequenzen

nachzudenken.

Das Grundschema probabilistischer Selektionsmodelle lässt sich leicht

angeben: Man möchte Aussagen über Aspekte der Verteilung einer

statistischenVariablenY machen. Nur wurden dieWerte dieser Variablen

nicht vollständig beobachtet. Dagegen ist die Verteilung einer Variablen

Y∗ bekannt, von der angenommen wird, sie stände in einer Beziehung
zu der interessierenden Variablen Y . Zum Beispiel mag ein Befragter

auf die Frage nach dem Einkommen mit einer genauen Angabe, mit

einer ungefähren Angabe etwa in Form eines Intervalls, oder gar nicht

antworten. Der Wert der Variablen Y∗ ist dann entweder der Wert von
Y , oder ein Intervall, in welches Y fällt, oder das Intervall (0,∞), das
„keine Angabe“ repräsentiert. Wäre bekannt, unter welchen Umständen

jemand bei gegebenem Wert von Y eine mehr oder weniger genaue

Auskun� Y∗ gibt, dann könnte aus der Verteilung von Y∗ und den
Umständen auf Aspekte der Verteilung von Y geschlossen werden.

Wird für die Antwortmöglichkeiten Y∗ bei gegebenem Y eine bedingte

Wahrscheinlichkeit angegeben, dann soll dieses probabilistische Modell

im Folgenden ein allgemeines Selektionsmodell für (Y , Y∗) heißen.
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In der Literatur zur Stichprobentheorie sind probabilistische Selekti-

onsmodelle nur sehr zurückhaltend diskutiert worden. So schrieb Tore

Dalenius, damals Präsident der International Association of Survey

Statisticians:

I take a dim view of the usefulness of these endeavors on

two grounds. (1) First, it appears utterly unrealistic to postu-

late ‘response probabilities’ which are independent of the

varying circumstances under which an e�ort is made to

elicit a response. . . . (2) . . . it seems unavoidable to introduce

assumptions of unknown validity about probabilities. In

summary, I am inclined to reject approaches to the non-

response problem which involve ‘response probabilities’

(Dalenius in Madow und Olkin 1983, Band 3: 412).

Und Mohler et al. verweisen auf die großen Schwankungen in den Aus-

schöpfungsraten von Stichproben, „die sich nicht mehr auf statistischen

Zufall zurückführen lassen“ (Mohler et al. 2003: 11). Daher hat man sich

in dieser Tradition darauf beschränkt, Bereiche möglicher Schlussfolge-

rungen auszuweisen, die sich allein auf die Angaben der Befragten und

Konsistenzannahmen stützen.

Dagegen sind sowohl in der mathematischen Statistik wie auch in der

Biometrie und Ökonometrie seit etwa 30 Jahren eine Fülle von probabi-

listischen Selektionsmodellen entwickelt worden. Einerseits ist geklärt

worden, unter welchen Modellvorstellungen relativ einfache Verfahren

des Umgangs mit fehlenden Daten gerechtfertigt werden können. In

solchen Modellen können die Einzelheiten des Zustandekommens un-

vollständiger Daten weitgehend ignoriert werden. Einen guten Überblick

darüber geben die Bücher von Schafer (1997) und Little und Rubin (2002).

Andererseits sind in der ökonometrischen Tradition hauptsächlich nicht

ignorierbare Selektionsmodelle und entsprechende Schätzverfahren

vorgeschlagen worden. Insbesondere die frühen Arbeiten von Heck-

man (1976, 1979) haben einen kaum zu überschätzenden Ein�uss auf

viele Bereiche der Sozialwissenscha�en ausgeübt. Neuere Überblicke

geben Nicoletti (2002) und Vella (1998). Obwohl die Abhängigkeit dieser

Modelle von einer unübersichtlichen Mischung von Annahmen über

Verteilungen, funktionale Formen von Regressionen, latente Variablen
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und Ausschlussrestriktionen früh kritisiert wurde (z.B. in Wainer 1986,

1989), haben sie sich in einigen Bereichen der Sozialwissenscha�en als

dominante analytische Methode durchgesetzt.

Dieser Artikel gibt einen Überblick über neuere Entwicklungen in der

statistischen Literatur. Insbesondere werden die Form von Annahmen,

die Einbeziehung unvollständiger Angaben und die Verwendung von

Sensitivitätsanalysen diskutiert. Im nächsten Abschnitt wird zunächst

ein kurzer Überblick über häu�g verwandte probabilistische Selektions-

modelle und ihre Anwendungen in den Sozialwissenscha�en gegeben.

Anschließend wird am Beispiel der Einkommensangaben im ALLBUS

1996 die Form der Annahmen diskutiert, die in probabilistische Modelle

ein�ießen. Die Annahmen verweisen nicht nur auf potentiell empirisch

zugängliche soziale Sachverhalte, sondern enthalten immer auch mo-

dellimmanente Anteile, die nicht rei�ziert werden sollten. Das mag die

Zurückhaltung gegenüber solchen Modellen in der Stichprobentheorie

rechtfertigen. Allerdings kann der Anteil modellimmanenter Spekulation

verringert werden, wenn auch gruppierte, zensierte und andere partielle

Angaben in die Analyse einbezogen werden. Abschnitt 4.7 beschreibt

die Vorgehensweise für den Fall ignorierbarer Selektionsmodelle. Im

Abschnitt 4.8 wird die Ignorierbarkeit von Selektionsmodellen auch für

gruppierte und vergröberte Angaben in einem wahrscheinlichkeitstheo-

retischen Rahmen de�niert. Anschließend werden zwei Schätzverfahren

vorgestellt, die die Einbeziehung von Kovariablen in Selektionsmodel-

le erlauben. Einige nicht ignorierbare Modelle werden im folgenden

Abschnitt kurz vorgestellt. Abschließend werden Techniken der Sensitivi-

tätsanalyse dargestellt. Sie erlauben eine Abschätzung der Abhängigkeit

von Schlussfolgerungen von einigen zentralen modellimmanenten An-

nahmen und sind daher ein wesentliches Hilfsmittel für die Beurteilung

von Selektionsmodellen.

Wenn möglichst alle stochastischen Annahmen eines Selektionsmodells

systematisch variiert werden, so zeigt sich, dass der Bereich möglicher

Schlussfolgerungen probabilistischer Modelle sehr groß werden kann.

Zudem deckt er sich häu�g mit den Bereichen, die im Rahmen der

klassischen Stichprobentheorie entwickelt wurden. Globale Sensitivitäts-

analysen probabilistischer Selektionsmodelle führen daher zu Abschät-
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zungen, die mit denen der Stichprobentheorie vergleichbar sind. Die

Formulierung verschiedener Annahmen in probabilistischen Selektions-

modellen ermöglicht eineDiskussion über den Zusammenhang zwischen

erhaltenen und nicht erhaltenen Angaben, die stichprobentheoretische

Überlegungen ergänzen können.

4.4. Selektionsmodelle in den Sozialwissenscha�en

Umfragedaten bilden eine wesentliche empirische Grundlage aller Sozial-

wissenscha�en. Aber schon das Verfahren, mit dem Befragte ausgewählt

werden, ist häu�g mit dem Hinweis hinterfragt worden, die Auswahl sei

selektiv gewesen. Ein o� und gern zitiertes Beispiel ist der spektakuläre

Misserfolg der Wahlvorhersage der Zeitschri� Literary Digest für die

Präsidentenwahl 1936 in den USA. Das Literary Digest hatte 60% der

Stimmen für den Republikaner Landon vorhergesagt, aber Roosevelt

gewann die Wahl mit 62%. Das Literary Digest hatte eine Stichprobe

von Telefon- und Autobesitzern befragt. Eine klassische Erklärung des

Fehlschlags besagt, Telefon- bzw. Autobesitz sei damals ein Anzeichen

von Reichtum gewesen und reichere Personen hätten eher republika-

nisch gestimmt. Das Selektionsargument bezieht sich auf den gewählten

Rahmen der Stichprobe, die Basis für die Auswahl von Befragten. Aber

eine einfache Überlegung zeigt, dass diese Selektion nicht allein für

den Misserfolg verantwortlich sein kann. 1936 besaßen ca. 40% der

Haushalte ein Telefon. Hätten die Telefon- und Autobesitzer in der Tat

zu 60% für Landon gestimmt, dann hätten von allen Haushalten, die

weder Auto noch Telefon besaßen, über 75% für Roosevelt stimmen

müssen. Betrachtet man die abgegebenen Wählerstimmen, so hätte

der entsprechende Anteil sogar größer als 90% sein müssen (Bryson

1976). Das Verhältnis der Odds für Roosevelt in den beiden Gruppen der

Telefonbesitzer und derjenigen ohne Telefon müsste also mehr als 1:20

betragen. Das Literary Digest hatte 10 Millionen Fragebogen verschickt,

aber nur 2.3 Millionen zurückerhalten. Es liegt nahe zu vermuten, dass

Landon-Anhänger eher als Roosevelt-Anhänger auf die Umfrage geant-

wortet haben. Wird angenommen, die 10 Millionen Befragten hätten

tatsächlich zu 62% für Roosevelt gestimmt, muss das Verhältnis der
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Odds für Roosevelt in den beiden Gruppen der Antwortenden und der

nicht Antwortenden nur 1:3 betragen, um zu der Diskrepanz zwischen

Vorhersage und Wahlergebnis zu führen. Ein Verhältnis der Odds von

1:3 ist eine weit realistischere Größenordnung als die 1:20, die für die

�ese einer Selektion zwischen Telefonbesitzern und Nichtbesitzern

angenommen werden müsste. Daten aus Nachbefragungen haben dann

auch die Bedeutung der Unterschiede im Antwortwortverhalten der

Landon- bzw. Rooseveltanhänger bestätigt (Squire 1988; Cahalan 1989).

Squire (1988: 132) schließt:

�e analysis here should also call attention to the other poten-

tial problemwith any survey: nonresponse bias. . . .Consumers

of public opinion surveys, as well as practitioners, must

be reminded of this potential problem in order to avoid a

future disaster like the Literary Digest poll of 1936.

Brysons Überlegungen über den Misserfolg der Wahlvorhersage des

Literary Digest verweisen zwar auf die möglicherweise gravierenden

Folgen unvollständiger Angaben in Umfragen, benutzen aber keine

probabilistischen Modelle etwa über das Antwortverhalten von Landon-

bzw. Rooseveltanhängern. Seit der Mitte der 70er Jahre sind Verfah-

ren entwickelt worden, die auf der Basis probabilistischer Modelle für

Teilnahme- und Antwortentscheidungen der Befragten versuchen, die

Folgen unvollständiger Angaben abzuschätzen. Eine Variante, die auf

Arbeiten von Heckman (1976, 1979, 1990) zurückgeht, ist von Engelhardt

(1999) vorgestellt worden. Sie untersucht die Einkommensangaben in

der Berliner Altersstudie (BASE), einer nach Alter und Geschlecht ge-

schichteten Zufallsstichprobe von Berlinern und Berlinerinnen über 70

Jahren, die auf der Basis des Einwohnermelderegisters gezogen wurde

(Mayer und Baltes 1996). An der Erstbefragung haben 928 Personen

teilgenommen, das entspricht ca. 49% der Ausgangsstichprobe. Engel-

hardt verwendet neben dem Einkommen die Variablen Geschlecht, Alter,

Familienstand, Schul- und Berufsausbildung, Wohnform, Interviewform

sowie einen Demenzindikator. Vollständige Angaben zu diesen Variablen

liegen für 842 Personen vor, zusätzliche Angaben zum Einkommen nur

für 716 oder 77% der Personen, die an der Befragung teilgenommen

haben. Engelhardt (1999: 716f) unterstellt eineWahrscheinlichkeit für die
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Antwort jeder Person auf die Einkommensfrage, die über einen Probit-

Link linear von allen Variablen (bis auf den Familienstand) abhängt.

Außerdem nimmt sie an, das logarithmierte Einkommen aller Personen

habe eine lineare, homoskedastische Regression auf alle Variablen (bis auf

Alter, Demenzindikator und Interviewform) und folge einer bedingten

Normalverteilung. Unter diesen Annahmen kann aus der bedingten

Verteilung der beobachteten Einkommen auf die bedingte Verteilung der

Einkommen aller Personen geschlossen werden. Engelhardt vergleicht

die entsprechenden Ergebnisse mit einer linearen Regression, die nur

die vollständigen Angaben berücksichtigt. Sie schließt,

die Heckman-Korrektur [bietet] aber auch Möglichkei-

ten, die in der explorativen Analyse liegen. Wenn—wie

im Beispiel—die selektionskorrigierte Regressionsanalyse

zu demselben Resultat kommt wie die unkorrigierte Schät-

zung, erhöht dies das Vertrauen in die OLS-Regression

(1999: 721).

Sie betont aber die Abhängigkeit der Ergebnisse von den unterstellten

Annahmen (1999: 713f) und zeigt, dass zumindest diejenigen Annahmen,

die sich überprüfen lassen, wohl nicht gelten (1999: 719). Um tatsächlich

ein erhöhtes „Vertrauen in die unkorrigierte Schätzung“ zu haben, müsste

an Stelle eines einzigen alternativen Selektionsmodell, das zudem auf

zweifelha�en Annahmen beruht, mehrere Selektionsmodelle verglichen

werden. Heckmans Modell bietet aber keinen systematischen Ansatz-

punkt, Modellannahmen zu variieren bzw. die Auswirkungen verletzter

Annahmen quantitativ abzuschätzen. Die Möglichkeit, mit Hilfe von

probabilistischen Selektionsmodellen über die Folgen unvollständiger

Angaben nachzudenken, kann im Rahmen dieses Modells nur begrenzt

genutzt werden.

In anderen Bereichen, etwa der historischen Demographie, werden

dagegen manchmal probabilistische Selektionsmodelle eingesetzt, um

über die Aussagekra� von Angaben zu spekulieren. So existieren o� nur

unvollständige Angaben über die Lebensdauer von Menschen. Z.B. gibt

es zu Geburts- bzw. Taufangaben in Kirchenregistern in vielen Fällen

keine Angaben über das Todesdatum. Allerdings gibt es manchmal

weitere Ereignisse wie Heiraten oder Kindergeburten, die aufgezeichnet
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wurden. Es folgt, dass die Personmindestens dasAlter bei diesemEreignis

erreicht hat. Ist Y das Lebensalter einer Person, dann ist Y∗ entweder
der Wert von Y , falls ein Todesdatum registriert wurde, oder aber das

Intervall (Tmax,∞), wobei Tmax der Zeitpunkt des letzten Ereignisses
ist, das registriert wurde. Wenn angenommen wird, diese Angaben

sagten nichts anderes als das jemand älter als Tmax geworden ist, dann

können Verfahren der Ereignisanalyse eingesetzt werden. Dagegen

kann eingewandt werden, der Grund des Fehlens eines Todesdatums

sei i.d.R. die Abwanderung der Personen. Dann wäre das Datum der

Abwanderung eine untere Grenze für das erreichte Lebensalter und

Tmax wäre immer kleiner als dieses Zensurereignis. Im Ergebnis würden

Verfahren der Ereignisanalyse die Risikomengen unterschätzen und

damit Sterberaten überschätzen. Selbst wenn es keine Angaben über

Abwanderungen gibt, kann mithilfe eines probabilistischen Modells

für die Zwischenereignisse sowie die Abwanderungszeiten über die

Verteilung der Lebensdauern nachgedacht werden (Gill 1997; Jonker

2003).

In den Sozialwissenscha�en sind Selektionsmodelle eher selten imZusam-

menhang mit unvollständigen Angaben in Umfragen oder Registerdaten

behandelt worden. Stattdessen dominieren Anwendungen, die sich auf

Größen beziehen, die ihre Bedeutung nur im Rahmen eines vorab de�-

niertenModells gewinnen. So untersuchen Diekmann undWyder (2002)

Reputationse�ekte bei Internetauktionen, wobei sie auch die erzielten

Preise der Auktionen heranziehen. Sie versuchen dabei auch diejenigen

Auktionen einzubeziehen, für die gar kein Gebot abgegeben wurde und

für die daher auch kein erzielter Preis existiert. Sie argumentieren:

Die Regressionsschätzung basiert allerdings nur auf der

Stichprobe der 99 erfolgreichen Auktionen, da nur für

diese ein Verkaufspreis vorliegt. Nun könnte es sich hier-

bei um ein selektives Sample handeln. . . . Die Zwei-Stufen-

Schätzmethode von Heckman ist eine Alternative, um

einen eventuellen Stichprobenauswahlfehler zu kontrol-

lieren (2002: 687).

Ein „Stichprobenauswahlfehler“ könnte aber nur vorliegen, wenn auch

den Auktionen ohne Gebote ein „Preis“ zukäme. Diekmann und Wyder
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unterstellen wohl eine Größe, die mit „Zahlungsbereitscha�“ umschrie-

ben werden kann. Ein Gebot wird abgegeben, falls die Zahlungsbereit-

scha� eines potentiellen Auktionsteilnehmers größer als das Mindestge-

bot der Auktion ist. Also fehlen Angaben über die Zahlungsbereitscha�,

wenn der Startpreis der Auktion höher als diese Zahlungsbereitscha� ist.

Daher könnte das Problem ähnlich wie fehlende Angaben in Umfragen

oder Registern behandelt werden. Zwar bleibt unklar, was „Zahlungsbe-

reitscha�“ unabhängig von einem konkreten Gebot in einer gegebenen

Auktion bedeuten könnte, sogar, welcher Gruppe von Personen diese

Größe zugeschrieben werden soll. Aber selbst wenn dem Konzept eine

gewisse Plausibilität zugestanden wird, dann grei� der Versuch, ein

einfaches Selektionsmodell für fehlende Angaben zu verwenden, zu

kurz. Denn zum einen ist bei Auktionen ohne Gebote die Zahlungs-

bereitscha� kleiner als der Startpreis, so dass die Zahlungsbereitscha�

nicht vollständig unbekannt ist. Zum anderen ist der erzielte Preis auch

nicht gleich der Zahlungsbereitscha� des Höchstbietenden, sondern

(bei mehr als einem Gebot) gleich der Zahlungsbereitscha� des Bieters

mit dem zweit höchsten Gebot.1 Ein Selektionsmodell für „Zahlungs-

bereitscha�“ müsste beide Aspekte, den der zusätzlichen Information

aus den Mindestgeboten und den der erzielten Preise als zweit höchste

Zahlungsbereitscha� berücksichtigen. Die Konzentration auf eine Schätz-

methode behindert aber o� die Formulierung probabilistischer Modelle

für Konzepte, die sich auf fehlende, abgeschnittene oder zensierte und

nach Größe selektierte Beobachtungen stützen.

In den Sozialwissenscha�en werden Selektionsmodelle auch zur Evalua-

tion sozialpolitischer Maßnahmen und zur Kausalanalyse herangezogen.

Die Idee besteht darin, zunächst eine Variable Y festzulegen, die den

Erfolg einer Maßnahme oder die Wirkung einer Ursache darstellen soll.

Unterstellt wird dann die gleichzeitige Existenz der Variablen (Y0, Y1),

wobei Y0 denWert von Y annimmt, der sich ergeben hätte, wenn jemand

nicht an der Maßnahme teilgenommen hätte, Y1 den bei Teilnahme. Der

Erfolg der Maßnahme ließe sich dann etwa durch Y1 − Y0 ausdrücken.

1
Genauer: Bietet Person A zunächst maximal 20 Euro und später B 10 Euro, so beträgt

der Auktionspreis 10 Euro. Der Auktionspreis gibt also die Zahlungsbereitscha�

von B wieder. Bietet andererseits zunächst B 10 Euro, A später 20 Euro, so ist der

Auktionspreis 10 Euro plus Mindesterhöhung der Auktion.
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Natürlich kann eine Person nur entweder an einer Maßnahme teilneh-

men oder nicht teilnehmen. Y0 und Y1 können also nicht gleichzeitig

beobachtet werden. Ist Y der Wertebereich der Variablen Y und Y∗ der
Wertebereich der beobachteten Variablen Y∗, dann ist

Y∗ = (Y × {Y}) ∪ ({Y} × Y)

Entweder wird derWert vonY0 beobachtet, nicht aber der vonY1, für den

nur y1 ∈ Y bekannt ist. Die Beobachtung ist also (y0,Y). Oder der Wert
von Y1 wird beobachtet, nicht aber der von Y0. Dann kann die Beobach-

tung durch (Y , y1) angegeben werden. In dieser Formulierung entspricht
das Evaluationsproblem einem Problem unvollständiger Angaben. Wird

ein passendes probabilistisches Selektionsmodell unterstellt, dann ist die

gemeinsame Verteilung von (Y0, Y1) identi�ziert. Andersherum ist aber

klar, dass (Y0, Y1) außerhalb dieses Selektionsmodells gar nicht de�niert

ist. Die Abhängigkeit von willkürlich gesetzten Modellannahmen und

die kontrafaktische Formulierung des Evaluationsproblems sind o�

kritisiert worden (z.B. Dawid 2000). Die kontrafaktische Formulierung

des Problems ist fragwürdig, weil sie einen wohlde�nierten Wert für

das Ergebnis von Ereignissen voraussetzt, die gar nicht stattgefunden

haben. Und im Unterschied zu fehlenden Angaben in Umfragen oder

Registerdaten kann die Abhängigkeit der Ergebnisse von den Annahmen

des Selektionsmodells nie empirisch ergänzt oder kritisiert werden. Feh-

len Angaben in Kirchenregistern, so können Angaben aus Lehns- und

Pachtregistern, Handwerksrollen, Sippenbüchern und Gerichtsakten

herangezogen werden. Interessiert die Verteilung von Einkommen, dann

können Personen, die einmal die Auskun� verweigert haben, nochmals

befragt werden. Zudem geben Steuerstatistiken, Sozialversicherungsmel-

dungen und Lohnstatistiken weitere Auskun�. Aber was in parallelen

Welten geschehenwürde, in denen alles bis auf die Teilnahme an bestimm-

ten Maßnahmen gleich wäre, entzieht sich jedem Versuch empirischer

Überprüfung. Die Betonung der formalen Äquivalenz zwischen beiden

Situationen verwischt o� die inhaltlichen Unterschiede. Rubin führt

zwei weitere Unterscheidungen an:

�e formal equivalence of these problems . . . is highly useful

coneptually . . . , but it is, I believe, not helpful to muddle

the distinction when trying to generate sound, practical
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statistical advice.�e reasons for this conclusion are that

(a) the estimands (the things we want to estimate) are funda-

mentally di�erent for these situations, and (b) the processes

that create the missing data are typically very di�erent, both

by investigators’ design and by nature’s devices. (Rubin in

Wainer 1992: 183f).

Rubins Punkt (b) verweist zurück auf den Status unvollständiger Daten

in den beiden Fällen. Verweigert jemand die Auskun� im Interview,

so liegt das in seinem oder ihrem Ermessen, hängt aber nicht von den

Interessen und Vorstellungen des Forschers ab. Dagegen sind Daten

im kontrafaktischen Modell der Evaluation ebenso wie Überlegungen

zur „Zahlungsbereitscha�“ nur unvollständig aufgrund der Modell-

vorstellungen des Forschers. Erzielte Preise in Auktionen sind ebenso

wie Ergebnisse von Arbeitsmarktmaßnahmen zumindest prinzipiell

beobachtbar. „Zahlungsbereitscha�“ im Rahmen von Auktionen oder

der Erfolg einer Maßnahme (de�niert als Y1 − Y0) ist dagegen nie beob-

achtbar. Auch wenn diese Unterscheidung eine graduelle ist, so muss

doch genau angegeben werden, welche Aussagen getro�en werden sollen.

Rubins Punkt (a) soll im Folgenden für unvollständige Angaben in

Umfragen diskutiert werden.

4.5. Beispiel: Einkommensangaben im ALLBUS

Das Haushaltsnettoeinkommen ist von zentraler Bedeutung in vielen

Bereichen der Sozialforschung, etwa der Armutsforschung und der

Haushaltstheorie. Dennoch ist selbst über das mittlere Hausaltsnettoein-

kommen empirisch wenig bekannt. Das Statistische Jahrbuch 2001 weist

auf der Basis der Einkommens- und Verbrauchsstichprobe (EVS) 1998

einenmonatlichenMittelwert von 5115 DM aus, 5346 DM inWestdeutsch-

land, 4059 DM in Ostdeutschland (Statistisches Bundesamt 2001: 566�).

Dagegen weist der Datenreport 1999 auf der Basis des SOEP für das

Jahr 1996 ein mittleres Haushaltsnettoeinkommen von 1978 DM (2061

DMWest, 1644 DMOst) aus (Statistisches Bundesamt 2000: 584). Die

beiden Datensätze (EVS und SOEP) unterscheiden sich zwar deutlich:
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Die EVS ist eine Quotenstichprobe mit über 60000 beteiligten Haushal-

ten, das SOEP ist eine weit kleinere Zufallsstichprobe.2 Aber wegen der

großen Abweichungen wäre es sicherlich wünschenswert, unabhängigen

Aufschluss über die Verteilung des Haushaltseinkommens in der BRD

zu erhalten. Von den großen regelmäßigen sozialwissenscha�lichen

Umfragen enthält auch der ALLBUS eine Frage nach dem Haushaltsnet-

toeinkommen sowie nach dem persönlichen Einkommen. Der ALLBUS

1996 wurde als Melderegisterstichprobe durchgeführt. Grundgesamt-

heit waren Personen ab 18 Jahren in Privathaushalten (einschließlich

Deutsch sprechender Ausländer) in West- und Ostdeutschland. Dabei

wurden 3518 Interviews realisiert, 2402 davon in den alten und 1116 in

den neuen Bundesländern. Personen in den neuen Bundesländern sind

also überproportional befragt worden. Ihr Anteil in der Nettostichprobe

beträgt 31,7%, der Bevölkerungsanteil betrug ca. 19%. Die berichtete

Ausschöpfungsquote betrug 54,2%, d.h. nur 54,2% der angestrebten

Interviews wurden realisiert (Koch 2002: 33).3 Von den 3518 Befragten,

die einem Interview zustimmten, antworteten gerade einmal 1772 oder

50,4% auf die Frage nach dem monatlichen Haushaltsnettoeinkommen.

Weitere 906 Personen oder 25,8%machten Angaben in gruppierter Form.

Insgesamt hat man also nur von etwa 41% der ausgewählten Personen

eine valide Antwort auf die Frage nach dem Haushaltseinkommen erhal-

ten, darunter 14% in gruppierter Form. Darüber hinaus gibt es aber noch

293 Personen, die zwar Angaben zu ihrem persönlichen Einkommen

machten, aber keine Angaben zum Haushaltseinkommen. Diese Anga-

ben könnten als untere Grenzen für das Haushaltseinkommen benutzt

werden. Die Fallzahlen sind in der folgenden Tabelle zusammengestellt.

s1 Bruttostichprobe |s1| = n1 = 6491

s2 Nettostichprobe |s2| = n2 = 3518

2
Der Materialband zum ersten Armuts- und Reichtumsbericht der Bundesregierung

(Bundesregierung 2001) enthält einen hilfreichen Vergleich verschiedener verfügba-

rer Datenquellen. Fehlende und unvollständige Einkommensangaben im SOEP und

ihre Behandlung sind im Datenreport nicht angegeben. Die Arbeiten von Frick und

Grapka (2003), Riphahn und Ser�ing (2002) und Schräpler (2004) geben einen

Überblick.
3
Untersuchungen über den möglicherweise selektiven Ausfall von geplanten Inter-

views im ALLBUS, dem so genannten Unit-Nonresponse, sind von Koch (1997) und

Schneekloth und Leven (2003) vorgelegt worden.
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s3 Haushaltseinkommen angegeben |s3| = n3 = 2678

s4 genaue Angaben |s4| = n4 = 1772

s′3 Einkommen in [1,9999] |s′3| = n′3 = 2633
s′4 genaue Angaben in [1,9999] |s′4| = n′4 = 1748
s5 keine Angabe Haushaltseinkommen,

aber persönliches Einkommen angegeben |s5| = n5 = 293

s6 keine Angabe Haushaltseinkommen,

aber genaues persönliches Einkommen |s6| = n6 = 213

0 2000 4000 6000 8000 10000

Abbildung 4.1.: Kern-Dichte-Schätzung der genauen Angaben zum
Haushaltseinkommen in DM, eingeschränkt auf das Intervall [1,9999]. Als

Kern wurde eine Normalverteilung mit Standardabweichung 166 benutzt.

Der Dichte-Schätzer ist etwas unterglättet.

Abbildung 4.1 zeigt die Dichte der genauen Angaben zum Haushalts-

nettoeinkommen. Diese Angaben sind insbesondere in den höheren

Einkommensbereichen zu einem großen Teil auf volle 1000 DM Beträge

gerundet. So sind von den 122 Angaben von mehr als 7000 DM 120 in

vollen 100 DM Beträgen und 107 in vollen 500 DM Beträgen angegeben,

dagegen 85 Angaben in vollen 1000 DM Beträgen. Auf der anderen Seite

sind von den 802 Angaben von 3000 DM oder weniger nur 277 in vollen

500 DM Beträgen angegeben. Die Rundungsregeln der Befragten sind

unbekannt, hängen aber o�enbar von der Einkommenshöhe ab. Auch

die „genauen“ Einkommensangaben können nur als grobe Näherung des
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tatsächlichen verfügbaren Haushaltseinkommen betrachtet werden. Die

Rundung in den Einkommensangaben führt zu einer weiteren Unsicher-

heit bei der Analyse der Daten, die im Folgenden aber nicht systematisch

untersucht wird.

Folgtman dem üblichenVerfahren und ignoriert fehlende und gruppierte

Angaben, so ergibt sich ein (ungewichtetes) mittleres Haushaltsnetto-

einkommen von 3676 DM (3909 DMWest, 3171 DM Ost). Beschränkt

man sich bei der Berechnung des mittleren Haushaltseinkommens

auf Einkommen unter 10000 DM und benutzt nur die genauen Anga-

ben, also die Teilstichprobe s′4, so ergibt sich ein Mittelwert von 3560.4
Wird das Stichprobendesign ignoriert und eine einfache Zufallsauswahl

unterstellt, so kann ein 95%-Kon�denzintervall konstruiert werden:

(3480, 3640). Dabei werden die unterschiedlichen Auswahlsätze für Ost-

und Westdeutschland unterschlagen, obwohl sich die Mittelwerte in

Ostdeutschland (3158 DM) undWestdeutschland (3749 DM) deutlich

unterscheiden und ostdeutsche Personen deutlich überrepräsentiert

sind. Das geht aber gar nicht anders. Denn weder können die Gewichte

für die Teilstichprobe s2 verwandt werden: dort beträgt der Anteil an

Personen in Ostdeutschland 31,7%, während er in der Teilstichprobe s′4
32,0% beträgt.5Noch können Gewichte benutzt werden, die sich aus

dem Anteil in der Teilstichprobe s′4 ergeben, denn diese würden sich

4
Die Beschränkung des betrachteten Einkommenbereichs ist sowohl für nicht-pro-

babilistische wie für probabilistische Modelle notwendig. Für nicht-probabilistische

Überlegungen ist das unmittelbar einsichtig, weil Haushalten ohne Einkommensan-

gaben jedes beliebige Einkommen zukommen könnte. Aber auch in probabilistischen

Modellen sind Einschränkungen notwendig. Denn ohne solche Einschränkungen ist

der Erwartungswert nicht einmal ein stetiges Funktional bezüglich der Kolmogorov-

Metrik d(F,G) := supy |F(y) − G(y)| zwischen Verteilungsfunktionen F und G
(Lehmann 1999: 391). Ohne Einschränkungen existieren also keine gleichmäßig

konsistenten Tests, der Bootstrap funktioniert nicht etc. Wird das Verhalten von

Schätzern nicht einfach unter einem als ‘wahr’ angenommenen Modell untersucht,

sondern werden alle Modelle zugelassen, die mit den gegebenen Beobachtungen sta-

tistisch verträglich sind, dann ist der Bereich möglicher Erwartungswerte unendlich

groß, selbst wenn die Existenz endlicher vierter Momente unterstellt wird (Davies

1995: 205). Im Zusammenhang mit Selektionsmodellen ist das Problem von Robins

und Ritov (1997) untersucht worden (vgl. Abschnitt 4.9).
5
In der Teilstichprobe s′3 ergibt sich sogar ein Anteil von 34,1%, ein „signi�kanter“

Unterschied zu 31,7%.
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von Stichprobe zu Stichprobe ändern und erlaubten keine statistischen

Aussagen. Man erhält also einen Mittelwert, der wegen der sehr unter-

schiedlichen Auswahlsätze in Ost- undWestdeutschland wohl nichts

über das durchschnittliche Haushaltseinkommen in Deutschland sagt,

und ein Kon�denzintervall, dessen Überdeckungseigenscha�en schlicht

unbekannt sind.6

Soll der Rahmen der klassischen Stichprobentheorie nicht vollständig

verlassen werden, dann muss die gesamte (realisierte) Stichprobe ein-

schließlich der gruppierten Angaben betrachtet werden. Dies erfordert

Verfahren zur Behandlung unvollständiger Angaben. Das einfachste

Verfahren hält an der Idee fest, die Angaben der Befragten als �xes

Datum zu behandeln. Unvollständige Angaben werden als Bereiche

aufgefasst, in denen der tatsächliche Wert liegt. Ist die Auskun� eines

Befragten, das Einkommen liege zwischen 2000 DM und 2500 DM,

dann wird unterstellt, das exakte Einkommen sei eine der Zahlen 2000,

2001, 2002,. . . ,2499. Bei einer Statistik wie dem Mittelwert wird die

Berechnung für jeden der möglichen Werte in diesem Bereich durchge-

führt. Das Ergebnis ist ein Bereich von Mittelwerten. Handelt es sich

um zusammenhängende Intervalle, dann reicht es, die Statistik für die

Extremwerte der Antwortintervalle auszuwerten.7 Das Verfahren kann

nur dann sinnvoll angewandt werden, wenn die Bereiche unvollständiger

Daten beschränkt sind. Daher können nur Einkommensangaben etwa

unter 10000 DM behandelt werden. Betrachtet man zunächst s′3, so
ergibt sich für die möglichen Mittelwerte das Intervall [3589, 3785). Das

Intervall der möglichen Mittelwerte ist deutlich länger als das naive

6
Zur Berechnung eines Gesamtmittelwerts kann auch einfach der bekannte Bevölke-

rungsanteil in Ost- undWestdeutschland zur Kombination der Ergebnisse in Ost-

und Westdeutschland benutzt werden. Dann werden Auswahlsätze einfach ignoriert.

Für komplexere Fragen eignet sich eine solche naive Randanpassung allerdings

nicht. Zusammenhänge zwischen Stichprobengewichten und Unit-nonresponse

werden von Kalton (2002), Kalton und Flores-Cervantes (2003) diskutiert. Little und

Vartivarian (2003) kritisieren einige klassische Verfahren.
7
Die Grundidee ist recht alt (Cochran 1977: Kap. 13.2). Aber schon bei Statistiken

wie der Varianz ergeben sich Probleme, e�ziente Algorithmen für die Berechnung

der Intervalle zu �nden (Fishman und Rubin 1998; Rohwer und Pötter 2001: Kap.

19; Ferson et al. 2002). Manski (2003) gibt einen guten Überblick über neuere

Ergebnisse. Für Kreuztabellen werden neuere Verfahren von Dobra und Fienberg

(2000) beschrieben.
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Kon�denzintervall des letzten Absatzes. Um aber die Auswahlwahr-

scheinlichkeiten des ursprünglichen Stichprobendesigns verwenden zu

können, muss zumindest die Teilstichprobe s2 betrachtet werden, also

zusätzlich die 885 Befragten, die gar keine Angaben machten.8Dann

ergibt sich ein ungewichtetes Intervall der möglichen Mittelwerte von

[2687, 5348). Wird gar die Bruttostichprobe s1 betrachtet, ergibt sich

das Intervall [1457, 7479). Für diese Intervalle könnten nun „korrekt“

gewichtete Versionen und Kon�denzintervalle ausgerechnet werden.

Nur sind die Intervalle selbst schon viel zu groß, um von praktischem

Interesse zu sein.

4.6. Stichproben und probabilistische

Auswahlmodelle

Da beide Ansätze selten weiterhelfen, wurde versucht, die Fragestellung

umzuformulieren. Der hierbei zumeist eingeschlagene Weg opfert einen

wesentlichen Ausgangspunkt der Stichprobentheorie, der von den Be-

richten der Befragten als �xem Datum ausgeht. Stattdessen werden die

Angaben der Befragten als Realisationen von Zufallsvariablen im Sinne

der Wahrscheinlichkeitstheorie aufgefasst. Für probabilistische Modelle

existieren bereits Methoden zur Analyse unvollständiger Daten. Zudem

können in diesem Rahmen auchModelle der Entstehung unvollständiger

Angaben entwickelt werden.

Die Durchführung eines solchen Ansatzes ist konzeptionell weit schwie-

riger und konsequenzenreicher als o� angenommen wird. Einen Teil des

Weges gehen Superpopulationsmodelle: Sie unterstellen, dass die interes-

sierenden Größen in einer Gesamtheit U durch einen Zufallsprozess
zustande gekommen seien, der sich durch eine Wahrscheinlichkeitsver-

teilung Fθ beschreiben lässt. Etwa: Das Einkommen der Bevölkerung

der BRD wird als Realisation von N := |U| unabhängigen und identisch
log-normalverteilten Zufallsvariablen erzeugt. Das ist o�enbar keine

realistische Annahme über das Zustandekommen von Einkommen.

8
Ich rechne die n3 − n′3 = 45 Angaben außerhalb von [1, 9999] dazu.
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Die Metaphorik des „als ob durch einen Zufallsprozess zustandegekom-

men“ erlaubt aber relativ kompakte Beschreibungen von empirischen

Verteilungen durch die Parameter θ sowie einen Anschluss an die Stich-

probentheorie, denn die realisierten Werte der Zufallsvariablen werden

für die Stichprobenziehung als �x angenommen. Der Superpopulati-

onsansatz hält also auf der Ebene der Stichprobenziehung an der Idee

der Angaben der Befragten als �xem Datum fest. Allerdings wird das

ursprüngliche Problem, Aussagen über die Verteilung eines Merkmals in

der Gesamtheit U zu gewinnen, durch ein anderes ersetzt: Aussagen
über θ zu gewinnen. Diese Parameter sind nur durch die Beziehung auf

die unterstellte Modellklasse {Fθ | θ ∈ Θ} de�niert. Ihnen entspricht
kein Wert, der sich allein aus der Beobachtung der Werte der Variablen

in der Gesamtheit U gewinnen ließe. Somit wird der realistische Ansatz
der klassischen Stichprobentheorie unterlaufen.

Der Superpopulationsansatz geht aber noch nicht weit genug. Wenn

man sich für das Antwortverhalten von Befragten interessiert, so müsste

im Superpopulationsansatz angenommen werden, dieses Verhalten sei

bereits vor jeder Befragung festgelegt, und zwar ganz unabhängig davon,

ob jemand tatsächlich befragt wurde oder nicht. Ob also jemand auf die

Frage nach dem Haushaltseinkommen gar nicht antwortet oder nur in

gruppierter Form, wäre vor jeder Befragung schon entschieden. Denn

der Superpopulationsansatz unterstellt �xe Werte (Realisationen des

Zufallsprozesses) in der Gesamtheit U zum Zeitpunkt der Stichproben-
ziehung. Im nächsten Schritt werden wie in der klassischen�eorie

Stichproben aus diesen �xen Werten gezogen. Stichprobenfunktionen

wie Mittelwerte hängen auf der Stufe der Stichprobenziehung allein

davon ab, wer aus der Gesamtheit U in die Stichprobe gelangt. Dies
ermöglicht den Anschluss an Ergebnisse der klassischen�eorie, hat aber

zur Folge, dass das Antwortverhalten aller Mitglieder der Gesamtheit

vor jeder Stichprobenziehung festgelegt sein muss.

Soll nicht nur die Tatsache unvollständiger Daten konstatiert, sondern

auch ihr Zustandekommen re�ektierbar gemacht werden, dann wird es

notwendig, auch Variablen wie Interviewform,Merkmale der Interviewer

und vieles mehr zu betrachten. Die Annahme, all diese Variablen seien

vor jeder Stichprobenziehung für alle Personen der Gesamtheit festgelegt,
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ist nicht nur fatalistisch und völlig unrealistisch, sondern würde auch die

Spezi�kation eines Stichprobendesigns wegen der notwendigen Details

praktisch unmöglich machen.

Soll an probabilistischen Auswahlmodellen festgehalten werden, dann

muss schließlich ganz auf Elemente der Stichprobentheorie verzichtet

werden. Sowohl die interessierenden Größen wie das Haushaltseinkom-

men, die Stichprobenziehung und das Antwortverhalten der Befragten

werden in einem einzigen probabilistischen Modell beschrieben. Ist

(Ω,B, λ) ein hinreichend großer Wahrscheinlichkeitsraum, mit dem alle
diese Variablen beschrieben werden können, dann lässt sich etwa das

Haushaltseinkommen als Funktion von u ∈ U und ω ∈ Ω au�assen:

Y : U ×Ω −→ {1, 2, 3, . . .} =: Y

Y(u, ω) ist also das Haushaltseinkommen, das einer Person u ∈ U bei
Realisierung von ω ∈ Ω zukommt. Eine Person u hat in Abhängigkeit
von ω verschiedene Einkommen. Aber es gibt ein ω0 ∈ Ω, für das
(Y(u, ω0), u ∈ U) den Haushaltseinkommen (y(u), u ∈ U) in der BRD
entspricht.

Der Zusammenhang mit Aussagen über Durchschnitte der Y(., ω) über

alle u ∈ U wird hergestellt, indem allen u gleiche Wahrscheinlichkeits-
verteilungen zugeschrieben werden und die Unabhängigkeit von Y(u, .)

und Y(u′, .) für verschieden u, u′ angenommen wird.

Tatsächlich in der Stichprobe beobachtet wird aber nur eine mengenwer-

tige Variable mit demMerkmalsraum

Y∗ := {{y} | y ∈ Y}∪{[1, 400), [400, 800), . . . , [15000,∞)}∪{Y}

der genaue oder gruppierte Angaben bzw. gar keine Angabe darstellt. Es

sei nun

S : Ω −→ P(U) \ {∅}

eine Stichprobe, wobei P(U) die Potenzmenge von U bezeichnet und S
bzgl. (Ω,B) messbar sein soll. Für die Menge der befragten Personen
u ∈ S(ω) kann eine neue Variable mit demWertebereich Y∗ konstruiert
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werden, die das „angegebene Haushaltseinkommen“ repräsentiert. Um

das Problem zu umgehen, allen Personen unabhängig von der Befragung

ein Antwortverhalten zuzuschreiben, wird zu Y∗ noch ein Symbol
„*“ hinzugefügt. Dann kann die De�nition auf alle Personen u ∈ U
ausgedehnt werden und es ergibt sich

Y∗ : U×Ω −→ {{y} | y ∈ Y}∪{[1, 400), . . . , [15000,∞)}∪{Y}∪{∗}

wobei Y∗(u, ω) = ∗ für u /∈ S(ω) gesetzt wird. Die Abbildung Y∗ reprä-
sentiert das „in der Stichprobe s angegebene Haushaltseinkommen“. Mit

dieser Konstruktion ist man nicht gezwungen, über die Antworten nicht

befragter Personen zu spekulieren. Sowohl für eine gegebene Stichprobe

s, also eingeschränkt auf die Menge {ω | S(ω) = s}, als auch auf ganz
Ω sind Y(u, .) und Y∗(u, .) Zufallsvariablen im Sinn der Wahrschein-
lichkeitstheorie. Der Zusammenhang zwischen Y(u, .) und Y∗(u, .) lässt
sich durch probabilistische Modelle darstellen. Sie beziehen sich zu-

nächst auf eine Person u. Es muss zusätzlich angenommen werden, die

Zufallsvariablen (Y(u, .), u ∈ U) bzw. (Y∗(u, .), u ∈ U) seien stochas-
tisch unabhängig und identisch verteilt. In diesem Rahmen können

nun Konsequenzen unvollständiger Angaben für statistische Aussagen

abgeschätzt werden.

Die etwas aufwendige Notation ist notwendig, um Verwechslungen

zwischen Durchschnitten über die Gesamtheit U und Verteilungen, Er-
wartungswerten etc. bezüglich des Wahrscheinlichkeitsraums (Ω,B, λ)
zu vermeiden. In der Literatur erscheint die Verwechslung häu�g nach

einem nicht kenntlich gemachten Übergang von stichprobentheoreti-

schen zu probabilistischen Argumenten. So schreibt z.B. P. Holland: „A

probability will mean nothing more nor less than a proportion of units

in U .�e expected value of a variable is merely its average value over all
of U“ (Holland 1986: 945). Später verwendet er aber die stochastische Un-
abhängigkeit zwischen Variablen (1986: 948f), ohne zu bemerken, dass

stochastisch unabhängige Variablen auf endlichen Räumen U nur selten
existieren. Eine ähnliche Verwechslung �ndet sich noch bei Vytlacil

(2002: 332).

Durchschnitte über U und Durchschnitte über den Wahrscheinlich-
keitsraum (Ω,B, λ) führen nicht nur zu unterschiedlichen numerischen
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Ergebnissen, sie sind nicht einmal konzeptionell verbunden.9 Zwar

garantieren asymptotische Aussagen wie starke Gesetze oder Ergoden-

sätze, dass die beiden Durchschnitte im Grenzwert (|U| → ∞ oder
E(|S|)/|U| → c /∈ {0, 1}, |U| → ∞, etc.) gleich sind. Dies sind aber
probabilistische Aussagen, die sich auf die Modellebene beziehen, also

ein probabilistischesModell auf (Ω,B, λ) voraussetzen. Es sindmathema-
tische Konstruktionen, die keine Aussage über empirische Verhältnisse

wie Einkommensverteilungen begründen können. Und Grenzwertüber-

legungen führen eine zusätzliche Abstraktionsebene ein, die über pro-

babilistische Formulierungen von Antworten auf Fragen nach dem

Einkommen hinausgehen. Le Cam und Yang schreiben hierzu:

It must be pointed out that the asymptotics of the ‘standard

i.i.d. case’ are of little relevance to practical use of statistics,

in spite of their widespread study and use. �e reason

for this is very simple. One hardly ever encounters �xed

families {pθ | θ ∈ Θ} with a number of observations that
will tend to in�nity.�ere are not that many particles in

the visible universe!�e use of such considerations is an

abuse of con�dence that has been foisted upon unsuspecting

students and practitioners owing to the fact that we, as a

group, possess limited analytical abilities and, perforce,

have to limit ourselves to simple problems. . . .�e use of

asymptotics ‘as n→∞’ for the standard i.i.d. case seems to
be based on an entirely unwarranted act of faith. (Le Cam

und Yang 1990: 99f).

Selbst wenn asymptotische Argumente als relevant angesehen werden, so

wird man konstatieren müssen, dass unterschiedliche Modelle für F zu

9
Eine weitere Konsequenz probabilistischer Ansätze betri Designvariablen wie die

Ost/West-Di�erenzierung im ALLBUS. Wird eine solche Variable als Konstante

bzw. als degenerierte Zufallsvariable aufgefasst, kann sie wie in der klassischen

Stichprobentheorie verwandt werden. Insbesondere können Gewichtungsverfahren

benutzt werden, um Designaspekte zu berücksichtigen. Werden Designvariablen

dagegen als Zufallsvariablen wie alle anderen behandelt, dann hängen diese Va-

riablen von allen anderen Variablen eines Modells ab und Gewichtungsverfahren

verlieren ihre Gültigkeit. Die beiden Ansätze führen z.B. bei Regressionsmodellen zu

unterschiedlichen Ergebnissen.
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Ergebnissen führen können, die o�enbar nichts über den Durchschnitt

von Werten aller u ∈ U sagen.

Die Abwendung von stichprobentheoretischen Konzepten zugunsten

probabilistischer Modelle erfordert zudem eine Klärung der Annahmen,

die in probabilistischen Modellen verwandt werden. Insbesondere die

Annahme unabhängiger und identisch verteilter Zufallsvariablen ist

keine Annahme, die verändert oder aufgegeben werden könnte, ohne

den Rahmen des Modells zu sprengen. Sie verweist auf keine gesellscha�-

lichen Sachverhalte, ebenso wenig wie die Leinwand eines Gemäldes

auf Eigenscha�en der dargestellten Dinge verweist. Entsprechend gibt

es auch keine empirischen Anhaltspunkte, aufgrund derer sich die An-

nahme zurückweisen ließe. Die Annahme ist weder wahr noch falsch,

sondern ein Ausgangspunkt für alle probabilistischenModelle.Wird in ei-

nem nächsten Modellierungsschritt eine Modellklasse, z.B. {Fθ | θ ∈ Θ}
vorgeschlagen, so wird immer schon die Unabhängigkeit und identische

Verteilung der so beschriebenen Zufallsvariablen unterstellt. Auch eine

Modellklasse kann daher weder wahr noch falsch sein. Aber die Wahl

einer Modellklasse kann sich bei einem Vergleich von Realisierungen

der Zufallsvariablen mit empirischen Verteilungen als unangemessen

erweisen. Eine solche Kritik von Modellvorschlägen, so notwendig und

hilfreich sie ist, führt allerdings selbst unter idealisierten Bedingungen

nicht zu der eindeutigen Wahl eines probabilistischen Modells. Der

spekulative Spielraum, den probabilistische Modelle immer bieten, kann

gerade bei der Behandlung von Daten mit unvollständigen Angaben

produktiv genutzt werden. Denn dabei muss immer überlegt werden,

was der Fall gewesen sein könnte. Probabilistische Modelle bieten einen

Rahmen, eine Vielzahl alternativer Möglichkeiten einfach zu benennen

und gegeneinander abzuwägen.
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4.7. Ignorierbare Ausfälle: Parametrische und

nichtparametrische Modelle

Am einfachsten wäre es, wenn eine Angabe Y∗(u, ω) nur die o�en-
sichtliche Information Y(u, ω) ∈ Y∗(u, ω) enthalten würde.10 Dann
bräuchte man sich bei Schätzungen keine Gedanken über den Zusam-

menhang von Y(u, .) und Y∗(u, .) zu machen. Der Ansatz sei an zwei
Beispielen demonstriert: Zunächst sei die Verteilung Fθ von Y(u, .)

durch einen endlich-dimensionalen Vektor θ ∈ Rk parametrisiert, etwa

Y(u, .)=dN(µ, σ
2), also normalverteilt mit Erwartungswert µ und Vari-

anz σ2, θ = (µ, σ2) ∈ R× R+. Der Beitrag einer Beobachtung y(u) zur
Likelihood L(θ; y(u), u ∈ s) ist dann ϕ(y(u); µ, σ2), wobei ϕ(.; µ, σ2) die

Dichte der Normalverteilung mit Erwartungswert µ und Varianz σ2 ist.

Sind nun {Y(u, .), u ∈ s} stochastisch unabhängig für gegebenes s, dann
ist die Likelihood das Produkt der Dichten

L((µ, σ2); y(u), u ∈ s) =
∏
u∈s

ϕ(y(u); µ, σ2)

wobei unterstellt wird, der Stichprobenplan habe nichts mit den Varia-

blen Y(u, .) zu tun. Werden alle Informationen über das Zustandekom-

men einer Realisation y∗(u) von Y∗(u, .) vernachlässigt, wird also nur
y(u) ∈ y∗(u) berücksichtigt, und sind die Y∗(u, .) weiterhin stochastisch
unabhängig, dann wird die Likelihood zu11

L(θ; y∗(u), u ∈ s) =
∏
u∈s

∫
v∈y∗(u)

dFθ(v)

10
Im Folgendenwird unterstellt, dass die Befragten nicht „lügen“, also immerY(u, ω) ∈
Y∗(u, ω) gilt. Letzteres war, ohne einen probabilistischen Rahmen, bereits bei der

Betrachtung intervallwertiger Statistiken unterstellt worden.
11
Die Formulierung ist bei absolut stetigen Verteilungen wie der Normalverteilung

o�enbar nicht korrekt. Denn falls es mindestens eine exakte Beobachtung gibt, wird

der entsprechende Term 0. Es gibt verschiedene Vorschläge, wie auch absolut stetige

Verteilungen in dieser allgemeinen Form behandelt werden können, vgl. Jacobsen

und Keiding (1995), Gill et al. (1997) und Nielsen (2000).
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Im Fall der Angaben zum Haushaltseinkommen im ALLBUS ergibt sich

L(θ; y∗(u), u ∈ s2) =
∏
u∈s4

ϕ(y(u); θ)×

∏
u∈s3\s4

∫
v∈y∗(u)

ϕ(v; θ) dv
∏

u∈s2\s3

∫
v∈R

ϕ(v; θ) dv

Der erste Faktor repräsentiert den Beitrag der genauen Beobachtungen,

der zweite den der gruppierten Angaben, und der letzte gibt den Beitrag

der Verweigerungen (inklusive keine Angabe/weiß nicht) wieder. Der

letzte Term ist konstant 1 und damit unabhängig von den Parametern, so

dassman sich auf die ersten beidenTerme konzentrieren kann.Maximiert

man diese Likelihoodfunktion, ergibt sich für die Nettostichprobe s2
und ohne Berücksichtigung der unterschiedlichen Auswahlsätze für Ost-

und Westdeutschland µ̂ = 3807 und σ̂ = 2047 sowie ein modellbasiertes

95%–Kon�denzintervall für µ von (3729, 3885). Der naive Ansatz, der die

n3− n4 = 906 gruppierten Angaben ganz unberücksichtigt lässt und nur

die Daten der Stichprobe s4 benutzt, ergibt einenMittelwert von 3676 mit

einem (ungewichteten) 95%–Kon�denzintervall (3582, 3770). Der Wert

3676 liegt 131 DM unter demWert, der sich unter Berücksichtigung der

gruppierten Angaben innerhalb des Normalverteilungsmodells ergibt,

sogar ausserhalb des Kon�denzintervalls (3729, 3885).

Anstelle einerNormalverteilung kann auch unterstellt werden, log(Y(u, .))

sei normalverteilt mit den Parametern (µ, σ2). Die Maximierung der

entsprechenden Likelihood führt zu µ̂ = 8, 1113 und σ̂ = 0, 5371. Da

Eθ(Y) = exp(µ + σ2/2) für log-normalverteilte Zufallsvariablen Y ist,

ergibt sich als Schätzung des Erwartungswerts 3849 mit dem (modellba-

sierten) Kon�denzintervall (3765, 3932), berechnetmit der Deltamethode

(Lehmann 1999: 85�). Der Erwartungswert unter diesem Modell ist

um 173 DM größer als der naive Durchschnitt. Wählt man schließlich

die log-logistische Verteilung mit Fθ(y) = θy/(1 + θy), dann ergibt sich

θ̂ = 2, 9879 ∗ 10−4. Der Erwartungswert unter diesemModell ist aller-
dings∞. Man würde auch einen Erwartungswert von∞ erhalten, wenn
die Dichte etwa der log-normalen Verteilung rechts von einem beliebig

großenWert y0 durch die entsprechende Dichte der log-logistischen

Verteilung ersetzt würde. Aber eine solche Veränderung in der Wahl
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der Modellklasse lässt sich empirisch nicht beurteilen, weil y0 immer

größer als alle Beobachtungen gewählt werden kann. Der Mittelwert

von Merkmalen einer endlichen Menge U ist dagegen sicher immer
endlich. Hier zeigt sich der bereits angedeutete Perspektivenwechsel: An

Stelle eines Durchschnitts über alle u ∈ U interessiert der Durchschnitt
über die ω ∈ Ω, durch die der Parameter θ erst seine Bedeutung erhält.

Es gibt aber zwischen demMittelwert einer endlichen Menge U und
dem Erwartungswert einer Zufallsvariablen Y(u0, .) keine notwendigen

Beziehungen.

Es könnte scheinen, das Problem entstehe durch eine zu enge Wahl der

Modellklasse und könne durch nichtparametrische Verfahren gelöst

werden. Wird „nur“ angenommen, die (Y(u, .), u ∈ s) seien unabhängig

und identisch verteilt, dann ist die nichtparametrische Likelihood für

die Verteilung F bei Daten {Y∗(u, .) | u ∈ s}

L(F; y∗(u), u ∈ s) =
∏
u∈s

∫
v∈y∗(u)

dF(v)

Im Fall von s2 ergibt sich

L(F; y∗(u), u ∈ s2) =
∏
u∈s4

F(y(u))− F(y(u)−)×

∏
u∈s3\s4

∫
v∈y∗(u)

dF(v)
∏

u∈s2\s3

∫
v∈R

dF(v)

wobei F(y)− F(y−) die Sprunghöhe der Funktion F an der Stelle y ist.
Werden nur diskrete Verteilungen F betrachtet, dann existiert häu�g ein

Maximum der Likelihoodfunktion, etwa F̂. F̂ wird nichtparametrischer

Maximum-Likelihood-Schätzer (NPMLE) der Verteilungsfunktion F

genannt. Als Schätzer des Erwartungswerts kann µ̂ :=
∫
v dF̂(v) verwandt

werden.

Im Fall der Haushaltseinkommen ergibt sich µ̂ = 3777. Ein 95%–Kon�-

denzintervall, basierend auf 10000 Bootstrap-Replikationen, ist (3553,

3859).12 Auf den ersten Blick könnte es scheinen, als ergäbe sich immer

12
Die Verteilung der geschätzten Mittelwerte für die Replikationen ist multimodal.

Daher ergibt sich ein sehr asymmetrisches Kon�denzintervall, wenn wie hier die

Perzentile der Verteilung zur Konstruktion benutzt werden.
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ein endlicher Schätzwert µ̂, der nun nicht mehr von der Wahl einer

Modellklasse abhinge. Das ist bei unvollständigen Angaben aber nicht

der Fall. Der NPMLE ist nicht eindeutig de�niert, wenn es gruppierte Be-

obachtungen gibt, aber keine genauen Beobachtungen in dieses Intervall

fallen. Dann kann F̂ auf dem Intervall beliebig de�niert werden, ohne

den Wert der Likelihoodfunktion zu ändern. Fällt insbesondere keine

genaue Beobachtung in die größte Einkommensklasse „Einkommen

größer als 15000 DM“ während das Intervall wenigstens einmal genannt

wird, dann kann die zugehörige Masse in F̂ beliebig gegen∞ verschoben
werden. Das geschieht in den Bootstrap-Replikationen so o�, dass die

obere Schranke des Kon�denzintervalls ehrlicherweise durch∞ ersetzt
werdenmüsste. In der Tat ist in der Berechnung des „Kon�denzintervalls“

der replizierte Datensatz einfach die Angabe „Einkommen größer als

15000 DM“ durch den Wert 22500 ersetzt worden, falls keine genauen

Beobachtungen in das Intervall �elen. Jeder andere Wert > 15000 wäre

aber genauso möglich. Auch unter nichtparametrischen Modellen er-

gibt sich ein beliebig großer Unterschied zwischen dem ursprünglich

interessierenden Durchschnitt von Werten einer Gesamtheit U und dem
Erwartungswert

∫
v dF(v) =

∫
Y(u0, ω) dλ(ω), einem Durchschnitt

über ω ∈ Ω.

4.8. Ignorierbare Ausfälle: MAR, CAR und all das

Der Perspektivenwechsel führt zu einer Abkehr von dem Versuch, proba-

bilistische Aussagen über den Zusammenhang eines Mittelwerts in einer

Gesamtheit U mit Mittelwerten über Stichproben zu formulieren. Das
mag gerechtfertigt sein, wenn stattdessen die Verwendung probabilisti-

scher Modelle zum Verständnis von E�ekten unvollständiger Angaben

beiträgt, zumal über deren Zustandekommen nur spekuliert werden

kann. Zunächst muss geklärt werden, unter welchen Bedingungen die

Verwendung von L(θ; y∗(u), u ∈ s) im vorigen Abschnitt begründet

werden kann. Dies kann nicht immer der Fall sein, selbst wenn für alle

Personen u ∈ U identische Beziehungen zwischen Y(u, .) und Y∗(u, .)
unterstellt werden.
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Abbildung 4.2.: Geschätztes mittleres Haushaltseinkommen und 95%
Kon�denzintervalle. a) Nichtparametrische Schranken auf s′3, b) Normal-
verteilung ohne gruppierte Angaben, c) Normalverteilung unter Einschluss

gruppierter Angaben, d) Lognormalverteilung unter Einschluss grup-

pierter Angaben, e) Nichtparametrischer Mittelwert unter Einschluss

gruppierter Angaben

Sei z.B. Y = {1000, 1500, 2000} und Y∗ = {{1000, 1500}, {1000},
{1500}, {2000}}. Ist nun y(u) = 1000, dann kann u entweder {1000}
berichten, also den genauen Betrag nennen, oder aber mit {1000, 1500}
antworten. Entsprechendes gilt für y(u) = 1500. Ist nun Y(u, .) auf

{1000, 1500, 2000} gleichverteilt und berichten alle Personen y∗(u) =
{1000, 1500} falls y(u) = 1000, sonst aber immer den genauen Betrag,
dann ergibt sich die folgende Verteilung auf Y∗:

Pr(Y∗(u, .) = {1000, 1500}) = 1/3
Pr(Y∗(u, .) = {1000}) = 0
Pr(Y∗(u, .) = {1500}) = 1/3
Pr(Y∗(u, .) = {2000}) = 1/3

Werden die Beobachtungen wie im letzten Abschnitt behandelt, so wird

Pr(Y∗(u, .) = {1000, 1500}) = Pr(Y(u, .) = 1000)+Pr(Y(u, .) = 1500)

gesetzt. Ist die Verteilung von Y∗(u, .) bekannt, so ergibt sich als Vertei-
lung von Y(u, .):

Pr(Y(u, .) = 1000) = 0, Pr(Y(u, .) = 1500) = 2/3,
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Pr(Y(u, .) = 2000) = 1/3

Für den Zusammenhang zwischen Y und Y∗ wird

Pr(Y∗(u, .) = {1000, 1500} |Y(u, .) = 1000) = 1/2
= Pr(Y∗(u, .) = {1000, 1500} |Y(u, .) = 1500)

angenommen. Die bedingten Wahrscheinlichkeiten von {Y∗(u, .) =
{1000, 1500}} sind für beide möglichen Bedingungen {Y(u, .) = 1000}
und {Y(u, .) = 1500} gleich. Kombiniert man die unterstellte Verteilung
von Y(u, .) mit den beiden konditionalen Verteilungen, dann ergibt

sich in der Tat die Verteilung von Y∗(u, .). Die Interpretation wäre: Ist
Y(u, .) = 1500, dann antwortet umit Wahrscheinlichkeit 1/2 entweder

{1500} oder {1000, 1500}. Die entscheidende Annahme ist o�enbar die
über die bedingten Verteilungen

Pr(Y∗(u, .) = {1000, 1500} |Y(u, .) = 1000) und
Pr(Y∗(u, .) = {1000, 1500} |Y(u, .) = 1500)

Die bedingten Verteilungen beschreiben den Zusammenhang zwischen

Y(u, .) und Y∗(u, .).

Sei nun allgemeinY(u, .) eine ZufallsvariablemitWerten in der endlichen

Menge Y und Y∗(u, .) eine Zufallsvariable mit Werten in Y∗ ⊆ P(Y) \
{∅} auf dem gemeinsamen Raum (Ω,B, λ). Dann soll Y∗(u, .) zufällige
Vergröberung (CAR, coarsened at random) von Y(u, .) heißen, wenn

eine der folgenden äquivalenten Bedingungen für alle y∗ ∈ Y∗ und für
alle y ∈ y∗ erfüllt ist:

Pr(Y∗(u, .) = y∗ |Y(u, .) = y) ist konstant auf y ∈ y∗ (4.1)

Pr(Y∗(u, .) = y∗ |Y(u, .) = y) = Pr(Y∗(u, .) = y∗ |Y(u, .) ∈ y∗)
(4.2)

{Y∗(u, .) = y∗} ⊥⊥ {Y(u, .) = y} | {Y(u, .) ∈ y∗} (4.3)

Pr(Y(u, .) = y |Y∗(u, .) = y∗) = Pr(Y(u, .) = y |Y(u, .) ∈ y∗)
(4.4)

Dabei bedeutet A⊥⊥B |C die bedingte stochastische Unabhängigkeit
der Ereignisse A und B gegeben C. {Pr(Y∗(u, .) = y∗ |Y(u, .) = y) | y∗ ∈
Y∗, y ∈ y∗} soll im Folgenden Selektionsmodell heißen.
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Die Bedingungen (4.1) und (4.2) beschreiben die Situation ausgehend

vomWert y(u) der zugrunde liegenden Variablen Y(u, .). Bei gegebenem

y(u) müssen nur noch die Antwortmöglichkeiten Y∗(u, .) in Erwägung
gezogen werden. Ist etwa das tatsächliche Haushaltseinkommen eines

Befragten 1234 DM, dann kann er im ALLBUS entweder 1234 oder

das Intervall [1000, 1250) angeben, oder er antwortet gar nicht. Aus

diesen Antwortalternativen wählt u mit den bedingten Wahrschein-

lichkeiten Pr(Y∗(u, .) = y∗ |Y(u, .) = 1234). Ist dagegen y(u) = 1123, so
erzwingt (4.1) eine Auswahl zwischen den drei Antwortmöglichkeiten

1123, [1000,1250) und [1, . . . ,∞) mit den gleichen Wahrscheinlichkeiten
wie im Fall y(u) = 1234. Für alle möglichen Einkommen im Bereich

[1000, 1250) entscheidet sich u nach den gleichen Wahrscheinlichkeiten

zwischen einer genauen Angabe, der gruppierten Angabe oder gar keiner

Angabe. Für Werte in einem anderen Gruppierungsintervall kann sich

eine andere Au�eilung zwischen denAntwortmöglichkeiten „genau“ und

„gruppiert“ ergeben. Die Bedingung (4.2) ist nur eine Umformulierung

dieser Beschreibung. Denn (4.2) verlangt, dass die Entscheidung, kein

Haushaltseinkommen anzugeben, unabhängig von dem tatsächlichen

Einkommen getro�en wird, während die Entscheidung zwischen einer

gruppierten oder genauen Angabe innerhalb eines Gruppierungsinter-

valls nicht von der tatsächlichen Höhe des Einkommens abhängt. Wenn

bekannt ist, dass das tatsächliche Einkommen Y(u, .) ∈ [1000, 1250)
ist, dann verlangt (4.3) die Unabhängigkeit des Ereignisses „gruppierte

Angabe“ von den tatsächlichen Einkommen innerhalb des Intervalls. Ist

y∗ = Y = [1, 2, . . . ,∞), dann ist die Bedingung Y(u, .) ∈ [1, 2, . . . ,∞)
immer erfüllt und (4.3) verlangt die (unbedingte) stochastische Un-

abhängigkeit von {Y∗(u, .) = [1, 2, . . . ,∞)} und Y(u, .). Ist dagegen
Y(u, .) ∈ y∗ = {y}, dann gilt Y(u, .)) = y und die Bedingung (4.3) ist

automatisch erfüllt.

Die Bedingung (4.4) ist besonders hilfreich, weil sie nicht von den

zugrunde liegenden Werten Y(u, .) sondern von den beobachteten

Angaben Y∗(u, .) ausgeht. Ist etwa y∗(u) = [1000, 1250), dann verlangt
(4.4), dass die Verteilung der tatsächlichen Werte Y(u, .) sich nicht von

der bedingten Verteilung der Y(u, .) unterscheidet, wenn bekannt ist,

dass Y(u, .) in dem Intervall [1000,1250) liegt. Genau dies ist in der

Konstruktion der Likelihoodfunktionen im letzten Abschnitt verwandt
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worden.

Schreibt man Prθ(Y(u, .) = y), um die Abhängigkeit der Verteilung von

einem Parameter θ ∈ Θ anzugeben, und entsprechend Prγ(Y∗(u, .) =
y∗ |Y(u, .) = y) mit γ ∈ Γ für das Selektionsmodell, dann kann die
Verteilung der Beobachtungen Y∗(u, .) wie folgt aufgespalten werden:

Pr θ ,γ(Y
∗(u, .) = y∗)

=
∑
y∈y∗

Pr θ ,γ(Y
∗(u, .) = y∗, Y(u, .) = y)

=
∑
y∈y∗

Pr θ(Y(u, .) = y) Pr γ(Y
∗(u, .) = y∗ |Y(u, .) = y)

= Pr γ(Y
∗(u, .) = y∗ |Y(u, .) = y, y ∈ y∗)

∑
y∈y∗

Pr θ(Y(u, .) = y)

= Pr θ(Y(u, .) ∈ y∗) Pr γ(Y
∗(u, .) = y∗ |Y(u, .) ∈ y∗)

Die dritte Gleichung folgt aus der CAR-Bedingung (4.1), die letzte Glei-

chung aus (4.2). Sind die Parameter θ und γ variationsunabhängig, gibt es

also zu jedemElement (θ , γ) ∈ Θ×Γ eineWahrscheinlichkeitsverteilung
Prθ ,γ, dann kann bei Likelihoodbetrachtungen für θ der Selektionsteil

Pr γ(Y
∗(u, .) = y∗ |Y(u, .) ∈ y∗) vernachlässigt werden. Es reicht,

L(θ; y∗(u), u ∈ s) =
∏
u∈s
Pr θ(Y(u, .) ∈ y∗)

zu maximieren. Antworten die Befragten entweder mit einer genau-

en Angabe oder gar nicht, dann ist Y∗ = {{y} | y ∈ Y} ∪ {Y}. In
diesem Fall impliziert CAR die Möglichkeit, sich nur auf die genauen

Angaben beschränken zu können. Die CAR-Bedingung ist in diesem

Zusammenhang auch MAR (missing at random) genannt worden.

Es kann gezeigt werden, dass es zu jeder vorgelegten Verteilung auf Y∗
immer eine Verteilung auf Y und ein Selektionsmodell gibt, der die
CAR-Bedingung erfüllt (Gill et al. 1997: 262; Heitjan 1994; Heitjan und

Rubin 1991; Grünwald und Halpern 2003). Ist insbesondere {y} ∈ Y∗
für alle y ∈ Y und Pr(Y∗(u, .) = {y}) > 0, dann ist die Verteilung von
Y(u, .) durch die CAR-Bedingung sogar eindeutig bestimmt. Ist die
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Verteilung von Y∗(u, .) bekannt, dann kann immer ein CAR-Modell
unterstellt werden. Mit anderen Worten: Keine noch so große Menge an

Daten erlaubt es, zwischen einem ignorierbaren Selektionsmodell, der

die CAR-Bedingung erfüllt, und nicht ignorierbaren Modellen (wie am

Anfang des Abschnitts) zu unterscheiden.13 Selektionsmodelle sind nicht

identi�zierbar: Wird ein beliebiges Selektionsmodell vorgeschlagen, so

kann immer ein CAR-Modell angegeben werden, der ebenso gut zu den

Daten passt.

Wenn von einem CAR-Modell ausgegangen wird, dann braucht, basie-

rend auf der Likelihoodtheorie, kein Selektionsmodell angegeben zu

werden. Manchmal erscheint es aber sinnvoll, sich selbst in der CAR-

Situation ein Bild des Selektionsprozesses zu machen. Wird ein (semi-)

parametrisches Modell für den Selektionsprozess gewählt, dann hat dies

empirische Konsequenzen, kann sich also als falsch erweisen. Denn

unter der CAR-Bedingung sind auch die Pr(Y∗(u, .) = y∗ |Y(u, .) ∈ y∗)
eindeutig bestimmt, falls nur Pr(Y∗(u, .) = y∗) > 0 ist. Die Annahme
einer Klasse Pr γ(Y

∗(u, .) = y∗ |Y(u, .) ∈ y∗) von Selektionsmodellen
kann unter der CAR-Bedingung zumindest potentiell aus empirischen

Gründen zurückgewiesen werden, jedenfalls dann, wenn neben exak-

ten und vollständig fehlenden Angaben auch partielle Angaben zur

Verfügung stehen und modelliert werden.

Zusammenfassend lässt sich sagen, dass erstens probabilistische Überle-

gungen zu einer nicht trivialen Charakterisierung von Bedingungen

führen, unter denen klassische Methoden für unvollständige Beobach-

tungen korrekt sind: die CAR-Bedingungen. Zweitens zeigt sich, dass

Selektionsmodelle empirisch nicht identi�ziert sind: Es kann immer

ein CAR-Modell konstruiert werden, das die Daten exakt reproduziert,

ganz unabhängig davon, wie die Daten „tatsächlich“ entstanden sind.

Die CAR-Annahme und damit die Verwendung klassischer Likelihood-

Methoden lässt sich empirisch nicht hinterfragen. Drittens ist es selbst

unter der CAR-Bedingung möglich, einige (semi-) parametrische Se-

lektionsmodelle empirisch zurückzuweisen, wenn neben exakten und

13
Das Ergebnis gilt nicht nur für endliche Mengen Y , sondern im wesentlichen auch
in allgemeinen Räumen. Allerdings wird dann die Formulierung sehr aufwendig

(Gill et al. 1997: 273�).
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vollständig fehlenden Angaben auch gruppierte oder andere partielle

Angaben vorliegen und entsprechend modelliert werden. Man darf aber

bei all dem Fortschritt nicht vergessen, dass probabilistische Modelle

untersucht werden. Die Modelle können nicht umstandslos mit dem

realen Verhalten von Befragten gleichgesetzt werden. Denn die Modelle

unterstellen u.a., alle Befragten würden ihr Antwortverhalten nach einer

Wahrscheinlichkeitsverteilung auswürfeln, die zudem für alle gleich

wäre.

4.9. Ignorierbare Ausfälle: Konditionale

CAR-Modelle

In vielen Fällen gibt es neben den Angaben (y∗(u), u ∈ s) zu den interes-

sierenden Größen (y(u), u ∈ U) weitere Informationen. Dabei kann es
sich um Designvariablen handeln, deren Werte zumindest für die inten-

dierte Stichprobe bekannt sind, um Angaben über die Kontaktaufnahme

oder um Angaben des Befragten aus anderen Teilen des Interviews. Im

ALLBUS gibt es z.B. Angaben für alle Befragten aus s2 zuGeschlecht, Alter,

Haushaltsgröße, Staatsangehörigkeit und Befragungsgebiet (Ost/West).

Nun kann die globale Annahme einer CAR-Bedingung unrealistisch

erscheinen. Gleichwohl könnte die CAR-Bedingung getrennt für alle

Teilmengen gelten, die durch die zusätzlichen Angaben X(u, .) de�niert

werden.

Wenn die zusätzlichen Angaben in einem Vektor X zusammengefasst

werden, dann kann ein entsprechender Zufallsvektor konstruiert werden:

X : U × Ω→ X . Die CAR-Bedingungen können konditional auf die
Werte dieser Kovariablen formuliert werden:

Pr(Y∗(u, .) = y∗ |Y(u, .) = y,X(u, .) = x) ist konstant auf y ∈ y∗ (4.5)

Pr(Y∗(u, .) = y∗ |Y(u, .) = y,X(u, .) = x)

= Pr(Y∗(u, .) = y∗ |Y(u, .) ∈ y∗,X(u, .) = x) (4.6)
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{Y∗(u, .) = y∗} ⊥⊥ {Y(u, .) = y} | {Y(u, .) ∈ y∗},X(u, .) (4.7)

Pr(Y(u, .) = y |Y∗(u, .) = y∗,X(u, .) = x)

= Pr(Y(u, .) = y |Y(u, .) ∈ y∗,X(u, .) = x) (4.8)

In vielen Texten wird suggeriert, die CAR-Annahme werde plausibler,

wenn nur genügend „Informationen“ in Form von Kovariablen in das

Selektionsmodell einbezogen werden, wenn also ein möglichst großer

Vektor X(u, .) gewählt wird. So schreiben Little und Rubin:

. . .we believe that in situations where good covariate infor-

mation is available and included in the analysis, the missing

at random (MAR) assumption may o�en be a reasonable

approximation to reality, thus obviating the need for a sensi-

tivity analysis to model nonignorable nonresponse. (Little

und Rubin in Scharfstein et al. 1999: 1130).

Die Argumentation beruht auf einer fehlerha�en Gleichsetzung von

„Information“ mit bedingten Verteilungen. Während im umgangssprach-

lichen Gebrauch des Wortes eine „bessere Information“ immer zu einem

besseren Verständnis einer Situation oder eines Ereignisses beiträgt,

gilt dies nicht für die Einbeziehung zusätzlicher Kovariabler in den

Bedingungen (4.5) – (4.8).14

Eine Idee, die schon von Pearson Anfang des letzten Jahrhunderts for-

muliert wurde, geht davon aus, dass Y eine lineare Regression auf den

14
Sind z.B. U, V normalverteilte unabhängige Zufallsvariablen mit Erwartungswert 0

undVarianz 1, dann sindY1 := U+V undY2 := U−V unabhängig und normalverteilt,
also Y1⊥⊥Y2. Dagegen ist die bedingte Kovarianz, wenn die „Information“ U = u

gegeben ist: Cov(Y1 , Y2 |U = u) = E(Y1Y2 |U = u)−E(Y1 |U = u)E(Y2 |U = u) =

E ((u + V)(u− V))− u2 = Var(V)− u2 = 1− u2 . Y1⊥⊥Y2|U = u gilt also nur, falls

U = 0 ist, ein Ereignis mit Wahrscheinlichkeit 0. Die Einführung der zusätzlichen

„Information“ U = u führt von unabhängigen Variablen Y1 und Y2 zu korrelierten

bedingten Variablen. Die Bedingung (4.7) kann durch die Einbeziehung weiterer

Kovariabler also auch verletzt werden. Weitere Probleme bei der Interpretation von

„Information“ bei bedingten Modellen diskutieren Dubra und Echenique (2004).
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Vektor X besitzt, E(Y |X) = Xβ (Lawley 1943). Die lineare Beziehung

soll dabei sowohl für die Teilmenge der vollständigen Angaben als auch

für die Gesamtheit U mit dem jeweils gleichen β gelten. An Stelle der

Identität der Erwartungswerte in allen Teilstichproben wird also nur die

Identität der Regressionsfunktion sowie eine konstante bedingte Varianz

gefordert. Haben Y |X und Y |X,1[R = 1] die gleiche Verteilung, dann
ist das Modell sicherlich CAR. Wird nur die Gleichheit der Erwartungs-

werte und Varianzen gefordert, so ergibt sich ein etwas allgemeineres

Selektionsmodell.

Im Pearson-Lawley Modell kann zunächst β auf der Teilstichprobe

mit vollständigen Angaben geschätzt werden; in einem zweiten Schritt

aufgrund von E(Y) = E(E(Y |X)) ein Schätzer des Erwartungswerts
von Y durch

µ̂ =

∫
Ê(Y |X = x) dF̂X(x) =

1

|s|
∑
u∈s

x(u)β̂

konstruiert werden. Ist die Regression auch homoskedastisch, dann

lassen sich Schätzer für die Varianzen angeben. Im Fall des ALLBUS

ergibt sich µ̂ = 3763 mit dem 95% Kon�denzintervall (3660, 3866), wenn

als Kovariablen das Alter, Geschlecht, Haushaltsgröße und Staatsange-

hörigkeit benutzt werden.15 Der naive Mittelwert, der nur vollständige

Angaben berücksichtigt, ist um 90 DM kleiner und be�ndet sich am

unteren Rand des Kon�denzintervalls.

Im Rahmen des Pearson-Lawley Ansatzes können auch die gruppierten

Angaben aus s3 \ s4 berücksichtigt werden, indem die Methoden des
letzten Abschnitts auf die Residuen y(u)− x(u)β angewandt werden.

Außerdem kann an Stelle der linearen Regression ein beliebiges (parame-

trisches oder semiparametrisches) Regressionsmodell benutzt werden.

Ein Nachteil der Methode ist aber ihre Abhängigkeit von Annahmen

15
Die 6 Beobachtungen ohne Altersangabe wurden ausgeschlossen, die Schätzung von

β erfolgte auf s4 ohne diese Beobachtungen. Die Haushaltsgröße bezieht sich auf die

Anzahl der Personen im Haushalt, einschließlich der Kinder. Die Angabe wurde

gruppiert, indem Haushalten mit mehr als 4 Personen der Wert 5 zugeordnet wurde.

Bei der Staatsangehörigkeit wird nur unterschieden, ob jemand einen ausländischen

Pass hat oder nicht.
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bezogen auf die Regressionsgleichung. Diese ist in der Regel nicht direkt

von Interesse. Im Fall des ALLBUS soll eine Aussage über das mittlere

Haushaltseinkommen getro�en werden, nicht aber über einen Regressi-

onszusammenhang. Zudem sind die KovariablenX, die für alle Befragten

zur Verfügung stehen, hauptsächlich durch das Stichprobendesign und

die Fragebogenkonstruktion bestimmt, nicht durch inhaltliche Überle-

gungen. Daher wird versucht, den Regressionszusammenhang E(Y |X)
möglichst allgemein, d.h. ohne parametrische Annahmen, zu modellie-

ren. Das Haushaltseinkommen ist sicherlich keine lineare Funktion des

Alters.�eoretisch gibt es keinen sinnvollen Zusammenhang zwischen

demAlter eines Befragten und demHaushaltseinkommen, es sei denn, es

handelt sich um Ein-Personen-Haushalte. Der lineare Term für das Alter

sollte daher �exibler, etwa durch Spline-Funktionen dargestellt werden.

Zudem sollten möglichst alle Interaktionen zwischen den Kovariablen

berücksichtigt werden. Wenn aber keine parametrischen Annahmen

oder wenigstens Annahmen über die Glätte der Regressionsbeziehung

getro�en werden können, dann gibt es innerhalb des Ansatzes nicht

einmal ein Schätzverfahren, das gleichmäßig konsistent ist (Robins

und Ritov 1997: 294f). Selbst wenn diese theoretischen Schwierigkeiten

ignoriert werden, bleibt das praktische Problem, ein relativ stabiles und

gleichzeitig allgemein akzeptierbares Regressionsmodell für Y gegeben

X zu formulieren.

Eine Möglichkeit, zumindest einige der theoretischen Probleme zu

umgehen, ergibt sich aus einem Rückgri� auf eine Idee der Stichproben-

theorie und verwendet gewichtete Schätzgleichungen.Wird nur zwischen

vollständigen und fehlenden Angaben unterschieden, dann kann ein

probabilistisches Modell für das Fehlen einer Angabe in Abhängigkeit

von den Kovariablen X formuliert werden. Wird R(u, .) = 1 gesetzt, falls

Y(u, .) beobachtet wurde, R(u, .) = 2 sonst, dann ist ein Modell für das

Fehlen von Angaben über Y(u, .) etwa durch π(u, x) := Pr(R(u, .) =

1 |X(u, .) = x) = Pr(R(u, .) = 1 |X(u, .) = x, Y(u, .) = y) bestimmt. Die

Variable π(u,X) wird häu�g „Propensity Score“ genannt. Ignorierbarkeit

des Selektionsmodells besteht gerade in der Unabhängigkeit des Propen-

sity Scores π(u, x) von y, also in der Annahme R(u, .)⊥⊥Y(u, .) |X(u, .).
Ist die Auswahlwahrscheinlichkeit für alle Kovariablenwerte größer als
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eine positive Schranke, π(u,X) > σ > 0 für alle X(u, .), dann gilt

E
(

1[R(u, .) = 1]Y(u, .)

π(u,X)

)
= E

(
E
(

1[R(u, .) = 1]Y(u, .)

π(u,X)

∣∣∣Y(u, .) = y,X(u, .) = x

))
= E

(
Y(u, .)

π(u,X)
E
(
1[R(u, .) = 1] |Y(u, .) = y,X(u, .) = x

))
= E

(
π(u,X)Y(u, .)

π(u,X)

)
= E (Y(u, .))

Daher ist

µ̂ =
∑
u∈s

1[R(u, .) = 1]Y(u, .)

π(u,X)
/
∑
u∈s

1[R(u, .) = 1]

π(u,X)

ein erwartungstreuer Schätzer des Erwartungswerts derY(u, .), und zwar

ganz unabhängig von der Form des bedingten Erwartungswerts E(Y |X).
Allerdings muss ein Schätzer für π(u,X) angegeben werden. Wird z.B.

ein Logit-Modell π̂(u, x(u)) = exp(x(u)β̂)/1 + exp(x(u)β̂) verwendet,

dann ergibt sich für das mittlere Haushaltseinkommen µ̂ = 3765 mit

einem Kon�denzintervall von (3599, 3931).

Das deutlich größere Kon�denzintervall des gewichteten Schätzers im

Vergleich zum Pearson-Lawley-Schätzer ist eine Konsequenz sowohl der

abgeschwächten probabilistischen Annahmen als auch der nur unvoll-

ständigen Nutzung der Verteilung der X(u, .) sowie der gemeinsamen

Verteilung von Y(u, .) und X(u, .) auf {u ∈ s |R(u, .) = 1} für die Schät-
zung. Ein Teil der Information kann durch die Addition eines weiteren,

von Funktionen der X(u, .) und 1[R(u, .) = 1]Y(u, .) abhängigen Terms

zur Schätzgleichung zurückerhalten werden.16 Allerdings können im

16
Verschiedene Varianten der Einbeziehung dieser Information sind sowohl von Qin

et al. (2002) als auch von Robins und seinen Mitarbeitern untersucht worden.�eo-

retisch können „optimale“ erweiterte Schätzfunktionen angegeben werden, die die

(asymptotische) Varianz von µ̂ minimieren. Die optimale Wahl einer Schätzfunktion

hängt von der Spezi�kation eines Modells der bedingten Verteilung von Y(u, .)

gegeben X(u, .) bzw. gegeben X(u, .), R(u, .) = 1 ab (Rotnizky und Robins 1997;
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Rahmen gewichteter Schätzer partielle Angaben nur sehr rudimentär

Berücksichtigung �nden. Die Schätzgleichung beruht zunächst nur auf

vollständigen Angaben, partielle Angaben werden im Gegensatz zum

Pearson-Lawley Ansatz oder zu Likelihood-Methoden nur über weitere

additive Terme in die Schätzgleichung eingeführt.

4.10. Nicht ignorierbare Ausfälle

Bei der Diskussion von Selektionsmodellen wird überlegt werden müs-

sen, was geschieht, wenn sie nicht die CAR-Bedingung erfüllen. In

diesem Fall hängt Pr(Y∗(u, .) = y∗ |Y(u, .) = y) aufgrund von (4.1) von

y ∈ y∗ ab und diese bedingten Wahrscheinlichkeiten könnten modelliert
werden. Andersherum kann von (4.4) ausgegangen und entsprechend

Pr(Y(u, .) = y |Y∗(u, .) = y∗) modelliert werden. Eine Reihe anderer
Möglichkeiten der Konstruktion nicht ignorierbarer Selektionsmodelle

sind denkbar. Das wohl bekannteste Modell ist von Heckman (1976)

vorgeschlagen und zumeist für den Fall vollständig fehlender Werte

verwandt worden: Y∗ = {{y} | y ∈ Y} ∪ {Y}. Sei R(u, .) eine Variable,
die das Antwortverhalten von u bei der Frage nach dem Haushaltsein-

kommen darstellt, also R(u, .) := 1, wenn Y(u, .) genau angegeben wird,

R(u, .) = 2 sonst. Wenn nun die Existenz einer Variablen R∗(u, .) mit
R(u, .) = 1 ⇔ R∗(u, .) ≥ 0 und ein Zusammenhang zwischen Y(u, .)
und R∗(u, .) postuliert wird, dann ergibt sich für den Erwartungswert
der Stichprobe mit vollständigen Antworten E(Y(u, .) |R∗(u, .) ≥ 0).
Dies muss nicht mit dem unkonditionalen Erwartungswert E(Y(u, .))
übereinstimmen, wenn R∗(u, .) und Y(u, .) stochastisch abhängig sind.
Andererseits erfordert die CAR-Bedingung bei fehlendenWerten die

Gleichheit von E(Y(u, .)) und dem bedingten Erwartungswert von
Y(u, .) gegeben R(u, .) = 1. Das Modell ist also sicher nicht CAR, falls ein

stochastischer Zusammmenhang zwischenR∗(u, .) undY(u, .) unterstellt
wird. Jede gemeinsame Verteilung von Y(u, .) und R∗(u, .) erzeugt ein

Scharfstein und Irizarry 2003; van der Laan und Robins 2003). Beide Verteilungen

sind aber nicht von direktem Interesse und ihre nichtparametrische Schätzung, die

zusätzliche probabilistische Annahmen vermeidet, ist bei den üblichen Stichproben-

größen wie im ALLBUS sehr instabil.
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Selektionsmodell, das nur dann ignorierbar ist, wenn Y(u, .)⊥⊥R∗(u, .)
gilt. Denn der Ausdruck

Pr(Y∗(u, .) = Y |Y(u, .) = y) = Pr(R(u, .) = 2 |Y(u, .) = y)

=

∫ 0

−∞
f (v |Y(u, .) = y) dv

müsste aufgrund von (4.1) konstant in y sein, wenn es sich um ein

CAR-Modell handelte. Es ist aber von vornherein klar, dass über ein

solches nicht ignorierbares Selektionsmodell empirisch wenig zu sagen

sein wird, da weder R∗(u, .) noch Y(u, .) tatsächlich beobachtet werden.

Sind Y(u, .) und R∗(u, .) gemeinsam normalverteilt mit

µ := E(Y(u, .)), µ∗ := E(R∗(u, .))
Var(R∗(u, .)) := 1, σ2 := Var(Y(u, .))

ρ := Corr(Y(u, .), R∗(u, .))

dann ist die bedingte Dichte von Y(u, .) gegeben R(u, .) = 1

ϕ(y |R∗(u, .) ≥ 0) = 1

Pr(R(u, .) = 1)

1

σ
ϕ((y− µ)/σ)×

Φ

(
1√
1− ρ2

(µ∗ +
ρ

σ
(y− µ))

)
(4.9)

wobei ϕ bzw. Φ hier die Dichte bzw. Verteilungsfunktion der standar-

disierten Normalverteilung bezeichnen (Copas und Li 1997: 59f). Der

letzte Term ist die bedingte Wahrscheinlichkeit für eine vollständige

Angabe bei gegebenemWert von Y(u, .)

Pr(R = 1 |Y(u, .) = y) = Φ

(
1√
1− ρ2

(µ∗ +
ρ

σ
(y− µ))

)
Diese bedingte Wahrscheinlichkeit entspricht der bedingten Wahrschein-

lichkeit in (4.1). Die CAR-Bedingung gilt genau dann, wenn der Koe�zi-

ent von y 0 ist, wenn also ρ = 0 ist.17

17
In der ökonometrischen Literatur wird Heckmans Modell o� als ein Beispiel für eine
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Da R(u, .) für alle u ∈ s bekannt ist, kann wegen Φ(µ∗) = 1−Φ(0; µ∗) =
Pr(R∗(u, .) ≥ 0) = Pr(R(u, .) = 1) ein Schätzer von µ∗ durch Φ−1(P(R =
1)) konstruiert werden, wobei P(R = 1) den Anteil vollständiger Beobach-

tungen in der Stichprobe s angibt. Dagegen müssen µ, σ und ρ auf der

Basis der vollständigen Beobachtungen geschätzt werden. Insbesondere

der Parameter ρ, der die Abweichung von einem CAR-Modell darstellt,

lässt sich nur aufgrund der Abweichung der Verteilung der vollständigen

Beobachtungen von einer Normalverteilung identi�zieren. Wenn im Fall

des Haushaltseinkommens die genauen Angaben zur Berechnung der

Parameter µ, σ , ρ verwandt werden, so erhält man die völlig unplausiblen

Werte µ̂ = 1312, σ̂ = 3119, ρ̂ = 0, 987. Der geschätzte Erwartungswert liegt

selbst außerhalb des konsistentenMittelwertintervalls auf der Bruttostich-

probe s1 (vgl. Abschnitt 4.5). Nach diesem Ergebnis hätte ein erheblicher

Teil der Population ein stark negatives Haushaltseinkommen. Zudem

wäre die „Antwortwortbereitscha�“R∗(u, .) fast perfektmit demEinkom-
men korreliert. Benutzt man dagegen die logarithmierten Einkommen,

ergibt sich als Erwartungswert 3849 DM und ρ̂ = −0, 845, also ein stark
negativer Zusammenhang zwischen Einkommen und „Antwortbereit-

scha�“. Etwas stabilere Ergebnisse wird man nur erho�en können, wenn

Kovariablenmit großem E�ekt auf R(u, .) angegeben werden können, die

keinen Ein�uss auf Y(u, .) haben. Aber selbst dann wird die Identi�kati-

on des Modells im wesentlichen durch Linearitätsannahmen im Modell

für R∗(u, .) ermöglicht. Denn da es zu gegebenen Daten immer ein (kon-
ditionales) CAR-Modell gibt, kann der Koe�zient von y in der bedingten

Wahrscheinlichkeit Pr(R(u, .) = 1 |Y(u, .) = y,X(u, .) = x) immer als 0

angenommen werden, wenn nur der Ein�uss der übrigen Kovariablen

X(u, .) allgemein modelliert wird. Die Identi�kation des Koe�zienten

von y und damit der Korrelation ρ erfordert eine parametrische Ein-

schränkung der Wirkung der Kovariablen. Aber die Auswirkungen etwa

von Linearitätsannahmen in Pr(R(u, .) = 1 |Y(u, .) = y,X(u, .) = x) sind

ebenso wenig wie die Auswirkungen willkürlicher Verteilungsannahmen

„selection on unobservables“ angeführt (Nicoletti 2002: 3). Die Bezeichnung soll wohl

auf die Abhängigkeit des Modells von der unbeobachteten Variablen R∗ hinweisen.

Die Bezeichnung ist irreführend, denn wie die letzte Gleichung zeigt, hängt die

Selektion nicht von unbeobachtbaren Größen ab, sondern von den Werten von

Y(u, .), etwa dem Haushaltseinkommen. Letzteres ist zwar nicht für alle Befragten

u ∈ s bekannt, aber es ist sicher nicht „unbeobachtbar“.

237



4. Probabilistische Selektionsmodelle

einfach zu überblicken.

Immerhin ergibt das Heckmansche Modell einen ersten Ansatzpunkt zur

Modellierung nicht ignorierbarer Selektionsprozesse. Zudem können

auch partielle Angaben relativ leicht einbezogen werden. In der Tat kann

das Modell so erweitert werden, dass viele häu�g au�retende Probleme

mit unvollständigen Angaben in diesem Rahmen formuliert werden

können (z.B. Crouchley undGanjali 2002).WeiterhinwurdenVerteilungs-

annahmen abgeschwächt (Das et al. 2003) und asymptotische Analysen

verfeinert (Rotnitzky et al. 2000). Ausgehend von Heckmanschen Selekti-

onsmodellen können die Auswirkungen „lokaler“ Abweichungen von

den Annahmen approximiert werden (Copas und Li 1997).

4.11. Sensitivität

In der sozialwissenscha�lichen Praxis reicht es zumeist nicht, sich für

ein Selektionsmodell zu entscheiden und sodann Ergebnisse nur unter

dieser Modellannahme zu präsentieren. Wird mit einer CAR-Annahme

begonnen, somuss dennochRechenscha�über dieKonsequenzen derAn-

nahme abgelegt werden. Das ist umso wichtiger, als die CAR-Annahme

dazu verführen könnte, nicht über Selektionsprozesse nachzudenken.

Zwar können „lokale“ Abweichungen von der CAR-Annahme allgemein

beschrieben werden. Damit ist es auch möglich, die Konsequenzen der

CAR-Annahme für statistische Aussagen zu approxmieren (Copas und

Eguchi 2001). Aber probabilistische CAR-Modelle können kaum als

realistische Modelle für Stichprobenausfälle angesehen werden. Daher

wird eine lokale Approximation, so nützlich sie theoretisch ist, zumeist

nicht befriedigen können. Die Approximation läu� Gefahr, die Konse-

quenzen von Annahmen über den Selektionsprozess nur in den engen

Grenzen probabilistisch ähnlicher Modelle zu untersuchen. Rosenbaums

Sensitivitätsanalyse (2002: Chap. 4) knüp� an Überlegungen über die

Variable R∗(u, .) an, wie sie auch in Heckmans Modell verwandt wird.
Rosenbaums Methode geht von einer größeren Menge von Selektionsmo-

dellen aus und erlaubt damit eine umfassendere Abschätzung der E�ekte

von nicht ignorierbaren Selektionsprozessen. Die Methode verbleibt aber
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in der unterstellten Modellwelt und ist zudem bisher nur für spezielle

Statistiken formuliert worden.

Robins und Mitarbeiter haben vorgeschlagen, von den gewichteten

Schätzfunktionen∑
u∈s

1[R(u, .) = 1]

π(u,X)
(Y(u, .)− µ)

auszugehen und den Propensity Score auch als Funktion von Y(u, .) zu

modellieren (Rotnitzky und Robins 1997; Robins 1997; Rotnitzky et al.

1998; Scharfstein et al. 1999; Scharfstein und Irizarry 2003). Da

E
(
1− 1[R(u, .) = 1]

π(u,X, Y)

)
= 1− E

(
1

π(u,X, Y)
E
(
1[R(u, .) = 1] |X(u, .), Y(u, .)

))
= 0

ist, kann die Schätzfunktion erweitert werden:∑
u∈s

1[R(u, .) = 1]

π(u,X, Y)
(Y(u, .)− µ) +

(
1− 1[R(u, .) = 1]

π(u,X, Y)

)
ϕ(X; µ)

Wird etwa logit π(u, x, y) = x(u)β + αy(u) gesetzt und

ϕ(X; µ, α) =
E(Y(u, .) exp(αY(u, .)) |R(u, .) = 1,X(u, .))

E(exp(αY(u, .)) |R(u, .) = 1,X(u, .))
− µ

gewählt, dann ergibt sich ein doppelt robuster Schätzer, der auch dann

konsistent ist, wenn die Auswahlgleichung fehlspezi�ziert ist. Dabei

kann der Koe�zient α von Y(u, .) in der Auswahlgleichung π(u,X, Y)

nur aufgrund der Beobachtungen mit vollständigen Angaben zu Y(u, .)

geschätzt werden, wenn also R(u, .) = 1 ist. Da außerdem zu jedem

Selektionsmodell auch ein (konditionales) CAR-Modell gebildet werden

kann, wenn nur π(u,X) �exibel genug gewählt wird, ist α auch in sehr

großen Datensätzen kaum stabil schätzbar. Robins und Mitarbeiter

haben daher vorgeschlagen, eine Reihe vonWerten des Koe�zienten

α fest zu wählen und die Auswirkungen auf die Schätzung von µ zu

239



4. Probabilistische Selektionsmodelle

notieren. Wie ihre Simulationen und Beispiele aber zeigen, sind auch

diese Schätzungen sehr instabil. Zudem erscheint noch unklar, wie

partielle Angaben in diesem Ansatz direkt berücksichtigt werden können

(Robins 1997; Robins und Gill 1997).

ManskisAbschätzungen der Folgen von Selektivität (Manski 1993;Manski

und Horowitz 2000; Manski 2003; Za�alon 2002; Manski und Tamer

2002) erfolgen ähnlich wie die Abschätzungen in Abschnitt 4.5 und

verzichten auf probabilistische Annahmen über den Selektionsprozess.

Sie führen nur dann zu relativ engen Intervallen, wennY(u, .) beschränkt

ist. Im Fall des Haushaltseinkommens ergeben sich daher Intervalle

für die möglichen Werte der Durchschnitte wie schon im Abschnitt

4.5. Diese Intervalle sind auch die theoretischen Grenzen der Methode

von Robins et al., wenn ihr Koe�zient α alle Werte zwischen−∞ und
∞ durchläu� (Scharfstein et al. 1999: 1108). Raghhunathan hat in der
Diskussion der Arbeit vonManski und Horowitz (2000: 86) dieWeite der

Intervalle beklagt: "‘I am afraid that I agree with Cochran (1977) that such

an approach is so conservative as to be of little value in most practical

settings for inferential purposes."’ Manski und Horowitz antworteten:

�e width of the bounds re�ects the information available

from the data per se about the population parameters of

interest.�e width also indicates the relative importance

of the data and untestable assumptions in determining the

values of point estimates. . . .Readers should be told that the

point estimates are sensitive to untestable assumptions and

that di�erent assumptions could produce widely di�erent

results. (Manski und Horowitz 2000: 87f).

4.12. Diskussion

Soziologen haben bisher die Möglichkeiten und vor allem die Grenzen

von Selektionsmodellen selten zur Kenntnis genommen. Zwar gab es

immer wieder Arbeiten in verbreiteten Zeitschri�en, die das�ema

aufgegri�en haben (Berk und Ray 1982; Stolzenberg und Relles 1997;Win-

ship und Mare 1992). Aber in empirischen Arbeiten wird das Problem
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o� vollständig ignoriert, mit einem kurzen Verweis auf MAR-Modelle

abgetan oder mit einem Heckman Modell erledigt. Bei Ausschöpfungs-

raten von 50% in Umfragen wird man es sich nicht auf Dauer leisten

können, Selektionsmodelle, ihre Grundlagen und ihre Konsequenzen zu

ignorieren.

Nun kann über die Entstehung fehlender Angaben immer nur spekuliert

werden. Man ist auf Informationen einschlägiger Untersuchungen über

Antwortverhalten angwiesen. Existieren aber gruppierte, zensierte oder

fehlklassi�zierte Berichte der Befragten, dann müssen diese Angaben

ernst genommen und in die Berechnung von Statistiken einbezogen wer-

den. Es werden Verfahren benötigt, die auch diese partiellen Angaben

berücksichtigen. Selektionsmodelle erlauben es, über die Vorausset-

zungen und Konsequenzen solcher Verfahren nachzudenken. Zudem

sind in diesem Fall Spekulationen über Selektionsprozesse empirische

Grenzen gesetzt und Selektionsmodelle können auch ohne Rückgri� auf

zusätzliche Informationen beurteilt werden. Dazu können Methoden der

Sensitivitätsanalyse einen wesentlichen Beitrag leisten. In dieser Rolle

werden Selektionsmodelle auch für die empirische Sozialforschung an

Bedeutung gewinnen.

4.13. Postscriptum

Selection models have seen a tremendous development in recent years,

including the construction of new models, clever estimation strategies

and theoretical analyses. On a theoretical level, the interplay between

parametric speci�cations, model completeness, su�cient statistics, and

incomplete data has been clari�ed by Lu and Copas (2004). Furthermore,

the algorithmic description of CAR models has been completed by Gill

and Grünwald (2005).

�e practical methods developed concentrate on imputation, propensity

scores and matching methods, and inverse probability weighted estima-

tors. Recent developments of imputation methodologies are reviewed by

Tang et al. (2005), Zhang (2003), Harel and Zhou (2007), Horton and

Lipsitz (2001), Kenward and Carpenter (2007), Chen et al. (2000), and
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Ambler et al. (2007).�e role of proper imputation rules is discussed

by Nielsen (2003a) and Shafer (2003).�e possible role of imputation

procedures for non-ignorable missing and incomplete data cases is sur-

veyed by Demirtas (2005). Asymptotic and �nite sample properties were

further examined by Kim (2004).�e possible use of imputations for

model checking (Gelman et al. 2005 and Abayomi et al. 2008), disclosure

control (Little et al. 2004), in binary data models (Demirtas and Hedeker

2007 and Münnich and Rässler 2005) and in structural models (Song

and Belin 2004) were explored as well as more special aspects such as the

bootstrap (Zhang 2004), sensitivity analysis (Carpenter et al. 2007), local

procedures (Aerts 2002) and the e�ects of outliers (Elliott and Stettler

(2007) and of rounding (Horton et al. 2003).�ere has also been much

interest in applications in survey sampling (Beaumont 2005, Haziza and

Rao 2005, Kim et al. 2006, Scheuren 2005, Skinner and Rao 2002, and

Shao andWang 2008).�ere have also been developments of conditional

methods (van Buuren 2007), of empirical likelihood methods (Wang

and Rao 2002), nearest neighbour methods (Wasito and Mirkin 2006)

and of adaptive procedures (Reiter and Raghunathan 2007).�ere are

by now many discussions of practical procedures in the context of well

known data sets (Nicoletti 2006 discusses the ECHP, Frick and Grabka

2003 the SOEP). Moreover, there has been some interest of applying

imputation techniques to survival data (Rubin and van der Laan 2005

and Hsu et al. 2006, 2007). Comparisons to other methods are provided

by Kim and Park (2006) and Carpenter et al. (2006).

�e propensity score based procedures are discussed in general by

Lunceford and Davidian (2004), D’Agostino (2004), Austin (2008),

Frölich (2004, 2005, 2007), and Senn et al. (2007). An interesting

discussion of practical implementations and problems of inference is

provided by Dehejia and Wahba (2002), Smith and Todd (2001, 2005a,

2005b), andDehejia andWahba (2005).�e balancing e�ect of propensity

score matching procedures is investigated by Austin et al. (2007b) and

Berger (2005a). Variable selection is discussed by Judkins et al. (2007)

and Brookhart et al. (2006). Possible bias arising from propensity score

procedures is discussed by Austin et al. (2007a).�e handling of multi-

valued and continuous variables is presented by Hirano and Imbens

(2004) and Imai and van Dyk (2004).�e connection with instrumental
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variables is taken up by Ichimura and Taber (2001). Kurt et al. discuss

applications under non-standard conditions, Lu (2005) presents results

about the use of propensity scores with time dependent covariates and

McCa�rey et al. (2004) present �rst methods of boosted regression

used in conjunction with propensity score techniques. Finally, Leon

and Hedeker (2007) present results on using misspeci�ed propensity

scores. �e latter problem is closely connected to the discussion of

doubly robust estimators as developed by Robins and co-workers. A

good recent review of constructions and properties of doubly robust

estimators is given by Kang and Schafer (2007) and its discussion.�e

arguments of Neugebauer and van der Laan (2005) and van der Laan and

Robins (2003) on the practical advantages of doubly robust procedures

are also relevant here.

Methods of empirical likelihood for incomplete data models have been

developed by Qin and Zhang (2007, 2008), Chen and Qin (2006), Leung

and Qin (2006), and Wang and Rao (2002). General methods for sensi-

tivity analyses are provided by Hines and Hines (2006, 2007) and Frank

and Min (2007).

Progress for interval methods as surveyed by Manski (2003) is rather

slow. Horowith and Manski (2006) discussed general identi�cation

problems. Dantsin et al. (2006) use interval methods for incomplete data

to provide an algorithm for the variance if the interval lengths are small

in comparison to the distances between the interval centers.�is relates

to the results discussed brie�y in Section 4.5. Imbens and Manski (2004)

suggest con�dence bands for interval estimates, but their mix of �xed

sample and probabilistic concepts is not too convincing. Blundell et al.

(2007) give a very readable application of general interval methodology

for the analysis of wage di�erentials. Scharfstein et al. (2004) provide

another example.

�ere is by now a rather specialised literature treating missing and

incomplete covariates in regression models and in censored regression

models in particular. Recent contributions include Catchpole et al. (2008),

Chen (2002), Chen and Little (1999, 2001), Chen et al. (2007), Didelez

(2002), Dupuy and Mesbah (2004), Dupuy et al. (2006), Herring et al.

(2004), Huang et al. (2005), Lee and Tang (2006), Liang (2008), Liang et al.
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(2004), Lipsitz et al. (2004), Mojirsheibani andMontazeri (2007), Nielsen

(2003b), Paliwal and Gelfand (2006), Parzen et al. (2006), Pons (2002),

Qi et al. (2005), Rathbun et al. (2007), Rathouz (2003, 2007), Roy and

Lin (2005), Shardell and Miller (2008), Stubbendick and Ibrahim (2003,

2006), Tian and Lagakos (2006), Wang and Paik (2006), Wang and Chen

(2001), Wang et al. (2007), Wang et al. (2001), Wang andWang (2001),

Wang (2005), Wu (2004, 2007, 2008), Yang et al. (2005), and Zhang and

Rockette (2005, 2006, 2007). Covariates missing by design are treated by

D’Angelo and Weissfeld (2007), intermittendly missing covariates in

longitudinal studies are discussed by Andersen and Liestøl (2003), Gad

and Ahmed (2006, 2007), and Lin et al. (2004). Censored covariates

are discussed by Dabrovska (1995), Yashin and Manton (1997). Missing

censoring indicators, a form of missing information o�en encountered

in recurrent event data, are discussed by Wang and Shen (2008), Antony

and Sankaran (2008), Subramanian (2004, 2006), and Lu and Liang

(2008).
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5

Causal Inference from Series of

Events

5.1. Summary

Recent years have witnessed an increased interest, both in statistics and

in the social sciences, in time dependent models as a vehicle for the

causal interpretation of series of events.�e Humean and empiricist

tradition in the philosophy of science uses the constant temporal order

of cause and e�ect as a decisive delimitation of causal processes from

mere coincidences. To mimic the philosophical distinction, series of

events are modelled as dynamic stochastic processes and the precedence

of cause over e�ect is expressed through conditional expectations given

the history of the process and the history of the causes. A main technical

tool in this development is the concept of conditional independence.

In this article we examine some di�culties in the application of the

approach within empirical social research. Speci�cally, the role of

probabilistic concepts of causality and of conditional independence, the

nature of events that reasonably qualify as causes or e�ects, and the time

order used in empirical research are considered.
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5.2. �e Tradition of Causal Analysis in Sociology

�e use of the concept of causality in sociology has been lingering be-

tween neglect and over–reliance.1 Even though the concept was never

wholeheartedly accepted by sociologists, it became a cornerstone of

arguments in favour of empirical research by the early 1970’s.�e work

of Lazarsfeld, Blalock, Coleman, Duncan, and many others led to the

predominance of path models as the paradigmatic form of statistical

analyses of causation, which was conceived as a relation between statis-

tical variables.�e �owering of structural equation modelling within

sociology and psychology strengthened the technical applicability of

the approach and gave impetus to the development of statistics in gen-

eral.2 But the increased statistical sophistication was accompanied by

a growing isolation from the rest of applied social research as well as

from statistics (as a branch of applied mathematics). Critical discussions

within sociology and across disciplinary boundaries were prematurely

cut o�. Even the debates in econometrics during the late 50’s and early

60’s3 on ‘autonomy’ of causes, the meaning of simultaneous equations,

and the concept of exogeneity are rarely re�ected in the textbooks on

social statistics from the late 70’s onwards. Moreover, developments in

statistics, even when originating from concerns for questions of causality

from other disciplines, were largely ignored.4 And within sociology, the

connection of causal analysis with certain statistical techniques was met

by a general scepticism concerning the role of statistics and of ‘variables’

in general.

Sociologists outside the tradition of structural equation models o�en

downplay the role of causality in the social sciences in favour of other

forms of determination. In fact, the sociological literature abounds

with examples of explanations that are not strictly causal in an empiri-

cist or positivistic sense. Historical, functional, structural, teleological

explanations—to name just a few of the distinctions used—are o�en

1
See Bernert (1983) for an account of its history in the American sociological literature.
2
See Clogg (1992) for a partial review, including other areas of social statistics.
3
See e.g. Epstein (1987).

4
Holland’s discussion of Clogg’s 1992 paper and Clogg’s rejoinder may serve as an

illustration.
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invoked. As far as causal reasoning is granted a place in sociology, many

researchers agree with a view of causality that depends on subject-matter

considerations.�ere seems to be wide consensus among sociologists

that causality cannot simply and directly be inferred from empirical data,

regardless of whether they are obtained from randomised experiments,

collected through ingenious research designs or summarised by partic-

ularly advanced statistical models. Blumer’s well known early (1956)

diatribe against statistical ‘variable analysis’ is but one example in the

sociological tradition asking for more than a statistical analysis of the

relation between dependent and independent variables.

More recently, however, statisticians, sociologists, and philosophers have

begun to study the relation between statistics and causality more closely.

�e renewed interest was sparked by advances in the formalisation of

concepts related to causation. Most of these developments are well

documented in a special volume of Synthese (vol. 121, 1999) and —with

emphasis on social science applications— in the proceedings “Causality in

Crisis”, edited by McKim and Turner (1997). Most of the contributions in

these recent publications concentrate on counterfactual or interventionist

conceptions of causation. Complementary, we will here investigate the

prospects of a classical empiricist criterion of causality in the Humean

tradition: the time order of cause and e�ect.

5.3. Temporal and Probabilistic Criteria of Causation

Since many theories of causal interdependence rely on empiricist criteria

as a prerequisite for the acknowledgement of causality, a strong argument

against the assumption of a causal connection can be made if some of

the empiricist criteria of causality do not hold.�e empiricist conditions

for the existence of a causal relation, based on Hume’s analysis, require

a) spatial and temporal contiguity, b) constant conjunction between

cause and e�ect, and c) temporal succession. We will argue that suitably

modi�ed versions of the requirements b) and c) can be used as starting

points for empirical arguments concerning causal claims.
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�e �rst criterion, that of spatial and/or temporal contiguity, is o�en

disputed. E�ects do not need to follow immediately a�er a cause, nor do

they need to be spatially close to the cause. E.g. strikes and demonstra-

tions may be the (e�cient) cause of a change of government, but the latter

need not follow immediately a�er the demonstrations, nor need there be

any spatial contiguity. Even though criterion a) cannot generally serve as

a necessary condition for causation in the social sciences, a formalism of

cause–e�ect relationships should be able to distinguish between ‘close’

and ‘remote’ causes of e�ects. Otherwise it would be di�cult to express

the ideas of ‘spurious cause’ and ‘causal chain’, both considered useful in

the construction and criticism of causal explanations.

Condition b) cannot be expected to hold strictly with respect to social

interactions. People tend to react di�erently upon others actions, even in

otherwise similar situations. And, as Suppes (1970: 92) notes:

Empirical studies of the sort done in psychology, sociol-

ogy, and medicine hold little hope of establishing complete

deterministic chains for the causes of actions.�is is true

whether we are analysing the sex habits of Eskimos, recidi-

vism among parolees over forty, or church attendance by

illiterates.

�e ‘constant conjunction’ condition therefore must be reformulated.

Here we will simply replace the ‘constant conjunction’ condition by a

probabilistic relation: that the cause changes the probability of the e�ect.5

Note that “[i]t is not a matter of presenting evidence for causality by

o�ering probabilistic considerations but it is part of the concept itself to

claim relative frequency of co-occurrence of cause and e�ect” (Suppes

1970: 45).�e incorporation of probabilistic aspects is thus not only of

an epistemic nature. It is not incorporated because the sociologist does

not (yet) know, but because ‘constant conjunction’ cannot reasonably

5
Suppes’ (1970) analysis starts from the assumption that causes should increase the

probability of the e�ect.�e subsequent discussion in the philosohical literature has

shown that the concept of ‘increase of probability’ may not su�ce for the analysis of

probabilistic causality (e.g. Eells 1991). But since the problem is not central to our

discussion we will content ourself with the simple minded principle of a change of

probability.
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be claimed in sociology. Consequently, probability statements in this

context should generally refer either to frequencies or to propensities, as

also �ts the needs of an empiricist program.

�e condition c) requires a temporal framework for causal arguments.

�is is not normally included in the formulation of ‘causal models’ in

the structural model literature. It is also not included in the formal

representation of observational studies6 in e.g. biometry nor in more

recent counterfactual or interventionist accounts. On the other hand,

the temporal dimension of causal connections has o�en been recognised

in sociology. Tuma and Hannan, introducing event–history analysis

into sociology, acknowledge the interplay between temporal and causal

analysis (1984: xi–xii, their italics):

Any attempt at forging a systematic framework for the

empirical study of social change must confront two issues.

One involves the development of dynamicmodels—models

that describe the time paths of change in phenomena.�e

other involves the development of causalmodels—models

that describe how change in some properties induces change

in still other properties. . . .we rely heavily on the use of

formal models to guide attempts at testing hypotheses about

the processes and causes of change.

And Blossfeld and Rohwer (1995: 20) state:

. . . the important task of event history modelling is . . . to

establish relevant empirical evidence that can serve as a link

in a chain of reasoning about causal mechanisms. In this

respect, event history models might be particularly helpful

instruments because they allow a time-related empirical

representation of the structure of causal arguments.

6
�e de�nition of an observational study is a rather narrow one in this context. Rosen-

baum (1995: 1) states: “An observational study concerns treatments, interventions, or

policies and the e�ect they cause, and in this respect it resembles an experiment.

A study without a treatment is neither an experiment nor an observational study.”

Following his de�nition, many empirical sociological studies will not count as

observational studies.
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Suppes (1970) proposed one of the best known formalisations of proba-

bilistic causality. His account includes a condition of temporal precedence

of cause over e�ect, in contrast to many later attempts to clarify the

concept (e.g. Eells, 1991). His starting point is the theory of probability

based on systems of sets, called ‘events’. He adjoins a temporal indicator

to these sets to indicate temporal sequences. But as witnessed by later

contributions (e.g. Davis 1988), this strategy turned out to be rather

limited. Savage (1972: 10) remarked with respect to the use of the term

‘event’ in probability theory: “. . . the concept of event as here formulated

is timeless, though temporal ideas may be employed in the description

of particular events.” Arjas and Eerola (1993: 384) note that in these

formulations, “time is present (if at all) only as an index, distinguishing

between what comes ‘before’ and what comes ‘a�er’.” Consequently, a

more �exible representation of time order is needed. In the absence of

condition a), it should at least be possible to formulate the timing of

e�ects with respect to causes. Recent contributions therefore seek to

enrich the formulations by borrowing heavily from dynamic theories of

stochastic processes.

�e program then is clear: to combine probabilisticmodels—re-expressing

the constant conjunction (condition b)— with the idea of ‘the cause

precedes the e�ect’ (condition c) to facilitate an empirical assessment of

claims of causality. Causal statements are translated into the mathemat-

ical language of stochastic processes: Y = {Yt , t ∈ T } is a stochastic
process with values in a �nite set Y .�e values of Yt are interpreted

as properties of units under study and events are changes of properties

at time points t. At any given point in time t, the description of the

evolution of the process may depend on conditions and events that

occurred in the past, i.e. before t, but not on what is the case at t or in the

future, a�er t. Causes acting on Y may then be introduced by considering

them as changes in a further process X = {Xt , t ∈ T }.�e process X
may be treated as a time-dependent covariate and causal statements are

therefore formulated as probabilistic relations between two (or more)

stochastic processes. A time-dependent covariate records when a causal

factor has changed its state. It signi�es that an event of kind X has taken
place. Consequently, we would not say that a process X is a cause of a

process Y , but that a change in X at time t (an event at time t) could be a
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cause of a change in Y at time t′, t′ > t (another event at a later time).

O�en a canonical dynamic description of the stochastic processes can

be given, one relating the ‘past’ of the processes to their ‘future’, and

encapsulating their relevant probabilistic features. In this case the

classical formulation of probabilistic causality (e.g. Suppes 1970) can be

enhanced by allowing for an explicit representation of the timing of e�ects,

generalising the Humean requirement of contiguity in time. Approaches

along this line were advocated by Granger (1969) in the context of

time series analysis and by Schweder (1970, 1986) for general Markov

processes. �ese ideas were taken up more recently by Aalen (1987),

Arjas/Eerola (1993), Parner/Arjas (1999), and Keiding (1999), providing

a formal framework for probabilistic causality with a clear relation to

time order. Many of these articles use genuinely epistemic notions

for the interpretation of probabilities.�is partly re�ects the naming

conventions used in the technical literature on stochastic processes and

we will follow the convention here. But the mathematical formulation

does not force us to accept an epistemic interpretation, and the possibility

of interpretations in terms of propensities or frequencies should be kept

in mind.

5.4. Mathematical Models

A dynamic description of stochastic processes �tting the above program

can be outlined in the case of processes with discrete time parameters:7

7
Much of the discrete-time theory extends directly to the continuous-time setting.

�e reason is that a continuous time martingale with respect to a right continuous

�ltration can be modi�ed to have nice sample path properties, i.e. right-continuous

paths with le� hand limits. A thorough treatment presupposes a formidable technical

machinery without adding much insight to the present discussion. But it should be

noted that the continuous-time theory makes heavy use of continuity and of the

denseness of the rationals within the real numbers. Many mathematical models

of time try to avoid such strong assumptions (see Whitrow 1963: Chap. III for an

early review). Moreover, the combination of a continuous-time theory using all the

properties of the reals may collide with a concept of causality that is based both on

the time ordering of cause and e�ect and on the distinction between direct and

indirect causes (see e.g. Suppes 1970: 72).
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Let Y = {Yt , t = 0, 1, 2, . . .} be a stochastic process with values in a �nite
set Y .8 Suppose one is interested in what happens just a�er time t − 1.
A good prediction is the conditional expectation of the change of Yt

from Yt−1, conditional on the previous history of the process, that is the
random variable

Vt = E(Yt − Yt−1 |Y0, . . . , Yt−1) (5.1)

Putting

Ut =

t∑
s=1

Vs =

t∑
s=1

E(Ys − Ys−1 |Y0, . . . , Ys−1)

for the sum of the predicted values, one may write the original pro-

cess Yt as a sum of predictions in time and a remainder, the Doob

decomposition:9

Yt = Y0 + Ut +Mt (5.2)

�e prediction part Ut is a function of the previous history up to and

including time t − 1 only, whileMt is amartingale, satisfying

E(Mt |Y0, . . . , Yt−1) = Mt−1 (5.3)

In fact, for themartingale di�erence Mt −Mt−1 one �nds

E(Mt −Mt−1 |Y0, . . . , Yt−1)

= E((Yt − Yt−1)− (Ut − Ut−1) |Y0, . . . , Yt−1)

= E(Yt − Yt−1 |Y0, . . . , Yt−1)− Vt = Vt − Vt = 0

�e decomposition (5.2) generalises the additive regression decompo-

sition into a ‘structural’ part Ut and a ‘random’ partMt that is used in

much of empirical social research. Accordingly, but somewhat ambigu-

ously, the di�erencesMt −Mt−1 are sometimes called the innovations

8
�e assumption of a �nite state space is not essential for the mathematical formula-

tions used here. But subsequent discussions of the appropriateness of the formal

model o�en presuppose a �nite number of states.
9
Williams (1991) provides a thorough and vivid exposition for the discrete time case.
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of the process. �e predictions Ut, depending only on Yt−1, . . . , Y0,
are called predictable. Any other process Zt that depends only on the

values of Yt−1, . . . , Y0, the history of Y strictly before t, will also be called
predictable with respect to the process Y .

It may be instructive to see how a duration variable T, featuring promi-

nently in event-history analysis, �ts into the present framework. In that

case one may put Yt = 1 if the event happened at time t or before, 0 oth-

erwise.�at is, Yt = 1[T ≤ t], where 1[A] is the indicator variable of

the event A. For simplicity, one may also assume Y0 = 0.�e prediction

process is then given by Vt = E(Yt − Yt−1 |Y0, . . . Yt−1).�is quantity
is 0 if Yt−1 takes the value 1, since then both Yt and Yt−1 must be 1. In
other words: If the event happened before time t, there will be no change

in the prediction of Yt , because the one possible change in state is known

to have occurred.

On the other hand, if there was no event at t − 1 or before, Yt−1 as well
as Yt−2, . . . , Y0 are 0 and Vt reduces to the probability Pr(Yt = 1 |Y0 =
0, . . . , Yt−1 = 0) = Pr(T = t |T ≥ t). �us Vt reduces to a random

function of the well known hazard function ofT. If λ(t) = Pr(T = t |T ≥
t) denotes the hazard function of T, Vt = 1[T ≥ t]λ(t) = (1−Yt−1)λ(t).
Note thatVt in the present discussion is a random variable, depending on

Yt−1, . . . , Y0. In contrast, the hazard function λ(t) treated in most texts

on event–history analysis is a non-random transform of the distribution

function. Furthermore, the accumulated prediction Ut is a random sum

of hazard functions, the sum extending over all s ≤ min(T , t), the times
s before the event time T or the observation time t, whatever comes �rst.

Following Aalen (1987), a dynamic statistical model is then de�ned as

a parameterisation of the prediction increments Vt. Since Vt depends

on the history of the process up to and including t − 1 only, it can be
interpreted as a description of the future, the likely events at time t,

depending only on the knowledge of all past events. Alternatively, it is

(an approximation of) the relative frequency of events at t among all

sequences with this history.

To introduce concepts of interdependence between several processes, it

seems natural to embed the above concepts into a multivariate extension.
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Basically, the history of the single process is replaced by one based

on all relevant information available before time t. In the case of two

processes (Yt ,Xt) one might therefore de�ne the conditionally expected

increments as

VY
t = E(Yt − Yt−1 |Y0,X0, . . . , Yt−1,Xt−1) (5.4)

and

VX
t = E(Xt − Xt−1 |Y0,X0, . . . , Yt−1,Xt−1). (5.5)

Interpreting the conditional expectations above as an increase in knowl-

edge, VY
t will be based not only on the pre-t history of Y itself, but also

on the knowledge of the development ofX up to and including t−1.�us,
the expectation will change depending on the information provided by

X. Symmetrically, VX
t , the prediction of X based on the common history

of X and Y before t, will depend on the changes in Y up to t. One may

represent the two processes using the Doob decomposition with respect

to the joint history of the processes as:

Yt = Y0 +

t∑
s=1

VY
s +M

Y
t and Xt = X0 +

t∑
s=1

VX
s +M

X
t (5.6)

�enXt is de�ned not to be causal for Yt inAalen’s sense if and only if, �rst,

the prediction errorsMX
t andM

Y
t are uncorrelated, and second, U

Y
t , the

prediction of Yt, may depend on Y0, . . . , Yt−1 but not on X0, . . . ,Xt−1.
We will say that X and Y are locally autonomous if the �rst condition

is satis�ed.10 If the second condition holds, Yt is said to be locally

independent of Xt . Otherwise, Yt is said to be locally dependent of Xt .11

10
�e notion of ‘autonomy’ has a long tradition in econometrics, especially in the

context of simultaneous equation models. Aldrich (1989) provides a review.
11
A related concept is Granger non-causality, a concept o�en used within econometric

time series analysis. A process X is said not to cause Y in Granger’s sense at t

i� Yt ⊥ (Xt−1 , . . . ,X0) |Yt−1 , . . . , Y0, i.e. where Yt and the pre-t history of X,

(Xt−1 , . . . ,X0) are conditionally independent given the pre-t history of Yt alone.

Note that in the context of time series analysis the processes Yt and Xt need not

refer to ‘events’.�e concept has been explored and extended in a series of papers by

Florens and Mouchart (1982, 1985).
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�e condition of local (in-)dependence is asymmetric in the two processes.

Indeed, in the example of two duration variables Yt = 1[T1 ≤ t] and

Xt = 1[T2 ≤ t], the process Xt−1 may enter as a time dependent
covariate in the prediction (stochastic hazard) of the other, but not the

other way around.�is is in accord with the basic asymmetry of causal

relations and also respects the notion of ‘cause precedes e�ect’.

�e condition of local autonomy is introduced to ensure a certain au-

tonomy of the two processes. When satis�ed it is possible to envisage a

change in the behaviour of one process a�er time t without a change

in its local relation to the other process or a corresponding immediate

change in the other process. �is should rule out processes that are

merely related by de�nitions or ‘rules of the game’. Consider for example

two gamblers throwing dice. Denote by X1 (X2) the result of a throw

of the �rst (second) player. If the throws are independent, then also

the prediction errors are independent and X1 and X2 are autonomous.

But one may also look at the result of the play, a win, a draw, or a loss,

for each player. Let Y 1 = 1[X
1 > X2]− 1[X

2 > X1] ∈ {−1, 0, 1}.�en
Y2 = −Y 1 and the processes are clearly not autonomous.
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5.5. Statistical Methods

An empirical strategy to show local dependence of Y on X at t is then to

show that the prediction process UY
t with respect to the joint history of

the process is a non-constant function of Xt−1, . . . ,X0. In the case of
simple duration models, VY

t = 1[Y ≥ t]λθ(t;Xt−1, . . . ,X0).�at is, the
process X appears as a time-dependent covariate in the hazard function

for Y at t, which is assumed to be parameterised by some θ ∈ Θ. One
therefore needs to show that the pre-t history of X changes the hazard of

Y at t. O�en it is possible to factor the likelihood of (X, Y)t for θ in such

a way that only the part UY
t (Yt |Yt−1,Xt−1, . . . , Y0,X0; θ) �gures in the

computation of statistics.�is is called a partial likelihood for θ since it

does not depend on the speci�cation of the joint distribution of (Y ,X)t .

In particular, a model for the covariate process X need not be speci�ed.

�is allows for an attractive strategy to demonstrate local dependence

since one can concentrate on the model for the conditional prediction of

Y given X without worrying about the possibly complicated nature of X.

In the context of counting process methods, Slud noted (1992: 97):

... that inferences could be made successfully without para-

metric speci�cation of any probabilistic objects other than

the failure counting process intensities. �e latter point

of view is especially liberating in problems with randomly

time-varying covariates, where one is usually interested

only in the e�ect of the covariates on the hazard of failure

and where one can usually not provide convincing models

of the stochastic variation of the covariates over time.12

5.6. Events and their Descriptions

�e formal frame of causal reasoning developed above has many merits

with regard to dynamic formulations of causality. Despite some con-

ceptual shortcomings in the reformulation of the ‘constant conjunction’

12
Arjas/Haara (1984), Slud (1992) and Greenwood/Wefelmeyer (1998) have studied the

statistical properties of factorisations with time-dependent covariates.
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condition it may readily be used to formulate claims of (non-) causality.

As it stands, it relates to stochastic processes, i.e. collections of random

variables. O�en, statisticians are satis�ed with formal references to

variables as causes and e�ects, especially when arguing in the tradition

of structural equation models. E.g. Pearl and Verma (1992: 91) speak

of “stable causal mechanisms, which on a microscopic level, are deter-

ministic functional relationships between variables, some of which are

unobservable.” But neither variables nor what they stand for are generally

admitted as causes or e�ects by social scientists. Background variables

like sex or religion are not considered to be (representations of) possible

causes.

One further prerequisite for the applicability of the above formalism in

the social sciences is therefore a restriction on the entities that may be

causes or e�ects. As Bunge (1963: 72, his italics) puts it, “there can be

no causal links among states, nor among any other systems of qualities.

States are not causes, but simply antecedents of later states. To regard

states as causes amounts consequently to committing the fallacy of the

post hoc, propter hoc.” �us neither states nor things nor qualities of

things can be causes or e�ects, only events can.13

But what are events? Hacker (1982: 17) says that “[e]vents, unlike objects,

are directly related to time.�ey occur before, a�er, or simultaneously

with other events. �ey may be sudden, brief or prolonged. . .None

of these temporal predicates apply in the same way to objects.” But

this special connection with time implies a di�culty for probabilistic

theories of causality: “it is manifest that no event ever happens more than

once, so that the causes and e�ects cannot be the same in all respects.”14

�erefore one cannot speak about the constant conjunction of cause

and e�ect unless it is possible to also speak of kinds of events. While an

event is something unique, events of the same kind can occur several

times. But how can one de�ne kinds of events? One possibility would be

to delete some temporal descriptions from propositions about events.

Such propositions might then be said to be about kinds of events.15�e

13
But see e.g. Mellor (1995: 129), who argues that “causation mostly links facts. . . . So

no causation would be lost even if there were no particular events.”
14
Maxwell, cited in Bunge 1963: 50

15
See e.g. Sche�er 1994.
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obvious shortcoming of this approach is that it concerns propositions,

not events, and propositions do not qualify as causes, at least not in a

realist account of causality.

Events presumably are not linguistic entities; like trees and

molecules, events can be talked about, referred to, and

described but they are not themselves statements, sentences,

descriptions, or any other kind of linguistic units. Nor are

events propositions; propositions are supposed to be abstract

entities, whereas events are spatio-temporally bounded

particulars. (Kim 1969: 198.)

An alternative is to relate events to changes in things. An event

is a ‘movement’ by an object from the having of one to the

having of another property, where those properties belong

to the same quality space, and where those properties are

such that the object’s successive havings of them implies

that the object changes non-relationally. (Lombart 1986:

114)16

�is �ts nicely with the proposed mathematical formalisation: �e

random variables Yt refer to properties of things.�ese properties are

represented by a de�nite set Y , the ‘property space’. And events are
changes in things represented by variables, {Yt − Yt−1 6= 0}. Events
occur at a de�nite point in time.17 Kinds of events may than be described

by certain transitions between elements of the set Y , or as classes of such
transitions.

But this approach may be at once too general and too speci�c to serve

its purpose as a general guideline in the social sciences. It may be too

speci�c because the translation of ‘event’ into ‘change of property’ does

16
He argues that all events should be treated in this way.

17
Since an event in general takes some time, it seems inappropriate to say that they

occur at a point in time.�is creates considerable problems for a formalisation of

time sequences, especially if it is based on the continuous-time theory of stochastic

process. Hamblin argues that “the time-continuum, modelled on the real numbers,

is richer than we need for the modelling of empirical reality.” (cited in Galton 1984:

19)
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not capture the most general idea of event playing the role of an e�cient

cause. Parties, strikes, wars etc. are certainly events, and they generally

are considered to have causal e�ciency. Still, the notion of an event as a

change of a property can only be adapted to such events at the price of

some distortion of the event under study.

On the other hand, the notion of events and their probabilistic interde-

pendence in time does still not capture the realist notion that causes

should re�ect mechanisms (Sørensen 1998), capacities (Cartwright 1989)

or productivity (Bunge 1963). Events as changes of state may not involve

mechanisms.�ey may only be sequences like sunset a�er sunrise, so

that the concept of events as changes of properties of things is too general.

5.7. Agents, Actions, and Events

In the words of Bunge (1963: 46, his italics), “the reduction of causation to

regular association, as propounded by Humeans, amounts to mistaking

causation for one of its tests . . . . What we need is a statement expressing

the idea—common to both the ordinary and the scienti�c usage of the

word—that causation, far more than a relation, is a category of genetic

connection, hence of change, that is a way of producing things, new if only

in number, out of other things.” In statistical discussions, the exhibition

of productivity of proposed causes is o�en side stepped. Instead, many

accounts view causality through an analogy with planned, isolated

experiments. Experiments are seen as a deliberate manipulation of causes

with the goal to provide a magnitude of their e�ects.�is magnitude is

perceived as the di�erence between the value of a measurement on a

subject in the presence of the cause and the value of the measurement on

the same subject in the absence of the cause.�e di�erence can never be

observed and so relates to a counterfactual question.�e theory therefore

involves constructions of ‘similar worlds’ to identify such magnitudes.18

18
See Holland (1986), Pratt/Schlaifer (1984), Dempster (1990), Rubin (1990),

Galles/Pearl (1998), Pearl (1999) and Robins (1999) for discussions and re�ne-

ments.�ese approaches are closer in spirit to J.S. Mill’s attempts to codify methods

of causal inquiry (Holland 1986: 950) than to elaborations of Humean criteria for the

existence of causal links.
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Since all the criteria for deriving magnitudes of e�ects rest on empirically

untestable assumptions, they are met with scepticism from statisticians

(e.g. Dawid 2000) and sociologists alike. Furthermore, counterfactual

accounts are deterministic in that they refer to what would necessarily

happen in the presence or absence of the cause. But such a deterministic

outlook cannot easily adapt to the variability generally observed in the

social sciences.

On the other hand, the insistence on the experimental analogy points

to the importance of action based interpretations of causality. In fact,

it is sometimes suggested that causality should be de�ned in terms of

human actions and their impact on other humans. VonWright (1972:

Chap. 2.9) distinguishes between doing something and bringing about

something and goes on to de�ne P as a cause relative to Q, and Q as an

e�ect relative to P, if and only if by doing P one could bring about Q,

or by suppressing P one could prevent Q from happening. Such a view

partly reconciles Bunge’s search for productivity with counterfactual

analysis: �e capacity of a human agent to act and thereby to bring

about certain events can hardly be denied. And this capacity includes

the possibility of deliberately abstaining from that action. But the power

to act and thereby to bring about an event is normally understood to

mean that, counterfactually, if the agent would not have acted as, in fact,

he did, then the event would not have happened.19

Many social phenomena are directly based on actions of individuals

or organisations (see e.g. Blossfeld/Prein 1998). As far as sociology

is concerned with these phenomena, there is no need to refer to an

omnipotent experimenter or to seek rescue in designs that—always

imperfectly—mimic the experimental setup of other sciences. Within

these �elds, sociology does not deal with associations among variables

per se, but with events brought about or done by acting people. And

claims for causal connection among events brought about by agents can

be based on the causal capacities of the agents themselves.

19
Kelsen (1982) argues that the notion of cause and e�ect originated from idealised

human action and reaction in society, that its origins lie in the projection of crime

and punishment, guilt and retaliation, onto nature. An action based reasoning about

causal connection would therefore be close to the ancient origins of the idea, but

without projecting human capacities on God or nature.
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It is tempting to seek the causal connection directly in sequences of

actions. But actions should not be treated like events that enter into causal

relations as causes and e�ects.�ere cannot be a similar connection

between actions. Otherwise, as Alvarez/Hyman (1998) point out, one

would be led to the idea that agents cause their actions, that actions are

events caused by agents. But then “an agent who performs one action

performs an in�nite series of actions: he causes his action; he causes the

causing of his action; he causes the causing of the causing of his action;

and so on.” (p. 222) We will therefore say that agents cause the result of

their action, that they bring about events and that causal connection

exist, not between actions, but between events done or brought about by

actions.

As Bach (1980) points out, the distinction between actions and events also

relieves us from specifying times and places for actions. “Once we have

speci�ed all the relevant events in the act sequence and have described

them as stemming from amental episode in the way appropriate to action,

we have said all we need to say about which actions were performed and

what the agent did.” (p. 118)

It is sometimes argued that since human actors act intentionally and

behaviour is goal-oriented, the intentions or motives of actors to bring

about some e�ect in the future causes the actor to behave in a speci�c

way in the present. Marini and Singer (1988: 377) say that

[a] major problem with use of the criterion of temporal

order in which behavior occurs, or in which events resulting

from behavior occur, is o�en not a good indication of causal

priority. Because human beings can anticipate and plan the

future, much human behavior follows from goals, intentions,

and motives; i.e., it is teleologically determined. As a result,

causal priority is established in the mind in a way that is

not re�ected in the temporal sequence of behavior or even

in the temporal sequence of the formation of behavioral

intentions.

But the connection of goals, intentions, and motives to acts and events

seems to be much looser than Marini and Singer suggest. In fact, von
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Wright (1972: Chap. 3) argues that in the ‘practical syllogism’ of the form:

a) person P wants to achieve Y ; b) P believes that Y can be brought about

when he is doing X; c)�erefore P tries to do X; the antecedences a)

and b) cannot be understood as causes of the person’s doing X. Based

on observations of goals, intentions, and motives one may try to give

a teleological explanation of behaviour. But such explanations are not

causal, and they can coexist with causal connections between events

that are done and brought about by agents.�e fact that social agents

can behave intentionally, based on expectations, does not reverse the

time order underlying causal statements.�e explanandum envisaged by

Marini and Singer—why a certain person acts as she chooses to act—is

simply di�erent from the explanandum of causal analysis.

5.8. Conceptual Problems

In summary, we propose to investigate causal relations among events

employing the concepts of local independence and local autonomy in

those cases where one is concerned with events brought about or done

by agents. However, the execution of such a program is hampered as

well by technical as by philosophical problems.�e latter concern the

basic concepts of independence and autonomy themselves and we will

exhibit some of the more disturbing aspects below.

5.8.1. Local Independence

In his “Foundations of the�eory of Probability” Kolmogorov (1950: 9)

says that

one of the most important problems in the philosophy of

the natural sciences is—in addition to the well-known one

regarding the essence of the concept of probability itself—to

make precise the premises which would make it possible to

regard any given real events as independent.
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�e same applies, we think, to the concept of local independence or

similar attempts to provide models for causal independence. Local

independence cannot be demonstrated from observations alone.20 Even

though conditional independence as well as local independence are not

empirical concepts, it does not follow that they cannot be used in an

empiricist program for the assessment of causality. �ey are needed

as regulative ideas in modelling. �e role of local and conditional

independence is to suggest the kind of relations one needs to take into

account, but not to describe the likely results of an investigation.

Second, observed relations between stochastic processes generally de-

pend on the number of processes that are considered. If a further process

is included, the local dependence between all processes may change.

�e theoretical background on which an analysis is grounded will to a

certain extent determine the variables and histories to be considered in

an analysis. In the words of Suppes

It is important to emphasise . . . that what is to be taken as

background or �eld will always be relative to the conceptual

framework under discussion. In one theoretical approach

to the causal analysis of phenomena, the �eld will include

only the consideration of macroscopic bodies and their

characteristics, but in another, it will go deeper and consider

as well atomic objects and their properties. (1970: 74)

In this sense, there may exist several valid causal analyses based on

di�erent sets of stochastic processes. Arguments for the exclusion of

certain processes will partly rely on ideas of causal non-dependence,

which can be translated into local independence within the mathematical

model. On the other hand, the theoretical background will rarely be

speci�c enough to determine exactly what processes are to be considered.

In consequence, results cannot be expected to be unique.

�ird, and perhaps most disturbingly, the probabilistic concept of local

independence does not fully conform with most notions of ‘explana-

20
A similar point has o�en been made in connection with the role of conditional

independence in structural equation models. See e.g. Sobel (1997) and Holland in

his discussion of Clogg (1992: 199).
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tions’21:

• �ere may be two di�erent histories H1 = {Yt−1,At−1, . . .} and
H2 = {Yt−1, Bt−1, . . .} that make the respective predictions for Yt

locally independent of {Xt−1, . . . ,X0}, showing that Xt is at most

an indirect cause of Yt. But neither H1 ⊆ H2 nor H2 ⊆ H1 need

to hold so that explanations (of spuriousness) are not unique.

• Perhaps even worse, it may happen that Yt is locally indepen-

dent of Xt with respect to a history H1 = {Yt−1,At−1, . . .}, but
that it ceases to be so with respect to a larger history, say H2 =

{Yt−1,At−1, Bt−1 . . .}. Including more information for the predic-
tion of Yt might destroy local independence.�e work of Clogg

and Haritou (1997) contains some valuable examples.

• Finally, local dependence is not antisymmetric. Both processes

may be locally dependent on each other. In this respect, the

concept is weaker than many accounts of causality would require.

On the other hand, if X and Y are mutually locally independent,

then under slight regularity conditions (including uncorrelated

innovations)X andY are stochastically independent (e.g. Schweder

1979: 404). But stochastic independence is a much stronger

concept than causal unrelatedness would seem to require.

5.8.2. Autonomy

�e principle of local autonomy was introduced to ensure that the pro-

cesses under consideration are not just expressions of a sole underlying

process, so that it is meaningful to assess the properties of one process

without regard to the other.�e condition is formulated in terms of

the uncorrelatedness of the martingalesMX
t andM

Y
t , expressing the

intuitive notion that what happens next to X, say, should not be directly

related to what happens to Y at the same time.�e condition excludes

two stochastic processes that are functionally related. In that case it

may well be that the �rst process is locally independent of the second,

21
See Dawid 1979a, 1979b, 1980 for some examples concerning the ‘unexpected’

behaviour of conditional independence relations.
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while the second is locally dependent on the �rst, but it would contradict

common sense to say that the �rst process is a cause of the second.22

But the condition fails in deterministic situations: Granger (1969: 430)

used two deterministic processes as an example: If Yt = bt and Xt =

c(t + 1), then VY
t = b (independent of X0, . . . ,Xt−1). But one can as well

write VY
t = (b/c)(Xt−1 − Xt−2), which is dependent on X0, . . . ,Xt−1.

Certainly one would not like to call Xt a cause for Yt even though the

martingales corresponding to the two processes are trivially uncorrelated.

Second, in the context of counting process models, the assumption of

autonomy is o�en replaced by the assumption of no common jumps of the

two processes.�is in turn implies that the martingalesMY
t andM

X
t are

uncorrelated and thatMX
t M

Y
t is again a martingale (Fleming/Harrington

1991: 75).�e condition of no common jumps is o�en easy to handle,

but it may obscure somewhat the role of the condition. Schweder (1970),

who starts with a common (Markov–) process with state space X × Y ,
uses the assumption of no common jumps in X and Y explicitly as a

condition for the existence of processes that can formally be partitioned

into processes X and Y .

On the other hand, the condition of no common jumps is o�en used

for quite a di�erent purpose: It can justify the construction of partial

likelihoods. But the statistical considerations that lead to the use of

only UY
t (Yt |Yt−1,Xt−1, . . . , Y0,X0; θ) for likelihood construction and

statistical inference should be carefully distinguished from considerations

of the role of the two processes within a causal connection. If one is

only willing to specify UY
t (Yt |Yt−1,Xt−1, . . . , Y0,X0; θ) for statistical

purposes one cannot analyse or simulate the dynamics of the compound

process even if one might be willing to impute values for allXt .�is point

was stressed both by Strotz and Wold (1960) and Cox (1992). Solving the

estimation problem by concentrating on only a part of the system, even

if justi�ed, need not su�ce to answer causal questions.

22
See Aalen (1987: 188) for an example.
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5.9. Conclusions

�e discussions on causality, whether originating from a statistical

perspective or from the methodology of the social sciences, have only

rarely re�ected the philosophical insight that a causal connection is a

relation between events but not between variables, things, or qualities.

Similarly, an agent based theory of causes that suggests itself in many

parts of sociology was largely ignored in favour of counterfactual or

system theoretic accounts. We have argued here that an agent based idea

of causal connections between events can be supplemented by dynamic

descriptions of series of events. When series of events of di�erent kinds

are represented by autonomous stochastic processes, the absence of a

causal connection can be explicated by the concept of local independence.

�ese concepts should be useful at least in those areas of empirical social

research that are directly concerned with events brought about by agents.

We have not treated here a problem of central importance: the problem of

spurious causes and of confounding. While the dynamic characterisation

of series of events seems to allow for a better understanding and a more

�exible formulation of these rather intuitive concepts (e.g. Parner and

Arjas 1999), the variety of background conditions and situations generally

encountered in social research may well preclude a comprehensive

theoretical treatment of confounding. An examination of earlier attempts

of demonstrating non-spuriousness in sociology, similar to Goldenberg’s

(1998) article, will certainly enrich further theoretical developments.

5.10. Postscriptum

�e preceding paper argues for an approach to causality that characterises

causal relations as non-necessary relations between events brought about

by agents.�e non-necessity which has been advocated forcefully by

Anscombe (1971) and others, is here embodied in a probabilistic and

dynamic relation between events. And the notion of capacity (Cartwright

1989) or productivity (Bunge 1963) is in a social science context situated

in the causal capacities of agents.
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Although it was thought that this notion of causality, while rather weak,

would nevertheless provide a useful conceptual framework for at least

some parts of empirical social research, progress in the clari�cation of the

open problems indicated at the end of the paper has been very slow. Most

of the progress, however, is intimately connected with the main theme of

the present work, namely the understanding andmodelling of incomplete

data.�is is not too surprising given that the main technical ingredient

of the approach depends on dynamic and probabilistic descriptions of

events that did not yet occur.

But before I discuss some of the newer results it is necessary to give

at least a brief account of a very di�erent notion of causality that not

only dominates much of the discussion in philosophy, the social sci-

ences and in statistics, but is also strongly connected to the problem

of incomplete data, though in quite a di�erent way. �e approach is

commonly termed the counterfactual approach to causality. It aims to

make precise formulations like: Suppose both X and Y happen.�en X

is a cause for Y if, counterfactually, had X not have happened, then Y

would not have happened. One may similarly insert “is the case that” or

“obtain” or “occur” for “happen” in the above formulation and treat the X

and Y as facts or propositions or states of a�airs instead of events.�e

philosophical discussion of the counterfactual approach has explored

these and several other possible causal relata. But within the statistical

formulation (which is sometimes called the potential response approach)

a causal relation is a relation between variables and not one between

events or facts or propositions.

�e literature on this notion of causality has grown tremendously during

the past few years. To provide a reasonable overview of all aspects

of the discussions would require not only a departure from the main

arguments of the previous paper but also the introduction of further

technical machinery. It should su�ce here to mention a few books

and review articles that take up most of the current topics discussed

in conjunction with this notion of causality. �e potential response

approach was presented by Pearl (2000). His book features several

possible approaches within the counterfactual tradition in econometrics

and the social sciences. A much more concise discussion is given in his
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review from 2003 and a recent update is Halpern and Pearl (2005). Berk

(2004: Chap. 5) provides a non-technical exposition of the statistical

aspects. Cartwright (1999) and Woodward (2003, 2004) discuss some

philosophical issues. A particular feature, the causal Markov condition,

is discussed in a series of articles by Hausman and Woodward (1999,

2004), Steel (2005a, 2006a,b), and Cartwright (2002, 2006). Dawid

(2000, 2004, 2006) criticises many aspects of the potential response

approach from a (Bayesian) statistical view, while Freedman’s book (2005)

assembles many of his previous critical discussions from a frequentist

point of view. Kluve (2004) tries to formulate an account that brings the

potential response approach closer to the philosophical counterfactual

account. Hoover (2001) presents a “structural” account of causality

in macroeconomics which relies heavily on variables connected by

structural equations while criticising other aspects of the potential

response approach. Spirtes (2005) is a follow up.�e potential response

approach is now predominant in medical statistics and epidemiology

as well. Greenland and Brumback (2002), Greenland (2004, 2005b),

Phillips and Goodman (2006), Hö�er (2005b, 2006), Hernán (2004) all

argue for the use of counterfactual arguments and the potential response

approach in particular, and compare it with some older methodologies.

Lipton and Ødegaard (2005), in contrast, warn against an overemphasis

of causal concepts in epidemiology. In the social sciences, the potential

response approach has also gained much in�uence. See e.g. Gangl and

DiPrete (2006) for a review.

�e form of the counterfactual approach most o�en invoked in statisti-

cal analyses directly posits (statistical or random) variables as causal

relata. It therefore allows a direct connexion with classical statistical

methodology and in particular to methods developed for incomplete

data.�e connexion, very brie�y, is this: Let X denote a ‘cause’, i.e. a

random variable with values in {0, 1}. Also, let (Y0, Y1) denote a pair of
random variables de�ned on a common probability space with X, say

Ω.�ey will serve to represent ‘e�ects’ of the ‘cause’ X.�us, there is a

function

(X, Y0, Y1) : Ω −→ {0, 1} × Y × Y

�e interpretation is that Y0 is ‘observed’ if the ‘event’ {X = 0} ‘occurs’,
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while Y1 is ‘observed’ if the ‘event’ {X = 1} ‘occurs’.23 Note that the
distribution of Y0 is not the conditional distribution of some variable

Y given the ‘event’ {X = 0}. Y0 is de�ned (‘exists’) whether or not
{X = 0} ‘occurs’, and the same applies to Y1.�e pair (Y0, Y1) always
‘exists’ jointly.24

Identifying causal relata with (statistical or random) variables and adopt-

ing the language of counterfactuals (including closest possible worlds

etc.), the statistician can proceed using statistical techniques developed

for incomplete data problems. It is stipulated that observations are

coarsened versions of the triple (X, Y0, Y1) so that ‘observations’ are

given by the coarsened variables

(X, Y∗) : Ω −→ {0, 1} ×
(
(Y × {Y}) ∪ ({Y} × Y)

)
I.e., one either observes Y0 (if X = 0) or Y1 (if X = 1) but never both.

Now the ‘e�ect’ of the ‘cause’ X (or X(ω) or X(ω, u) etc.) is de�ned to be

some function of the tupel (Y0, Y1). Hence, the "‘fundamental problem

of causal inference"’ (Holland 1986: 947) arises: If the function depends

23
�e literature on probability theory generally calls the set {X = 0} = {ω ∈
Ω |X(ω) = 0} an ‘event’. But the classical notion of sets is a static notion. As such,
it neither captures dynamics nor does it easily lend itself to notions of agency or

autonomy.�e rather simplistic equivocation of sets with ‘events’ is used far too

o�en to make the statistical version of the counterfactual approach palatable. But

even when texts do not con�ate mathematical objects with real events and changes,

the obvious challenge for statistical analysis remains. It was the main di�culty that

prompted the current article.
24
An explication o�en used refers to possible worlds such that if in fact {Y0 = y, X = 0},
then some y′ is the value of Y1 in the possible world closest to the present one, i.e.

the possible world that is exactly like the present one except that X = 1. How ‘closest

parallel worlds’ are to be interpreted, what criteria there are for ‘close’, and in particular

in what sense these worlds ‘exist’, has always been a subject of intense philosophical

discussion. See Grayling (1982: 68–77) for a succinct review. I have to mention here

only that ‘existence’ in the context of possible worlds is no straightforward concept.

And the exposition of the concept becomes even more involved when the entities of

reference are random variables within a probabilistic model. In fact, most texts in

the statistical literature simply bypass these problems altogether. Nevertheless, they

sometimes seem to suggest that a rhetoric based on parallel or possible worlds and

reasoning about counterfactual outcomes is the only ‘scienti�c’ way to answer causal

questions (e.g. Phillips and Goodman 2006).
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on both Y0 and Y1 (as it should as a measure of departure from Y0 from

Y1), then its value is never ‘observed’.

�ere is, in this setup, only one obvious solution:�e function represent-

ing ‘causal e�ects’ is linear and the CAR condition holds:

(Y0, Y1)⊥⊥X

In that case,

E(Y1 − Y0) = E(Y1 |X = 1)− E(Y0 |X = 0)

using both linearity of expectations and independence. But the right

hand side can be ‘estimated’ by replacing expectations (means across

ω ∈ Ω) by means across the ‘population’ (means across u ∈ U).25

It turns out that the choice of any type of (statistical or random) variable

as causal relata creates a major problemwith this view.�is is particularly

visible in some sociological ‘applications’. 26 Two recent examples may

illustrate the ambiguities thus created. Harding (2003) published a

“counterfactual model of neighborhood e�ects” on dropping out of school

and on teenage pregnancy. A second example is the very detailed and

much appraised study of Epstein et al. (2005) on Supreme Court decisions

during ‘crisis’. But neither neighbourhoods nor crises do something

either to young women or to Supreme Court judges. It is plain that

young women’s living conditions do depend on their neighbourhoods

25
Even if the counterfactual account of causality is accepted, neither the restriction to

linear ‘e�ects’ nor replacing di�erences between Y1(ω, u) and Y0(ω, u) by some sort

of mean is necessitated by a counterfactual conception of causality. In an attempt

to capture di�erent ‘e�ects’ within di�erent subpopulations (or subsets of Ω) the

econometric literature introduced ‘heterogeneous’ e�ects (Heckman 2001, 2006,

2008, Heckman and Smith 1997, Heckman et al. 2006).�e extension is, however,

just obfuscating the original problem. Furthermore, see Fragankakis et al. (2007) for

a defence of the standard statistical view.
26
Shafer (1995: 556-558) also warns against mistaking (statistical or random) variables

for causes within his predictive probability tree approach. He gives examples where

variables, even if taken only as descriptions of causes, fail to be unique or are not

even de�ned within a part of a probability tree. Moreover, random variables and

statistical variables are con�ated quite di�erently across the probability tree. Rather

surprisingly, the statistical and applied literature does not pay much attention to

these technical di�culties.

270



5.10. Postscriptum

and the resources available from the neighbourhood. Similarly, Supreme

Court judges certainly are well aware of the political situation and will

react to it. But neither the neighbourhood nor ‘political crisis’ would

qualify as a cause in the analysis proposed in the present article:�at a

cause ought to be identi�ed with the event brought about by an act of

an actor. Now, even with a liberal interpretation of an ‘event brought

about by . . . ’ probably neither ‘crises’ nor ‘neighbourhoods’ would qualify

as causes.�ere is more to the examples than just a demonstration of

a di�erence in de�nition (or personal preferences): If ‘cause’ should

refer to more than just some ‘living conditions’ or ‘political climate’,

i.e. background information; if, in other words, ‘causes’ are not just an

assembly of arbitrary sets of (pre-) conditions but ensembles of states of

a�airs that necessitate the outcome, then neither a ‘political crisis’ nor

the neighbourhood qualify as causes: Judges do not necessarily judge

or vote ‘because’ of a ‘state of emergency’ (however de�ned by Epstein

et al., and whether felt or real). And young women act and behave as

they do, but not in an explicable way ‘because’ they grew up in a certain

neighbourhood (however ‘neighbourhood’ is de�ned by Harding).

�ere is, in fact, some resistance against the indiscriminant use of any

(statistical or random) variable as a ‘cause’. Heckman in his review (2006)

distances himself from some aspects of the statistical literature on the

ground that it relies decisively on the analogy with experimental designs:

One theme developed in my paper is that major limitations

hamper the statistical treatment e�ect literature in answer-

ing important social science questions.�ese limitations

are not surprising since the statistical treatment e�ect litera-

ture is an o�shot of the experimental design literature in

biostatistics. My essay shows that “technical” assumptions

invoked in the statistical treatment e�ect literature have

unappealing implications for social science. (2006: 138)

However, Heckman’s review does not depart from the rest of the sta-

tistical literature in that the questions and models he proposes refer

to counterfactual measures based on the joint distributions of a set of

random variables plus the idea that the values of some of the variables

can be manipulated. In the contrast to the all embracing approaches
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of Harding and Epstein et al. (where nearly everything can become a

‘cause’), the ‘manipulations’ envisaged by Heckman are basically the

implementations of certain policies. Furthermore, he advocates that the

relevance of CAR-type ‘assumptions’ ought to be judged in the context

of (economically or sociologically) reasonable, relevant, and explicit

models of self-selection, a requirement that echoes the requirement of

Neyman cited in Chapter 3.

Another important di�erence of this literature to the ideas presented

in the present article is that dynamic aspects are central to the article

but basically absent in practically all suggestions derived within the

counterfactual approach.27 In contrast, much of the classical philosophi-

cal literature always concentrated on events as the relata of causes and

therefore relied on dynamic concepts. Even though a few philosophers

have taken up the clari�cations achieved within the statistical discussion,

the impact of philosophers and philosophically informed discourses on

the developments within statistics has been minor.28

Sociologists o�en claim another distinctive feature of causes from mere

conditions, namely ‘mechanisms’.�e ‘mechanisms’ envisaged are how-

ever as abstract (or elusive) as the ‘selection processes’ stressed in the

economic literature. To take a recent example, Ní Bhrolcháin and Dyson

(2007), discussing the role of causation in demographic research, cite

as diverse ‘mechanisms’ as astrological conjunctions and famines as

qualifying as ‘mechanisms’ ‘causing’ changes in total period birth rates

and other aggregates.29�e tendency to extend the notion of ‘mechanism’

beyond its normal use in order to make it a distinguishing feature of

causality within the social sciences seems to be at least as far fetched as

27
Whether authors embrace counterfactual concepts or not, the statistical literature

is rather silent with regard to dynamics and models of change. �e few recent

exceptions are Lok et al. (2004), Bray et al. (2006), Aalen and Frigessi (2007),

Neugebauer and van der Laan (2006a,b), Neugebauer et al. (2007), and Moodie et al.

(2007).
28
See in particular Cartwright (2002, 2006), Hall (2004, 2007), Hausman and Wood-

ward (1999, 2004), Hausman (2005), Steel (2005a,b, 2006a,b), and Woodward (2003,

2004) for contributions from philosophers or philosophically inclined statisticians.
29
On the rather undi�erentiated use of the term ‘mechanism’ and its rami�cations see

the volume edited by Hedström and Swedberg (1998) and the articles by Sørensen

(1998), Machamer et al., Norkus (2005), Opp (2005), Weber (2007) and Steel (2007).
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the similar strategy based on self-selection. In any case, the aspirations

of most proponents of such a distinction to create a condition as general

as possible (sometimes even to comprehensively cover all problems of

sociology simultaneously) makes all such e�orts rather pointless. In

fact, the tendency to embrace nearly everything that can be described

at all as a possible mechanism runs counter to any reasonable e�ort to

distinguish coincidences, circumstances, and conditions from actions

and events.

A careful review of the recent literature would need to distinguish the

‘mechanism’ idea from an argument based on ‘manipulation’, where the

latter is mainly based on similarities to ‘experiments’.�e latter view

has been advocated mainly by Pearl (2000, 2003).30 It is pursued in

much of the current literature on ‘evidence based medicine’, ‘e�ects’ of

labour market regulations and programs, etc.31 Since not even the much

cited recent works of Heckman helped to draw the distinction between

‘experiments’ and a reasonable analysis of self-selection processes (conjec-

tured or known, observed or unobserved, random or �xed), it may be

permissible to ignore this rather small di�erences.

However, the approach based on analogues of ‘experiments’ or ‘manipu-

lations’ or respective relations between inputs and outcomes mediated by

‘mechanisms’ might seem to be close to the agent based dynamic concept

proposed in this paper. Albeit apparent similarities, the consequences of

the di�erent formulations are profound. A manipulation/mechanism

etc. might simply involve the daily application of a certain amount of

drug a. But this may be accomplished in a variety of ways: Allowing a

certain group of people to swallow a pill of a certain makeup, injecting a

certain amount of the same substance to every one in a group (with or

without his or her consent), or designing an ‘experiment’ that chooses the

‘treated’ patients by some randomisation device. Advocates of this form of

‘experiment’ (the ‘gold standard’ in epidemiology and in studies of ‘risks’)

probably assume that people assigned to either treatment or control will

30
See also the detailed discussion in Halpern and Pearl (2005).

31
See Lindley (2002) for critical remarks from a Bayesian point of view and Hack-

ing (1988) for illuminating background information on the origins of statistical

‘experiments’.
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follow henceforth the prescription given to them without hesitation,

or thought, or consideration of intermediate results of the ‘experiment’,

or their own considerations, their personal situation, discussions with

relatives and friends, or even perceived well-being.�at this is wrong in

most circumstances of practical importance just reiterates Heckman’s

critique in that an evaluation of ‘policy interventions’ must take into

account a reasonable (probabilistic) model of self-selection.

In consequence, it seems unhelpful to insist on the pivotal role of ‘con-

trolled experiments’ as a a gold standard a�er ‘adjusting’ results somehow

based on models of self-selection and similar processes. Instead, the

whole idea of a �xed, though unknown ‘e�ect’ discernable from idealised

‘experiments’ should to be discredited. 32

Even thoughmost of the statistical literature focuses on the counterfactual

approach to causality, there has been some progress along the lines of

problems indicated in the �nal section ofmy article. In particular, Didelez

(2007, 2008) discusses the de�nition of local independence and Aalen

and Frigessi (2007) make a few helpful comments on the concept of

autonomy. Geneletti’s contribution (2007) provides a refreshing view of

a non-counterfactual view on causality.

32
�e literature on ‘causal e�ects’ pursuing the pretended ‘gold standard’ of randomised

experiments is burgeoning. But only a tiny fraction of examples provided by that

literature in the social sciences stands up against its own proclaimed aims. Even

twin-studies (o�en invoked to provide a basis for judging ‘causality’ unambiguously)

are probably tainted by self-selection since identical twins are more frequent with

older couples (and higher education, and . . . ).
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6

A Non-parametricMean

Residual Life Estimator. An

Example fromMarket Research

6.1. Summary

�e mean residual life (mrl) function dynamically describes the average

time to an event, depending on the time since the previous event. It

provides a forecast in parallel with the development of the underlying

process. From a theoretical point of view, the mrl characterises the

distribution of the process completely, but in contrast to other character-

isations like the hazard rate, it has a direct interpretation in terms of

average behaviour.

We use Kaplan–Meier integrals (weighted averages of residual times) to

construct a nonparametric estimator of the mrl. We use results from

Stute (1995) and Yang (1994) to describe the asymptotic behaviour of this

estimator and derive an approximate variance formula.

We present a small simulation study and apply the estimator (and the

variance formula) to data pertaining to purchase time behaviour from

the Homescan Panel™, A. C. Nielsen, Germany.
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6.2. Introduction

�e mean residual life (mrl) function dynamically describes the average

time to an event, depending on the time since the previous event. As an

important example for functionals of the Kaplan–Meier estimator it has

been studied by many authors, e. g., Gill (1983), Gijbels and Veraverbeke

(1991), Yang (1994) and Stute (1995). From a theoretical point of view,

the mrl characterises the distribution of the process completely, see

e.g. Shaked and Shanthikumar (1991).�e mrl function can therefore

be used in model formulation just as densities or hazard functions

are. �e mrl function is de�ned as a conditional expectation of the

time to an event given that that time is larger than a given value. Its

computation thus involves integrals over unbounded intervals of the

real line. While conditional expectations are easily interpreted and

o�en the object of immediate interest in applications, the fact that

integrals over unbounded domains are involved severely hampers the

analysis of estimators in the presence of censoring.�is issue has been

discussed extensively by Stute and Wang (1993), where a strong law of

large numbers is given for such functionals. Instead of integrating with

respect to the cumulative hazard rate – as was done in previous work –

the authors use integrals with respect to the distribution function of the

underlying random variable. Along the same lines, Stute (1995) provides

a central limit theorem in this situation. A crucial role is played by the

Kaplan–Meier weights, see Stute and Wang (1993: 1593) and Stute (1995:

423), respectively.�ese quantities generalise the well-known weights

for non-parametric estimation in sampling theory, where the inverse

inclusion probabilities are used as weighting factors. In the presence of

independent censoring, however, the suitable weights are stochastic and

vary between the observations.

6.3. An Example fromMarket Research

A central goal of market research is to describe the market performance

of ”fast moving” consumer goods (fmcg).�ose are products which

are perishable or quickly used up, like food or detergents in contrast to
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cars, washing machines etc.�roughout this paper, we primarily have

fmcg in mind when we talk about products. Both manufacturers and

retailers have a strong interest in identifying the more or less successful

items of a product class (pc). One way of doing this is to collect data on

the purchase behaviour of households. Speci�cally, we may observe the

purchase acts of the participating consumers for a pc of interest during a

�xed period, say one year. We call the duration between two consecutive

purchase acts by the same household an interpurchase time (ipt). As a pc

consists of several items, di�erent types of ipt occur: On the aggregate

level, we have the time between two purchases in the pc, while for each

product, there is also an item-speci�c ipt starting and ending with a

purchase of the speci�c article.

In order to reduce problems of dependencies between observations

we use only one ipt of each type per household in the sample. When

interpreting the data, we also have to be aware of possible censorings.

�ey occur at the end of the observation period, in case no repurchase

has taken place by then.

Statistical inference concerning durations falls into the realm of survival

analysis, where the most common quantity is the hazard rate. In this

paper, however, we will focus on the mean residual life function (mrl)

instead: Denote by T the random variable describing the length of the

ipt and by F its cumulative distribution function.�en the mrlm(t) at

some time t equals the average remaining time to repurchase, given this

event has not yet taken place:

m(t) := ET(T − t | T > t) =

∫∞
t

u− t dF(u)

1− F(t)
(6.1)

We will discuss the mrl in more detail in Section 6.4. For the moment,

we only note that the mrl is a conditional expectation and thus describes

the mean behaviour of consumers.�is feature makes it an interesting

quantity for traditional marketing, where it is impossible to focus on

speci�c, single consumers and one has to deal with the whole group of

households instead. As an illustration, we present data pertaining to

purchase time behaviour from the Homescan Panel™ of A. C. Nielsen,

Germany. It is based on approximately 5,800 households surveyed in
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2001. We focus on two items of an anonymised pc. Central facts of this

pc and the two selected items, ’focus’ and ’competitor’, are given in the

next table:

penetration market share proportion of

repurchasing HH

Class 0.58 - 0.78

Focus 0.03 0.014 0.50

Comp. 0.14 0.077 0.61

In words, 58% of the German households purchased the pc in 2001, 3%

bought the focus item and 14% bought the competitor item at least once.

With market shares of 1.4% and 7.7%, neither of the two products has an

overwhelming in�uence on the development of the pc. On the aggregate

level, censoring occurred in 22% of the observations. On the item level,

censoring is rather heavy, 50% and 39%, respectively. In Section 6.5, we

present a non-parametric estimator for the mrl in this situation, see (6.6).

Applied to our data truncated at τ∗ = 365 days1, the resulting curves are
given in Figure 6.1.

On a qualitative level, the estimated mrls suggest the following inter-

pretation:�e mrl of the pc serves as a reference. To some extent, it

provides information on how the average consumer purchases the typical

item of this pc. �e mrl of the competitor stays rather close to the

pc’s mrl.�is implies that its consumers perceive this speci�c item to

’represent’ the pc: whenever the average consumer repurchases the pc,

the customer of the competitor’s item repurchases this speci�c product.

Clearly, this makes the competitor a successful article within the pc.

1
Truncation to [0, 365] means that we used only repurchase times that happened

within a year. We are thus looking at the conditional mrl given that repurchase

happened within a year. Purchase data from the panel households is available for

the following months as well, if we neglect the slight but inevitable panel mortality.

Consequently, one might aim at extending the truncation time τ∗, thus diminishing

the loss of information. On the other hand, for a household to contribute to the

actually used purchase data, it is required that its overall reporting quality exceeds a

certain level over the whole period in question. As a result, extending the relevant

observation period leads to a decreased sample size presumably o�setting any

bene�ts.
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From the focus item’s point of view, the situation is considerably less

comfortable: Approximately two months (56 days) a�er the last purchase

act, the average remaining time to repurchase of the focus item is 40

days longer than it is for the pc.

Figure 6.1.: Estimated mrl functions according to (6.6) for the data pre-
sented in Section 6.3. Solid: Product class. Dashed: Focus item. Dotted:

Competitive item.

To determine whether the di�erences between the estimated mrl func-

tions really support these arguments or merely occurred ’by chance’, we

have to introduce a stochastic model of our situation and estimate vari-

ances of the mrl estimates as well. We suggest several variance formulae

in Section 6.6 and evaluate their performance in section 6.7. Concerning

the real life data, it turns out that the corresponding estimations do not

render any di�erences between the mrls signi�cant.
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6.4. Mean Residual Life Function

�e mrl function de�ned in (6.1) determines the distribution uniquely.

If F is absolutely continuous one can compute the distribution function

from the mrl function by

1− F(t) =
m(0)

m(t)
exp

{
−
∫ t

0

1

m(u)
du

}
, (6.2)

see Shaked and Shanthikumar (1991: 614).�e mrl function can thus

be used as a characterisation of the distribution in the same way as the

density or the hazard function can.

As an example, consider a mrl function which is linear on some interval

I = [t1, t2]. For t ∈ I, the mrl thus has the form

m(t) = a · (t − t1) +m(t1),

wherem(t1) > 0 and a ≥ −1. In case a < 0, we also have to ensure that
t2 ≤ t1 − m(t1)

a
.

For a 6= 0, the distribution function on I then equals a Pareto distribution
scaled by F(t1):

F(t) = F(t1) ·
(
a · (t − t1)

m(t1)
+ 1

)− a+1
a

, t ∈ I

Speci�cally, if a = −0.5, the distribution function is linear and the
distribution on I is consequently uniform.

For a = 0, the distribution function on I is exponential:

F(t) = F(t1) · exp
(
− t − t1

m(t1)

)
�us, if the mrl function is given on the interval I we get the behaviour

of F restricted to I, and complete knowledge of F on I if F(t1) was

known. Note that both formulae simplify considerably in terms of ’local

coordinates’ F(t)/F(t1) and (t − t1)/m(t1).
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In the presence of censoring there may be a point in time a�er which

it is impossible to gather further information. Let τ be the least upper

bound on the period of observation.�en the best one can hope for is

to estimate integrals up to that point in time.�e de�nition of the mrl

function, however, requires an evaluation of the integrals to∞, not only
up to τ. Moreover, the truncation point τ is generally unknown (and not

easily estimable).

We will therefore consider to estimate

m∗(t, τ∗) := E(T − t |T ∈ (t, τ∗)) =
∫ τ∗

t
u− t dF(u)∫ τ∗

t
dF(u)

(6.3)

for some τ∗ ≤ τ.�is truncated mrl functionm∗ need not be related to
the mrl functionm in any obvious way. However,m∗ is still a conditional
expectation with an easy interpretation and important applications. More-

over, as a generalisation of (6.2), the truncated mrl function uniquely

identi�es the distribution function up to τ∗ through

F(τ∗)− F(t) =
m∗(0, τ∗)

m∗(t, τ∗)
exp

(
−
∫ t

0

du

m∗(u, τ∗)

)
(6.4)

To see this, note that for continuously di�erentiable (in t)m∗

∂m∗(t, τ∗)

∂t
=
∂

∂t

∫ τ∗

t
u− t dF(u)∫ τ∗

t
dF(u)

=

(
−tf (t)−

∫ τ∗

t

f (u) du + tf (t)

)
1

F(τ∗)− F(t)

+
f (t)

(F(τ∗)− F(t))2

∫ τ∗

t

(u− t)f (u) du

= −1 +m∗(t, τ∗) f (t)

F(τ∗)− F(t)

�us

− ∂

∂t
ln
(
F(τ∗)− F(t)

)
=
∂m∗(t, τ∗)/∂t + 1

m∗(t, τ∗)
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so that

F(τ∗)− F(t) = exp

(
−
∫ t

0

∂m∗(v, τ∗)/∂v |v=u
m∗(u, τ∗)

+
1

m∗(u, τ∗)
du

)
from which (6.4) follows by noting that the �rst fraction under the

integral is the logarithmic derivative ofm∗(u, τ∗).

6.5. Kaplan–Meier Integrals

With complete data an estimator of the mrl function is

m̂(t) :=

∫∞
t

u− t dFn(u)∫∞
t

dFn(u)
=

∑n
i=1(ti − t)1[ti > t]∑n

i=11[ti > t]
(6.5)

With censored observations it is natural to replace Fn by the Kaplan-Meier

estimator

1− F̂n(t) =

n∏
i=1

(
1− δ(i)

n− i + 1

)
1[z(i)≤t]

where zi = min{ti, ui} are the censored observations, δi = 1[ti ≤ ui]

are the censoring indicators and z(1) ≤ . . . ≤ z(n) are the ordered values

of the observed times while the δ(i) are the corresponding censoring

indicators. For a given upper limit τ∗, the equation (6.5) becomes

m̂∗(t, τ∗) :=

∫ τ∗

t
u− t dF̂n(u)∫ τ∗

t
dF̂n(u)

=

∑n
i=1(ti − t)1[ti > t]wi∑n

i=11[ti > t]wi
(6.6)

where the wi are the jump sizes F̂n(ti)− F̂n(ti−) of the Kaplan–Meier
estimator. Note that if the largest observation is censored we will not

force 1− F̂n to be zero a�er that observation.

In order to analyse the estimator (6.6) we propose a simple stochastic

model that will allow the calculation of approximate variances (within

that model, of course) and that might be used to gauge the performance
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of the estimator on real data sets. We will assume that the observations

arise from independent and identically distributed copies of the random

variables (T ,U), where T and U are independent and T has distribution

function F while U has distribution function G. �en 1 − H(t) =

(1 − F(t))(1 − G(t)) is the survivor function of the random variable

Z := min{T ,U}. We set δ := 1(T ≤ U) and let τ := inf{t | H(t) = 1}
be the least upper bound of the support of Z. In the following we will

assume that F is absolutely continuous while we allow for an arbitrary

distribution of G. Note, however, that Stute’s (1995) results are valid for

general F and general G, while Yang’s results (1994) allow G to vary with

the observations but requires absolute continuous F. Our restriction to

absolutely continuous F and identically distributed censoring times is

however o�en applicable and simpli�es the formulations considerably.

Extending the integrals with respect to F̂n up to τ requires delicate

considerations on the behaviour of F̂n near τ.�e point is well discussed

by Stute and Wang (1993) and by Gill (1994). We will here avoid an

explicit discussion by either truncating to τ∗ or by assuming τ =∞. In
the simulations we will use a distribution function F with a compact

support strictly included in the support of G.

6.6. Variance Formulae

�e weights in the formula for m̂∗ will in the presence of censoring
depend on all the censored observations preceding a given event time.

�e weights wi are therefore not independent random variables in our

model. �ere is, however, a general representation of Kaplan–Meier

integrals in terms of sums of independent random variables given by

Stute (1995: 425). Using that representation, standard results on sums of

independent random variables can be used to derive variances of the

estimator m̂∗. In the case of absolutely continuous F, the representation
simpli�es considerably and can be written as∫ ∞

0

ϕk(u) dF̂n(u)−
∫ τ

0

ϕk(u) dF(u) =
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1

n

n∑
i=1

∫ ∞
0

ϕk(u)− E(ϕk(T) |T > u)

1− G(u−)
dMi(u) + oP(n

−1/2) (6.7)

for k = 1, 2 and where

ϕ1(u) := 1[u > t](u− t) , ϕ2(u) := 1[u > t]

and where

Mi(t) := 1[ti ≤ t, δi = 1]−
∫ t

0

1[zi ≥ u]

1− F(u)
dF(u)

is the martingale for the counting process 1[ti ≤ t, δi = 1] with respect

to the standard �ltration (see the Appendix for a derivation).

�e representation gives among other results a variance formula via a

standard martingale argument (details are deferred to the Appendix):

Var

(∫ ∞
0

ϕk(u)− E(ϕk(T) |T > u)

1− G(u−)
dMi(u)

)
=

∫ ∞
0

(
ϕk(u)− E(ϕk(T) |T > u)

)2
1− G(u−)

dF(u) =: σ2k , k = 1, 2 (6.8)

�is formula was also derived via a direct argument by Yang (1994).

While the above formulae are useful in theoretical work, practical compu-

tations will also have to rely on a direct empirical counterpart of Stute’s

representation. We start from the ordered values z(i), i = 1, . . . , n and the

corresponding values δ(i) and ϕki := ϕk(z(i)). We then de�ne (assuming

no ties):

γi := exp

 i−1∑
j=1

1− δ(j)

n− j

 , i = 2, . . . , n, γ1 := 1

aki := δ(i)ϕkiγi , i = 1, . . . , n

bki :=
1− δ(i)

n− i

n∑
j=i+1

akj , i = 1, . . . , n− 1, bkn := 0
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cki :=

i−1∑
j=1

bkj

n− j
, i = 2, . . . , n, ck1 := 0

Finally, we set

Aki := aki + bki − cki , i = 1, . . . , n, k = 1, 2 (6.9)

Writing

m̂∗(t, τ∗) =

∫ τ∗

t
u− t dF̂n(u)∫ τ∗

t
dF̂n(u)

=:
Â1

Â2
(6.10)

we get an expression for the variance of the fraction using the delta

method:

Var
(
m̂∗(t, τ∗)

)
≈ Â21nσ̂22

nÂ42n
+

σ̂21

nÂ22n
− 2 Â1n

nÂ32n
Cov(Â1n, Â2n) (6.11)

where σ̂21 is the estimated variance of Â1 and σ̂22 is the estimated variance

of Â2.

6.7. A Small Simulation Study

�e variance approximations of the previous section can be implemented

in various ways. In this section we will use simulations to evaluate

some of the possible choices. To keep things simple, we use only the

exponential distribution with expectation 1 truncated to [0, 2] for F,

i.e. F(t) = (1 − exp(−t))/(1 − exp(−2)) on t ∈ [0, 2]. �e truncation
assures �niteness of all moments with respect to F and thus all regularity

requirements for the validity of the variance formulae are ful�lled. We

evaluate the mrl at 0.2, 0.5, 1.0 and 1.5. �e mrl at these points is

0.6435, 0.5691, 0.4180 and 0.2293.�e survival probabilities 1 − F(t)

at the evaluation points are 0.79, 0.55, 0.27, and 0.10. As censoring

distributions we use the exponential distribution with expectations 5 and

1 corresponding to censoring probabilities of 0.12 and 0.43, respectively.

285



6. A Non-parametric Mean Residual Life Estimator

�e corresponding expected proportions at risk are 0.65, 0.33, 0.10, and

0.02 using a censoring distribution with expectation 1, and 0.76, 0.49, 0.22,

and 0.08 using a censoring distribution with expectation 5. Sample sizes

are 200 and 1000. We use 1000 simulations for each of the combinations.

Table 6.1.: Simulation results for the mrl estimator

Experiment t=0.2 t=0.5 t=1.0 t=1.5

true mrl 0.6435 0.5692 0.4180 0.2293

n = 200, Min 0.4637 0.3561 0.1457 0.0020

U ' exp(1) Mean 0.6376 0.5628 0.4087 0.2199

Max 0.8173 0.7816 0.7404 0.4931

NA 0 0 0 30

Var (×102) 0.3130 0.4463 0.6818 0.7556

as. Var 0.2769 0.3667 0.5123 0.5139

n = 200, Min 0.5315 0.4427 0.2859 0.0747

U ' exp(0.2) Mean 0.6442 0.5703 0.4178 0.2296

Max 0.7486 0.7047 0.6058 0.3622

NA 0 0 0 0

Var (×102) 0.1534 0.1847 0.2046 0.1588

as. Var 0.1647 0.1823 0.1886 0.1401

n = 1000, Min 0.5718 0.4926 0.3319 0.1178

U ' exp(1) Mean 0.6427 0.5688 0.4166 0.2278

Max 0.7180 0.6598 0.5164 0.3521

NA 0 0 0 0

Var (×103) 0.5558 0.7852 1.0237 1.1719

as. Var 0.5538 0.7334 1.0247 1.0277

n = 1000, Min 0.5837 0.5144 0.3590 0.1891

U ' exp(0.2) Mean 0.6434 0.5693 0.4177 0.2298

Max 0.7070 0.6351 0.4843 0.2824

NA 0 0 0 0

Var (×103) 0.3353 0.3854 0.3766 0.2688

as. Var 0.3295 0.3646 0.3773 0.2802

Table 6.1 gives the mrl at the evaluation points together with summary

statistics for the estimated mrl from the simulations.�e mrl estimator

is slightly downward biased for smaller numbers of observations and for
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later times.�is was to be expected from the supermartingal structure

of Kaplan-Meier integrals as discussed by Stute and Wang (1993) and the

bias of the Kaplan-Meier estimator itself as given in Fleming/Harrington

(1991: 99). Possible consequences and remedies are described by Miller

(1983) and Gill (1994: section 8).

In our situation, the asymptotic variances from (6.8) and (6.11) can be

computed explicitly.�ey are also given in Table 6.1. For n = 1000, the

agreement with the variances estimated in the simulation experiment

is excellent. For n = 200, however, the variances of the mrl estimates

tend to be larger than the asymptotic variances suggest. Note that the

variances are multiplied by 100 in the case of n = 200 and by 1000 in the

case of n = 1000.

Turning to the empirical variance estimators, a simple approach would be

to use the empirical variance of the terms A1i/B2i, thus avoiding the use

of (6.11). Even when using the empirical variances of the Aki separately,

one might try simpler versions of (6.11). Yang (1994: 342) proposed

to use just the variance of the numerator. Since the denominator is

consistent, an appeal to Slutsky’s lemma shows this to be a consistent

variance estimator. But this would work well only if the expectation of

the numerator would be 0. A further possibility is to use both empirical

variances, but to ignore the covariance. But the covariance is by de�nition

far from 0. In fact, in our simulation setup, the results using these three

estimators had no clear relation with the observed variance of the mrl.

We will therefore not present the results in our simulation reports.

A second approach uses the Kaplan–Meier estimator (and its estimated

variance) in the denominator of the mrl and in its variance estimator.

We will not pursue this possibility here, since we are mainly interested in

the performance of Kaplan–Meier integrals. We will therefore also use

only the Kaplan–Meier integrals in empirical versions of (6.8).

A third possibility is a direct application of the discrete representation of

Stute.�is means to compute the terms in (6.9) and use the empirical

means, variances, and covariances of these terms in (6.11). We denote

this estimator by σ̂2S .
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In σ̂2S , one might replace the terms Âkn by the respective terms used in

the mrl estimator.�is should give estimators that are better centered

and possibly be less variable. We denote this estimator by σ̂2mrl.

Lastly, we use an empirical version of Yang’s formula (6.8) where we use

the estimated mrl for the inner expectation and the empirical Kaplan–

Meier integrals for the outer integral.�e denominator in the integrand

is estimated by the Kaplan–Meier estimator. Moreover, in (6.11), we use

the mrl estimators for the Âkn terms.�is version will be denoted by σ2Y .

Note that, from a computational point of view, σ̂2Y requires the computa-

tion of the mrl at all (unique) points zi. In contrast, both σ̂2mrl and σ̂2S
can easily be computed point-wise but are relatively more expensive

when the variances are required at all observed points. All three variants,

however, are computationally much cheaper than a bootstrap approach.

Table 6.2.: Simulation results for variance estimators, n = 200

U ' exp(1) t=0.2 t=0.5 t=1.0 t=1.5

sim. Var (×102) 0.3130 0.4463 0.6818 0.7556

σ̂2S Min 0.0012 0.0013 0.0009 0.0000

Mean (×102) 0.4104 0.5134 0.6052 0.3152

Max 0.0250 0.0299 0.0313 0.0241

σ̂2mrl Min 0.0012 0.0013 0.0009 0.0000

Mean (×102) 0.4484 0.5801 0.7441 0.4086

Max 0.0349 0.0514 0.0532 0.0380

σ̂2Y Min 0.0011 0.0012 0.0009 0.0000

Mean (×102) 0.2858 0.3899 0.6235 1.6433

Max 0.0072 0.0155 0.0512 0.3453

Table 6.3.: Simulation results for variance estimators, n = 200

U = exp(0.2) t=0.2 t=0.5 t=1.0 t=1.5

sim. Var (×102) 0.1534 0.1847 0.2046 0.1588

σ̂2S Min 0.0011 0.0012 0.0010 0.0003

Mean (×102) 0.1675 0.1853 0.1897 0.1438

Max 0.0041 0.0049 0.0067 0.0060
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Table 6.3.: Simulation results for variance estimators, n = 200

σ̂2mrl Min 0.0011 0.0012 0.0010 0.0003

Mean (×102) 0.1682 0.1863 0.1917 0.1474

Max 0.0044 0.0053 0.0080 0.0097

σ̂2Y Min 0.0011 0.0012 0.0011 0.0004

Mean (×102) 0.1686 0.1888 0.2032 0.1959

Max 0.0023 0.0029 0.0047 0.0101

Looking �rst at the results for the case n = 200 and U ' exp(0.2) (Table
6.2), all three variance estimators are in rather close agreement with the

simulated variances, even at t = 1.5. Moreover, σ̂2S ≤ σ̂2mrl ≤ σ̂2Y in the

mean over all simulations, where also the variability of the estimators

increases in this order.

�e situation is less favourable in the case of heavy censoring and n = 200,

given in Table 6.3. Here, all estimators show a large variability. For t ≤ 1,
σ̂2Y seems to work best. However, at t = 1.5, none of the estimators is

even close to the variability of the mrl estimator. But note that in this

case the asymptotic variance is also not close to the observed variability

of the mrl estimator.

Table 6.4.: Simulation results for variance estimators, n = 1000

U ' exp(1) t=0.2 t=0.5 t=1.0 t=1.5

sim. Var (×103) 0.5558 0.7852 1.0237 1.1719

σ̂2S Min 0.0004 0.0005 0.0006 0.0003

Mean (×103) 0.6155 0.8133 1.1273 1.1074

Max 0.0039 0.0052 0.0069 0.0041

σ̂2mrl Min 0.0004 0.0005 0.0006 0.0004

Mean (×103) 0.6233 0.8281 1.1671 1.1989

Max 0.0043 0.0061 0.0098 0.0092

σ̂2Y Min 0.0004 0.0005 0.0006 0.0003

Mean (×103) 0.5579 0.7436 1.0644 1.2491

Max 0.0007 0.0010 0.0017 0.0036

Table 6.5.: Simulation results for variance estimators, n = 1000
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U ' exp(0.2) t=0.2 t=0.5 t=1.0 t=1.5

sim. Var (×103) 0.3353 0.3854 0.3766 0.2688

σ̂2S Min 0.0003 0.0003 0.0003 0.0002

Mean (×103) 0.3302 0.3658 0.3781 0.2826

Max 0.0004 0.0004 0.0005 0.0005

σ̂2mrl Min 0.0003 0.0003 0.0003 0.0002

Mean (×103) 0.3305 0.3661 0.3787 0.2834

Max 0.0004 0.0004 0.0005 0.0005

σ̂2Y Min 0.0003 0.0003 0.0003 0.0002

Mean (×103) 0.3311 0.3676 0.3837 0.2978

Max 0.0004 0.0004 0.0005 0.0005

Turning to the case n = 1000 with light censoring (Table 6.4), all three

variance estimators are close together and close to the simulated variances.

Once again, we �nd σ̂2S ≤ σ̂2mrl ≤ σ̂2Y in the mean over all simulations.

We had expected to see σ̂2Y perform less satisfactorily than the other two

estimators since with a small amount of censoring the explicit use of

the Kaplan–Meier estimator 1− Ĝ as a weight in (6.8) might result in

unstable behaviour. But this seems not to be the case here.

In the case with heavy censoring (U ' exp(1)) we see that σ̂2Y compares

favourably with the other two estimators: It is somewhat closer to the

simulated variances and has less variability. To look closer at the problem

with the other two estimators, we sampled one of the Aki from each

of the 1000 simulation runs. Density estimates of the numerator and

denominator variables are given in Figures 6.2 and 6.3.�e distributions

of the empirical Ak terms are far from normal.�ey are multimodal with

one of the modes close to 0 and they have rather heavy tails. Moreover,

the empirical versions of the Aki are dependent so that the variances

of the Aki are di�cult to estimate accurately. �is might explain the

larger variability of σ̂2S and σ̂2mrl compared to σ̂2Y . Moreover, with a larger

proportion of censored observations the estimator of the distribution of

the censoring variable stabilises and thus also Yang’s estimator stabilises.

In conclusion, our limited experience suggests that the variance estima-

tor σ̂2Y is to be preferred in cases of heavy censoring, while with light

censoring all estimators behave similarly.
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Lastly, we look at a borderline case where the expectation in (6.8) is

�nite but where the bias condition (1.6) of Stute (1995: 425) is violated.

Suppose F is exponential with expectation 1 and G is exponential with

expectation 5. In this case, the mrl of F is constant 1.�e function C(x)

is given by

C(x) =

∫ x−

0

1

(1−H(u))(1− G(u))
dG(u) =

0.2

1.2

(
e1.2x − 1

)
and thus∫

ϕk(x)
√
C(x) dF(x)

diverges for k = 1, 2. With a sample size of n = 1000 (Table 6.6), the

variance estimators σ̂2mrl and σ̂2S are rather larger than the simulated

variances while σ̂2Y is still quite close. Moreover, the latter is much less

variable than the other two. In fact, looking at the behaviour of the Aki,

they show very heavy tails with occasional huge values.

Table 6.6.: Simulation results, F ' exp(1), G ' exp(0.2), n = 1000

t=0.2 t=0.5 t=1.0 t=1.5

mrl Min 0.8742 0.8424 0.7749 0.7495

Mean 0.9950 0.9936 0.9906 0.9836

Max 1.1390 1.1382 1.2160 1.2711

Var (×103) 1.5778 2.2273 4.0604 7.5099

σ̂2S Min 0.0010 0.0013 0.0019 0.0025

Mean (×103) 1.8755 2.7261 5.0650 9.3061

Max 0.0148 0.0233 0.0551 0.1101

σ̂2mrl Min 0.0010 0.0013 0.0019 0.0025

Mean (×103) 1.8863 2.7482 5.1377 9.5365

Max 0.0152 0.0242 0.0587 0.1216

σ̂2Y Min 0.0009 0.0012 0.0019 0.0025

Mean (×103) 1.5599 2.2317 4.0548 7.3789

Max 0.0047 0.0075 0.0196 0.0442
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Figure 6.2.: Density estimates for A1i. Solid line: t = 0.2, short dashed
line: t = 0.5, dashed and dotted line: t = 1.0, long dashed line: t = 1.5.

Table 6.7.: Simulation results, F ' exp(1), G ' exp(0.2), n = 200

t=0.2 t=0.5 t=1.0 t=1.5

mrl Min 0.7533 0.6608 0.6291 0.4774

Mean 0.9857 0.9819 0.9772 0.9663

Max 1.2871 1.3645 1.4910 1.7176

Var (×102) 0.8320 1.2447 2.1862 4.1630

σ̂2S Min 0.0032 0.0036 0.0040 0.0043

Mean (×102) 1.0050 1.4446 2.6152 4.5671

Max 0.1212 0.1998 0.3797 0.6479

292



6.8. Appendix

Table 6.7.: Simulation results, F ' exp(1), G ' exp(0.2), n = 200

t=0.2 t=0.5 t=1.0 t=1.5

σ̂2mrl Min 0.0032 0.0036 0.0041 0.0043

Mean (×102) 1.0286 1.4921 2.7655 5.0157

Max 0.1368 0.2372 0.5054 0.8394

σ̂2Y Min 0.0033 0.0037 0.0042 0.0044

Mean (×102) 0.7962 1.1502 2.1417 4.0573

Max 0.0429 0.0661 0.1197 0.4599

Looking at a sample size of n = 200 (Table 6.7), the mrl has a somewhat

larger downward bias. �e variance estimators based on the Aki are

now rather far from the simulated variances especially at larger t.�e

estimator σ̂2Y is closer to the simulated variances. In conclusion, there

seems to be some leeway to improve on variance estimators based on the

Aki, possibly also in the case of light censoring.

6.8. Appendix

For a function ϕ with E(|ϕ(T)|) <∞ which also meets the appropriately
modi�ed moment conditions (1.5) and (1.6) in Stute (1995: 425), Stute

(1995) gives a representation of the Kaplan–Meier integral
∫ τ

0
ϕ(u) dF̂n(u)

in terms of sums of independent random variables up to oP(n
−1/2). We

specialise to absolutely continuous distributions F and G and assume

τ =∞.�is rather special case leads to a transparent derivation of the
main variance formula and allows to compare the results of Stute (1995)

with those of Yang (1994). In particular, Stute’s moment condition (1.5)

and Yang’s condition (ii) (Yang 1994: 339) simply reads∫ ∞
0

ϕ(u)2

1− G(u)
dF(u) <∞

Stute’s representations in the special case can be written

δϕ(Z)

1− G(Z)
+ (1− δ)

E(ϕ(T) |T > Z)

1− G(Z)
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Figure 6.3.: Density estimates for A2i. Solid line: t = 0.2, short dashed
line: t = 0.5, dashed and dotted line: t = 1.0, long dashed line: t = 1.5.

−
∫∫

ϕ(w)1(v < Z)1(v < w)

1−H(v)
dF(w) dΛG(v) (6.12)

where ΛG(t) :=
∫ t

0

dG(u)
1−G(u) is the integrated hazard function of G. �e

expectation of the above expression with respect to (δ, Z) is easily seen

to be E(ϕ(T)): Compute the conditional expectation of the �rst term
given {T = t} to see that the expectation of that term is E(ϕ(T)). For the
last two terms, simply write out the expectation with respect to (δ, Z).

Subtracting the expectation E(ϕ(T)) and evaluating (6.12) at a �xed
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argument t we get

δ

[
ϕ(t)

1− G(t)
− E(ϕ(T) |T > t)

1− G(t)

]
+

E(ϕ(T) |T > t)

1− G(t)

−
∫∫

ϕ(w)1(v < t)1(v < w)

1−H(v)
dF(w) dΛG(v)

− E(ϕ(T)) (6.13)

We will start by re-expressing the double integral. For this, note that

ΛH = ΛF + ΛG from the de�nition of the distribution function of Z.

�us, ∫∫
ϕ(w)1(v < t)1(v < w)

1−H(v)
dF(w) dΛG(v)

=

∫∫
ϕ(w)1(v < t)1(v < w)

1−H(v)
dF(w) d(ΛH(v)− ΛF(v))

=

∫∫
ϕ(w)1(v < t)1(v < w)

(1−H(v))2
dH(v) dF(w)

−
∫∫

ϕ(w)1(v < t)1(v < w)

(1−H(v))(1− F(v))
dF(v) dF(w)

=

∫ (
1

1−H(min(t,w))
− 1
)
ϕ(w) dF(w)

−
∫∫

ϕ(w)1(v < t)1(v < w)

(1−H(v))(1− F(v))
dF(v) dF(w)

where we used Fubini’s theorem in the second equation, and where the

�rst term in the third equation results from a transform of variables.

�e last three terms in (6.13) can thus be written as

E(ϕ(T) |T > t)

1− G(t)
−
∫∫

ϕ(w)1(v < t)1(v < w)

1−H(v)
dF(w) dΛG(v)
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− E(ϕ(T))

=

∫ ∞
t

ϕ(w)

1−H(t)
dF(w)

−
∫∫

ϕ(w)1(v < t)1(v < w)

1−H(v)
dF(w) dΛG(v)

−
∫ ∞
0

ϕ(w) dF(w)

=

∫ ∞
t

ϕ(w)

1−H(t)
dF(w)−

∫ (
1

1−H(min(t,w))
− 1
)
ϕ(w) dF(w)

+

∫∫
ϕ(w)1(v < t)1(v < w)

(1−H(v))(1− F(v))
dF(v) dF(w)−

∫ ∞
0

ϕ(w) dF(w)

= −
∫ t

0

ϕ(w)

1−H(w)
dF(w) +

∫ t

0

E(ϕ(T) |T > v)

1−H(v)
dF(v)

= −
∫ t

0

ϕ(w)

1− G(w)
dΛF(w) +

∫ t

0

E(ϕ(T) |T > v)

1− G(v)
dΛF(v)

= −
∫

ϕ(w)− E(ϕ(T) |T > w)

1− G(w)
1(w < t) dΛF(w)

De�ning

Mi(t) := 1[ti ≤ t, δ = 1]−
∫ t

0

1[zi ≥ u]

1− F(u)
dF(u)

to be the martingale for the counting process 1[ti ≤ t, δi = 1] with

respect to the standard �ltration, we can �nally write (6.12) for the i–th

observation as∫
ϕ(u)− E(ϕ(T) |T > u)

1− G(u)
dMi(u) (6.14)

In sum, we have the representation∫ ∞
0

ϕ(u) dF̂n(u)−
∫ ∞
0

ϕ(u) dF(u) =
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1

n

n∑
i=1

∫ ∞
0

ϕ(u)− E(ϕ(T) |T > u)

1− G(u)
dMi(u) + oP(n

−1/2)

(6.15)

which is just (6.7).

With the last representation at hand it is easy to derive a variance expres-

sion using standard martingale arguments:

VarZ,δ

(∫ ∞
0

ϕ(u) dF̂n(u)−
∫ ∞
0

ϕ(u) dF(u)

)

= EZ,δ

((∫ ∞
0

ϕ(u) dF̂n(u)−
∫ ∞
0

ϕ(u) dF(u)

)2)

≈ EZ,δ

((∫ ∞
0

ϕ(u)− E(ϕ(T) |T > u)

1− G(u)
dM(u)

)2)

= EZ,δ

(∫ ∞
0

(
ϕ(u)− E(ϕ(T) |T > u)

1− G(u)

)2
d 〈M,M〉 (u)

)

= EZ,δ

(∫
1(Z > u)

(
ϕ(u)− E(ϕ(T) |T > u)

1− G(u)

)2
dΛF(u)

)

=

∫∫
1(z > u)

(
ϕ(u)− E(ϕ(T) |T > u)

1− G(u)

)2
1

1− F(u)
dF(u) dH(z)

=

∫
(1−H(u))

(
ϕ(u)− E(ϕ(T) |T > u)

)2
(1−H(u))(1− G(u))

dF(u)

=

∫
(ϕ(u)− E(ϕ(T) |T > u))2

1− G(u)
dF(u)

�is is also Yang’s (1994) variance formula valid for arbitrary G. We will

also need the covariances of the representations for ϕ1 and ϕ2. Shortening

ϕk(u)− E(ϕk(T) |T > u) to R(ϕk)(u) we have by a similar reasoning as
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above:

Cov

(∫ ∞
0

R(ϕ1)(u)

1− G(u)
dM(u),

∫ ∞
0

R(ϕ2)(u)

1− G(u)
dM(u)

)
= EZ,δ

(∫ ∞
0

R(ϕ1)(u)R(ϕ2)(u)

(1− G(u))2
d 〈M,M〉 (u)

)
= EZ,δ

(∫ ∞
0

1(Z > u)
R(ϕ1)(u)R(ϕ2)(u)

(1− G(u))2
dΛF(u)

)
=

∫∫
1(z > u)

R(ϕ1)(u)R(ϕ2)(u)

(1− G(u))2
dΛF(u) dH(z)

=

∫ ∞
0

R(ϕ1)(u)R(ϕ2)(u)

1− G(u)
dF(u)

6.9. Postscriptum

�e suggested estimator in this paper is of the form

m̂(t) =

∫ ∞
t

ϕ(u) dFn(u)

where Fn(.) is the Kaplan-Meier estimator of the distribution function.

�e analysis then proceeds by replacing the dependent weights of the

Kaplan-Meier estimator by a representation using independent contribu-

tions.�is was �rst suggested by Yang (1994) and Stute (1995).

�ese results have recently be extended to cases where in the integral

depends on further parameters or when covariates are present. In

particular, Sellero et al. (2005) consider estimates of integrals of the form

m̂(t) =

∫ ∞
t

∫
ϕ(u, v) dFn(u, v)

where Fn(., .) is the joint distribution function to possibly censored

variable T and a covariate Y . Uña-Álvarez and Rodrígiuez-Campos

(2004) use a smoothed version of the Kaplan-Meier estimator to provide
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estimators of expectations of bivariate functions of a possibly censored

variable and a covariate.

Wang and Jing (2001) and Qin and Zhao (2007) as well as Zhao and

Qin (2006) study the application of empirical likelihood methods to

Kaplan-Meier integrals.

Delecroix et al. (2008) propose a weighting procedure similar to the ones

proposed by Koul et al. (1981) and Leurgans (1987) in order to estimate

conditional expectations of censored variables given a covariate.

While there was not much progress in the analysis of strong represen-

tations for more general Kaplan-Meier processes there are now some

interesting suggestions for estimators of the mean residual life functions

and regression versions of it. In particular, Chen and Cheng (2005) and

Chen et al. (2005) use inverse probability of censoring weighted exten-

sions of a model �rst proposed by Maguluri and Zhang (1994). Instead

of a proportional mean residual life function, Chen and Cheng (2006)

suggested a linear function of the covariates. Jeong et al. (2008) consider

estimators of the median residual life based on inverting functions of the

Kaplan-Meier estimator.
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7

Covariate Effects in Periodic

Hazard RateModels

7.1. Summary

Labour market participation, consumer behaviour, and many other

phenomena exhibit strong periodic patterns that result from cyclic

behaviour, constraints on the timing of events, or seasonal variation.

While these periodicities can generally be neglected when dealing with

small data sets or coarsely grouped event times, they pose challenges to

the analysis of large data sets with precise recordings. It seems natural

to require that statistical models used in the analysis of such data sets

reproduce any underlying periodicities. In particular, the conditional

hazard rate given covariates should be periodic for all possible values of

the covariates. We show that this requirement severely restricts the class

of covariate e�ects models.

We de�ne periodicities by points of zero crossings of the derivative of

the hazard rate. We then develop the concepts of hazard envelope and

essential extrema.�ese allow the construction of classes of covariate

e�ect models with time varying coe�cients that respect the underlying

periodic structure.
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7. Covariate E�ects in Periodic Hazard Rate Models

7.2. Introduction

Labour market participation, consumer behaviour, and many other

phenomena exhibit strong periodic patterns that result from cyclic

behaviour, constraints on the timing of events, or seasonal variation.

�ese phenomena become apparent when large data sets with precise

recordings of the timing of events become available. Figure 7.1 exhibits

the hazard rate of the inter-purchase time of an 1-litre ice-cream package.

�e estimate is based on data provided by the German Homescan Panel

of A.C. Nielsen.�e data contain information on the day of purchases

for some 8.400 households over a period of three years.

0 14 28 42 56 70
0

0.01

0.02

0.03

Figure 7.1.: Hazard rate of inter-purchase times (days) of ice-cream
packages.

�e (discrete) daily hazard rate oscillates with maxima at 7, 14, 21 days

and so on. It is plausible to assume that the reason for this behaviour

is the weekly purchase schedule of most households.�is argument is

supported by the fact that these patterns occur across sociodemographic

subgroups, e.g. regardless of whether there are children present in the

household or not, cf. Figure 7.2.

As a second example, Figure 7.3 presents the estimated hazard rate of
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0 14 28 42 56 70
0
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Figure 7.2.: Conditional hazard rate of inter-purchase times (days) of
ice-cream packages. Households without children: solid line, Households

with children: dotted line.

job durations in Germany for the years 1975 to 1990.�e estimate is

based on a subsample of records of the social security administration

(see Bender et al. 1996) covering some 400,000 job spells.�e hazard

rate shows large annual peaks, somewhat smaller quarterly peaks and

also monthly peaks. However, the number of job durations away from

these peaks is still considerable. Again, the �ndings are similar across

subgroups (e.g. men and women). An obvious reason for this pattern is

that institutional and juridical regulations in general restrict ending a job

to the end of a quarter or to the end of a (calendar) year. Of course, such

regulations ought to be the same for all socio-demographic subgroups.

In fact, the impact of the regulations is extremely strong: Figure 7.4

depicts the total number of job exits per calendar day for the period

1990–1999.�e numbers are based on the complete data of the social

security administration.�e number of job exits not coincident with a

month’s end is generally below 100.
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Figure 7.3.: Hazard rate of job durations (days) in Germany 1975–1990.
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Figure 7.4.: Total number (in million) of job exits by day in Germany
1990–1999. Number for 31.12.1992 truncated.

7.3. Marginal and Conditional Hazard Rates

In both examples, strong external in�uences cause both the conditional

and themarginal hazard rates to oscillate.�ese in�uences are common in

the sense that local maxima and minima appear at the same times for the
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7.3. Marginal and Conditional Hazard Rates

marginal as well as for the conditional hazard rates. Regression models

should account for this periodic behaviour: �e conditional hazard

rates implied by the models should exhibit the same periodicities for all

values of the covariates. Moreover, the periodicities of the conditional

hazard rates should be the same as those of the implied marginal hazard

rates. Surprisingly, however, no regression model strictly satis�es these

requirements.

Let T > 0 and X be random variables on a common probability space

representing duration and covariate information. Denote by λ(t) =

f (t)/(1− F(t−)) and λ(t | x) = f (t | x)/(1− F(t − | x)) the marginal and
conditional hazard rates. Here, the conditioning is on the events {X = x},
f (t) and f (t | x) are the marginal and conditional densities, and F(t)
and F(t | x) are the marginal and conditional cumulative distribution
functions.

For simplicity, we assume that λ(t | x) is twice continuously di�erentiable
with respect to t. If t1, t2, . . . are the locations of minima and maxima

of λ(t | x), then λ̇(ti | x) = 0, i = 1, 2, . . ., where λ̇(t | x) is the derivative
of the conditional hazard rate with respect to t. A possible though

rather strict formulation of the above requirements becomes:�ere is a

sequence 0 < t1 < t2 . . . such that

λ̇(ti) = 0 = λ̇(ti | x), for i = 1, 2, . . . and for all x. (7.1)

To see that in fact no non-trivial model can satisfy this condition, we

need to consider the relation between marginal and conditional hazard

rates and their derivatives.�e marginal hazard rate is given by a time-

dependent “convex combination” of the conditional hazard rates:

λ(t) = E
(

λ(t |X) |T ≥ t
)

(7.2)

where the expectation is with respect to the distribution of X conditional

on the event {T ≥ t}.

Di�erentiating this relation leads to

λ̇(t) = E
(

λ̇(t |X) |T ≥ t
)
+
[
λ(t)2 − E

(
λ(t |X)2 |T ≥ t

)]
(7.3)
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7. Covariate E�ects in Periodic Hazard Rate Models

When the derivatives λ̇(ti | x) vanish for all x, the �rst term becomes
0. By Jensen’s inequality, the second term is negative unless λ(t | x) is
constant in x.�us, if all derivatives of conditional hazard rates vanish

at a point ti, then the derivative of the marginal hazard rate has to be

negative.

To illustrate, consider two subgroups distinguished by the covariate

X ∈ {0, 1} and assume

Pr
0
:= Pr(X = 0) =

1

2
= Pr(X = 1) =: Pr

1
,

λ0(t) := λ(t |X = 0) = 5
4
+ sin t,

λ1(t) := λ(t |X = 1) = 2 · λ0(t),

�en

λ(t) =
λ0(t) · exp

(
−Λ0(t)

)
+ λ1(t) · exp

(
−Λ1(t)

)
exp
(
−Λ0(t)

)
+ exp

(
−Λ1(t)

) ,

where

Λi(t) :=

∫ t

0

λi(s) ds, i = 0, 1,

are the cumulative hazard rates of the subgroups. Figure 7.5 displays the

di�erent extrema of the marginal hazard rate λ(t) and the conditional

hazard rates λ0(t) and λ1(t). Although λ(t) ∈ [λ0(t), λ1(t)] holds due
to (7.2), the time-dependence of the convex combination causes the

derivative λ̇ to vanish at di�erent times than λ̇0 and λ̇1.

7.4. Hazard Envelopes

On the other hand, if the conditional hazard rates λi(t), i = 0, 1, oscillate

strongly and commonly in the sense that (w.l.o.g.)

λ̈0(t2i) < 0, λ̈1(t2i) < 0,
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Figure 7.5.: Due to the time-dependence of (7.2), the marginal hazard rate
(dashed line) does not have the same extrema as the conditional hazard

rates (solid lines).

λ̈0(t2i−1) > 0, λ̈1(t2i−1) > 0,

λ0(t2i) > λ1(t2i−1), λ0(t2i) > λ1(t2i+1), ∀i ≥ 1,

hold, then the marginal hazard rate λ(t), being a pointwise convex

combination of λ0(t) and λ1(t) as well as a di�erentiable function of t,

must have a local maximum in each interval (t2i−1, t2i+1), i ≥ 1, and a
local minimum in each interval interval (t2i, t2i+2), i ≥ 1. Qualitatively
speaking, λ(t) oscillates as well, cf. Figure 7.6.

�us the marginal hazard rate will oscillate in a similar way as the

conditional hazard rates if the latter have common minima and maxima

and if they oscillate strongly enough. To bound the behaviour of the

marginal hazard rate, we introduce the concept of the hazard envelope

(λ(t), λ(t)):

λ(t) := inf
x
{λ(t | x)} , λ(t) := sup

x
{λ(t | x)} (7.4)

Note that in general neither λ(t) nor λ(t) need to correspond to any

member of the family of conditional hazard rates. Nevertheless, it follows
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Figure 7.6.:�e marginal hazard rate necessarily oscillates between the
two dashed lines.

from (7.2) that the marginal hazard rate at a given t is bounded by the

extreme points of the conditional hazard rates.�us

λ(t) ≤ λ(t) ≤ λ(t) ∀t (7.5)

Suppose next thatmaxima of the hazard envelope occur at even numbered

times t2i while minima occur at odd numbered times t2i−1. Suppose
further that the conditional hazard rates have common minima and

maxima at t2i and t2i=1, respectively. We say that the conditional hazard

rates have an essentialmaximum at t2i if

λ(t2i−1) < λ(t2i) > λ(t2i+1) (7.6)

We say that the conditional hazard rates have an essentialminimum at

t2i+1 if

λ(t2i) > λ(t2i+1) < λ(t2i+2) (7.7)

An essential maximum implies at least one maximum of the marginal

hazard rate in the interval (t2i−1, t2i+1), while an essential minimum
implies at least one minimum of the marginal hazard rate in the interval

(t2i, t2i+2).
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7.5. Consequences for Model Choice

We are now in the position to formulate more reasonable requirements

for regression models in situations with strong periodicities: Suppose

there is a sequence of time points t2i, i ≥ 1 at which maxima of the
hazards are to occur.�ink of the weekly maxima in the hazard rate

of inter-purchase times or the quarterly maxima in the hazard rate of

job durations.�en one might want to restrict attention to models of

covariate e�ects that, �rstly, admit maxima of the conditional hazard

rates at the t2i for all values of the covariates, that, secondly, admit the

existence of common minima of the conditional hazard rates at some

sequence of times t2i−1, and that thirdly, admit essential maxima at all
the t2i even in the presence of non-trivial covariate e�ects.

Consider the class of proportional hazards models with

λ(t | x) = λ0(t)ψ(xβ), ψ(xβ) > 0 (7.8)

For this class the envelope hazard coincides with certain conditional

hazard rates if the support of the distribution of the covariates is compact.

�e situation is then very similar to that depicted in Figures 7.5 and

7.6. �e �rst and second requirements are easily met. In fact, they

simply depend on the choice of an appropriate baseline hazard rate λ0(t).

Whether or not a local maximum is essential will depend both on the

extend of covariate e�ects and the amplitude of the baseline hazard rate.

�us proportional hazard rate models are certainly feasible candidate

models.

Butwhat happens if onewants, for some good reason, use non-proportional

hazards models? Consider the accelerated failure timemodel.�is model

posits a scaling e�ect of covariates: Suppose that Tx is a random variable

representing duration conditional on the covariate value x. Suppose

further that there is a random variable T0 on the same probability space

as Tx such that

Tx = T0/ψ(xβ), ψ(xβ) > 0 (7.9)
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and such that the T0 have identical distributions for all values of the

covariates.�e conditional hazard rates are then of the form:

λ(t | x) = ψ(xβ) · λ(ψ(xβ) · t), ψ(xβ) > 0 (7.10)

But in such a model, maxima and minima of conditional hazard rates for

di�erent values of the covariates cannot coincide, except in the trivial

case of no covariate e�ect, ψ(xβ) ≡ 1.

Does this rule out the use of accelerated failure time models and many

other non-proportional hazards models? Not if one is prepared to allow

the e�ects of covariates to change with time. But how does one allow for

time-varying covariate e�ects without destroying the de�ning features of

the accelerated failure time model? A�er all, if one allows for general

time dependent e�ects β(t) and plugs this into (7.10), then the “scaling

the time axis” property is destroyed, while there is no obvious way of

plugging a time indexed β(t) into (7.9).

�ere is, however, a quite natural way to de�ne changing covariate e�ects

that respects the scaling interpretation of accelerated failure time models.

One has to change the global “ change of scale” interpretation of covariate

e�ects into a local property at a point in time.�at can be done by using

derivatives. Starting with the “scale change” interpretations in terms

of random variables as in (7.9), one can consider the derivative of the

baseline duration with respect to duration with covariate value x.�at

derivative should be in�uenced, at a point in time, by the covariate e�ect

at that same point in time. One might thus write

∂t0

∂tx

∣∣∣
tx=u
= ψ(xβ(u)) (7.11)

But then

t0 =

∫ tx

0

ψ(xβ(u)) du =: Ψ(tx; β̄)

where β̄ contains the covariate information and the changes in covariate

e�ects.�erefore

Tx = Ψ
−1(T0; β̄)
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�e hazard rate corresponding to this model of covariate e�ects is

λ(t | x) = ψ(xβ(t)) · λ0(Ψ(t; β̄)) (7.12)

Note that this di�ers from the naive idea to plug in some β(t) into (7.10)

while it preserves the interpretation of the e�ects of covariates as a (local)

scaling of the time axis.1

With this de�nition of varying covariate e�ects it is now easy to ex-

hibit versions of the accelerated failure time model that do respect the

requirements formulated at the beginning of this section. If we choose

Ψ(t2i; β̄) = t2i

Ψ̇(t; β̄) > 0

Ψ̈(t2i; β̄) = 0 and λ̇0(t2i) = 0

then

λ̇(t2i | x) = ψ̇(xβ(t2i)) · λ0(Ψ(t2i; β̄)) +ψ(xβ(t2i))
2 · λ̇0(Ψ(t2i; β̄)) = 0

With this choice of Ψ(t), β(t), and λ0(t), all conditional hazard rates will

have the same points of maxima as the baseline λ0(t). As in the case of

proportional hazards models, whether the maxima are essential depends

on the amplitude of λ0(t) and on the covariate e�ects process ψ(xβ(t)).

But since the envelope hazard will in general not coincide with any of

the conditional hazard rates, one needs to compute the envelope hazard

explicitly.

7.6. Postscriptum

As far as I am aware of the literature, there is no newer contribution

to the analysis of covariate e�ects in models with periodic behaviour.

�ere have been contributions to the analysis of Poisson point processes

1
A version of this model for time-dependent covariates has been proposed by Cox

and Oakes (1984: 67). Robins and Tsiatis (1992) developed an estimator for this

model.
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with periodic intensities (see Helmers et al. (2007) for a recent review).

However, this literature is silent on the consequences on the form of

regression models or the general form of regression models.
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8

A Multivariate Buckley-James

Estimator

8.1. Summary

Buckley and James (1979) extended the least-squares estimator to cover

the case of censored dependent variables. I consider a generalisation

of their estimator to the multivariate case based on a non-parametric

estimator of the joint distribution of the residuals.

8.2. Introduction

Buckley and James (1979) introduced a regression technique suitable for

censored dependent variables.�eir estimator uses the least-squares esti-

mating equations and an updatingmechanismbased on a non-parametric

estimator of the residual distribution to deal with the censoring.�e

procedure is attractive because the use of the least-squares technique

allows for an easy interpretation of results and the use of residual analysis,

while the updating scheme is general enough to accommodate various

forms of censoring and grouping. Consequently, many generalisations of

the basic technique have been proposed.
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8. A Multivariate Buckley-James Estimator

In this paper I explore a possible extension to multivariate dependent

variables. Related work, especially that of Lin and Wei (1992), Lee, Wei

and Ying (1993), Pan and Kooperberg (1999), and Hornsteiner and

collaborators in a series of papers (1996, 1997, 1998), is mainly inspired

by the literature on generalised estimating equations. It concentrates

on the estimation of the marginal e�ects of covariates on each of the

dependent variables. Accordingly, the least-squares estimating equations

aremodi�ed to accommodate themultivariate character of the dependent

variables. Less emphasis is put on the updating scheme that deals with

the censoring problem. �e authors suggest to use non-parametric

estimators of the marginal distributions of the residuals only. I propose

to incorporate themultivariate information from the residual distribution

into the updating scheme.

In the next section I introduce Buckley and James’ approach to regression

estimation with censored observations and, in section 8.4, indicate why

it works. Next I consider the multivariate case. Generalisations of the

missing information principle are treated in section 8.6.�is leads to

a multivariate extension of Buckley and James’ approach that uses the

multivariate information also for the updating scheme. In the �nal

section I examine the performance of the estimator through examples.

8.3. Buckley-James Estimators

Suppose that conditionally on some covariates x, the random variable Y

follows a linear regression

Y = xβ + є (8.1)

where x is a 1× p vector of covariates including a constant, β is a p× 1
vector of unknown regression coe�cients, and є is a random variable

with mean zero and �nite variance. If Y is the logarithm of a positive

random variable representing a duration or time to an event, this model

is sometimes called accelerated failure time model (Cox/Oakes 1984:

Chap. 5.2).
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In many applications only censored observations from Y are available.

More precisely, suppose that the observations are given by the censored

variable Z and censoring indicator δ:

Z := min(C, Y) , δ := 1[C ≥ Y] ,

where 1[.] is the indicator function and the censoring variable C is

(conditionally) independent of Y .�e observations are n independent

and identically distributed realizations from (x, є,C).�e n× (p + 2)
data matrix is given by (zi, δi, xi)i=1,...,n.

In the absence of censoring one can estimate β by minimising the

least-squares criterion

n∑
i=1

(yi − xiβ)
2 = n

∫
e2 dF̂n(e) =

n∑
i=1

∫
(y− xiβ)

2 dF̃ni(y) (8.2)

where F̂n(e) is the empirical distribution function of the residuals ei =

yi − xiβ, and F̃ni(y) = 1[yi < y] is the empirical distribution of just one

observation yi.

Miller (1976) and Leurgans (1987), using the second and third repre-

sentation respectively, proposed replacing the empirical distributions

by versions appropriate for censored data. Instead of taking the least-

squares criterium (8.2) as their starting point, Buckley and James (1979)

suggested to modify the least-squares estimating equations

n∑
i=1

x′i(yi − xiβ̂) = 0 or

n∑
i=1

x′iyi =

(
n∑
i=1

x′ixi

)
β̂ (8.3)

In the presence of censoring they proposed to replace the censored

observations Z by the conditional expectation of Y given the observed

(censored) data Z and the covariates:

Y∗ = Eβ(Y | z, δ, x) = δz + (1− δ)Eβ(Y | Y ≥ z, x) (8.4)

Note the dependence of the conditional expectation on the unknown pa-

rameter β. Replacing Y in expression (8.3) by its conditional expectation
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gives

1

n

∑
i

x′iEβ̂
(Y | zi, δi, xi) =

1

n

(
n∑
i=1

x′ixi

)
β̂ (8.5)

In other words, the Buckley-James estimator β̂ solves the normal score

function for β when the expectation on the le� hand side is computed

using β̂.

Using the model formula (8.1) and a �xed β, an empirical version of the

conditional expectation can be evaluated:

Êβ(Y | zi, δi, xi) =: ŷi(β)
= δizi + (1− δi)Êβ(Y | Yi ≥ zi, xi)

= δizi + (1− δi)

(
xiβ +

∫∞
ei

e dF̂β(e)

Ŝβ(ei)

)

= δizi + (1− δi)

(
n∑
k=i

vik(β)(zk − xkβ) + xiβ

)
(8.6)

where F̂β is an estimator of the distribution function of the residuals

(e.g. the Kaplan-Meier estimator), Ŝβ is the estimated survivor function

1− F̂β, and I have put

vik(β) =


wk(β)

Ŝβ(ei)
if ei < ek

0 otherwise

and

wk(β) = P̂β(є = ek)

so that wi(β) is the height of the jump of the estimated distribution at

the i-th residual.1 A solution β̂ of the estimating equation (8.3) therefore

1
For ease of notation it is assumed here that the observations are ordered according

to the magnitude of the corresponding residuals.
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satis�es:

β̂ =

(
n∑
i=1

x′ixi

)−1( n∑
i=1

δix
′
izi +

n∑
i=1

(1− δi)x
′
iŷi(β̂)

)
(8.7)

�is leads to a straightforward iterative procedure for the computation

of β̂:

1. Assign starting values β̂0.

2. Compute ŷi(β̂
j) according to (8.6) using the Kaplan-Meier proce-

dure as an estimator for the distribution of the residuals.

3. Compute β̂j+1 using the right hand side from (8.7).

4. Go back to step 2 unless some convergence criterion is met.

To be numerically e�cient, this simple iterative strategy needs elaboration.

Following the steps of the algorithm, the basic choices are:

1. Starting values may be obtained using the least-squares estimator

treating all observations as uncensored.�is was suggested by

Buckley and James (1979). Other choices, e.g. using only uncen-

sored observations, are of course possible, but do not seem to have

a decisive in�uence on the procedure.

2. �e Kaplan-Meier estimator is not uniquely de�ned on the whole

real line if the largest residual is censored. Buckley and James

suggest to always treat the largest residual as uncensored.�is will

lead to an underestimation of the regression constant, but should

scarcely a�ect the other regression estimators. Other choices are

discussed by Efron (1988), while Lai and Ying (1991) propose to

smooth the risk sets.

4. �e iteration may not converge to a unique value. �is is due

to the fact that the right hand side of (8.7) is a piecewise linear

function in β. Changing β does not change the weights vik(β)

unless the ranks of the residuals change.�erefore, the iterations

may oscillate between several values β̂.�e discontinuity of (8.7)

hampers the analytic treatment of the estimator. Moreover, the
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number of limiting values in �nite samples is not predictable, but

may potentially be rather large (Currie, 1996). Fortunately, the

phenomenon seems to be of practical interest only in rather small

samples, in situations where the e�ect of covariates is small, or

when the convergence criterion is very strict (Wu/Zubovic, 1995).2

8.4. Score Functions and Censoring

To appreciate why the Buckley-James procedure is a “good” generalisation

of estimating equations to censored variables it is helpful to consider

it from a more general point of view. Especially the relation between

score functions with and without censoring is revealing. Write ℓ̇(β) =

ℓ̇(β;Y , x) = x′(Y − xβ) for the score function from the normal linear

regression model (8.1).�e expectation satis�es

Eβ(ℓ̇(β;Y , x)) = 0 (8.8)

Moreover, the root β̂ of the empirical version of the expectation (8.8),

1

n

∑
i

ℓ̇(β̂; yi, xi) = 0

is the maximum likelihood estimator. Even if the distribution is not

normal — so that the root of the score function need no longer be

a maximum likelihood estimator — β̂ is consistent and o�en highly

e�cient. In the presence of censoring, the censored normal score

function ℓ̇∗ can be expressed as

ℓ̇∗(β;Z, δ, x) = E(ℓ̇(β;Y , x) | Z, δ, x) (8.9)

the conditional expectation of the score function with complete observa-

tions given the incomplete observations (see e.g. Ibragimov/Has’minskii

2
Wu and Zubovic (1995) suggested to use the arithmetic mean of all limit values

of the algorithm as estimator.�is suggestion may be useful in situations where a

unique estimator is required (e.g. simulations, using the procedure as building block

for more complicated models, etc.). Otherwise, the di�erent values of the limiting

cycle of estimators are o�en very close and it may su�ce to report just one of them.
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1981: Chap. I.7).�is relation between score functions for complete and

incomplete observations makes the score function an attractive starting

point for the construction of estimators.

It remains to consider the computation of the conditional expectation.

From the perspective of the normal linear regression model one might

try to use the normal distribution.�is was proposed by Schmee and

Hahn (1979) and Aitkin (1981). However, one can only expect the good

properties of the estimators even outside the normal distribution to

extend to censored data situations if the conditional expectation is com-

puted from a non-parametric estimator. In the case of right censored

observations, the Kaplan-Meier estimator, being a non-parametric maxi-

mum likelihood estimator solving a self-consistency equation, seems to

be an appropriate choice. In fact, Lai and Ying (1994), following Ritov

(1990) and Severini andWong (1992), provide a general argument for

the use of self-consistent estimators in the computation of conditional

expectations for censored and truncated observations.3 To outline the

reasoning it is best to regard the estimation problem as one involving

both β and the distribution of є, F, as unknown parameters. Here, β is

the parameter of interest and F is treated as a nuisance parameter. In

such a context, one may consider the score function corresponding to

the pro�le likelihood. �e pro�le log-likelihood is derived from the

log-likelihood ℓ(β, F) by replacing F with an estimator F̂β treating β as

known. It is thus a function of β only. Symbolically, then, one may write

d

dβ
ℓ(β, F̂β) =

∂

∂β
ℓ(β, F)|(β,F̂β)

+
∂

∂F
ℓ(β, F)|(β,F̂β)

∂

∂β
F̂β (8.10)

for its score function. If F̂β is of maximum likelihood type, the sample

mean of the second term vanishes. One needs only to consider the score

function for β that would result if F was known.

�is holds for all unbiased estimating equations for Fβ . But an estimator

F̂β that maximises the likelihood ℓ(β, F) in F for β �xed automatically

provides an estimator of the least favourable submodel β 7→ (β, F̂β) for

3
�e argument extents to estimating equations that are not derived from likeli-

hood functions. See Bickel et al. (1998: Chap. 7.7) for a general discussion of the

construction of estimators along these lines.
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8. A Multivariate Buckley-James Estimator

the estimation of β and therefore (8.10) approximates the e�cient score

function, making e�cient estimation of β feasible.�us one would like

to use an estimator F̂β that simultaneously solves an estimating equation

and maximises a non-parametric likelihood.

Taking Fβ(u)− 1[Y − xβ ≤ u] as a score function for Fβ in the uncen-

sored case, one is led via the projection of scores (8.9) to an estimator of

Fβ that satis�es the corresponding self-consistency equation, namely

0 = En ℓ̇
∗(F̂β) = En(EF̂β | Z,δ,x(ℓ̇(F̂β) |Z, δ, x)) = F̂β(u)−

1

n

n∑
i=1

F̂β(u | zi, δi, xi)

(8.11)

But the estimator F̂β that solves the self-consistency equations and

maximises the non-parametric likelihood is the Kaplan-Meier estimator.

On the other hand, considering E(∂ℓ(β, F̂β;Y , x)/∂β | Z, δ, x) as the
pro�le score function in the presence of censoring, one is led to the

estimating equations

0 = EnEF̂
β̂
(ℓ̇(β̂;Y , x) |Z, δ, x)

=
1

n

n∑
i=1

x′i(xiβ̂ − EF̂
β̂
(Y | zi, δixi))

=
1

n

n∑
i=1

x′i(xiβ̂ − ŷi(β̂))

leading back to (8.5). From this perspective, then, both the choice of

the normal score function ℓ̇(β) = x′(Y − xβ) as a starting point and the

use of the Kaplan-Meier estimator are the appropriate extension of an

estimating equation technique to censored data.

8.5. Multivariate Extensions

To consider the multivariate situation I write Y = (Y1, . . . , Yk)
′ for the

column vector of k dependent variables.�e covariates are given by a
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k× kpmatrix x where the j-th row corresponds to the p covariates xj
of the j-th dependent variable Yj with zeros padded in the appropriate

places.�e regression coe�cients are given by a column vector β of
dimension kp× 1.�e multivariate linear model can then be presented
as

Y = xβ + ε =


x1 0 . . . . . . 0
0 x2 0 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . xk




β1
β2
...

βk

 + ε (8.12)
with residual vector ε.�e mean of the residuals is E(ε) = 0 and the
covariances are given by E(εε′) = Ω. As before, the covariate vectors xj
are assumed to contain a constant. Note that in the case of equal e�ects

β1 = β2 = . . . = βk the xmatrix can be reduced to a k× pmatrix.

Now suppose that the data are censored by a k-dimensional variable

C = (C1, . . . ,Ck)
′. Instead of Y only the vectors Z = (Z1, . . . , Zk)

′ =
(min(Y1,C1), . . . , min(Yk,Ck))

′ =min(Y,C) and δ = (1[C1 ≥ Y1], . . . ,

1[Ck ≥ Yk])
′ = 1[C ≥ Y] are observed. Note that here and in the

sequel minima, indicator functions, and (in-)equalities are interpreted

component-wise.

To render the conditional distribution ofY identi�able from the censored
version (Z, δ) I will assume that the censoring vector C and the vector
Y are (conditionally on x) independent. Moreover, the support of Y is
assumed to be contained in the support of C.4

Using this model, Lin andWei (1992), Lee, Wei and Ying (1993), and

Hornsteiner and collaborators (1996, 1997, 1998) proposed extensions

to the one-dimensional Buckley-James estimator. In these papers, a

solution to an equation similar to (8.7) is used. Both Lin and Wei (1992),

and Lee, Wei and Ying (1993) use k least-squares estimating equations

4
Some of the censoring patterns of interest in event history analysis, e.g. censoring

of the recurrence times in a semi-Markov process by a �xed observation interval,

are not easily represented in this setup. Reference to an underlying process would

be necessary to line up censorings and durations according to their timing on a

common time scale. See Dabrowska and Lee (1996), Li and Lagakos (1997), and Tsai

and Crowley (1998) for some discussion.
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8. A Multivariate Buckley-James Estimator

disregarding possible correlations. Hornsteiner et al. (1996, 1997, 1998)

and Pan and Kooperberg (1999) use a working correlation matrix V(α)

(of dimension k× k) in a generalised least-squares estimating equation

n∑
i=1

x′iV(α̂)
−1(yi − xiβ̂) = 0 (8.13)

in an attempt to gain e�ciency. To deal with the censoring, all these

proposals use an updating scheme parallel to the one-dimensional case,

namely the conditional expectations

Y∗∗j = Eβj
(Yj | zj, δj, xj)

= δjzj + (1− δj)Eβj
(Yj | Yj ≥ zj, xj), j ∈ {1, . . . , k}

(8.14)

from the j-th model equation.�is leads to the correct mean structure

while using only the marginal distributions of the residuals.�e condi-

tional expectations are then computed from the marginal Kaplan-Meier

estimators of the distribution of the residuals. While Lin andWei and Lee,

Wei and Ying simply use the marginal Kaplan-Meier estimators, Horn-

steiner (1998) also considers pooled and weighted versions to increase

e�ciency in certain situations. In addition to the contributions of Y∗∗j in
the updating scheme, both Hornsteiner et al. and Pan and Kooperberg

(1999) also base their estimating equations for α on the values of Y∗∗j . As
Hornsteiner (1998: 49) notes, this approach is approximately valid only

if the amount of censoring is small.

8.6. �e Missing Information Principle and

Non-parametric Estimation of Censored

Multivariate Observations

Starting with a score function ℓ̇(β) derived from a likelihood ℓ(β), the
missing information principle suggests to use the conditional expectation

of ℓ̇(β) based on all the available information, not just the information
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8.6. �e Missing Information Principle

from the marginal distributions.�us one may consider the conditional

expectations

Y∗j = Eβ(Yj | z, δ, x)
= δjzj + (1− δj)Eβ(Yj | Yj ≥ zj, (z, δ, x)), j ∈ {1, . . . , k}

(8.15)

instead of (8.14).�is conditional expectation is based on all the informa-

tion on Y available from the data while (8.14) uses only the information
from the distribution in the j-th dimension. Extending the argument

from section 8.4 one would expect (8.15) to give an appropriate gener-

alisation of one-dimensional censored regression if it was possible to

exhibit a self-consistent estimator of the multivariate distribution of the

censored residuals. Also, from a more practical point of view, it seems

advantageous to use as much information as possible in dealing with the

censoring process without imposing strong extraneous assumptions. If

the degree of censoring is high and if there is considerable correlation

within Y or C, one might expect (8.15) to perform better than (8.14).

In the context of multivariate proportional hazards models this approach

was implicitly suggested by Prentice and Hsu (1997) and Cai and Prentice

(1995). On the other hand, this extension has not been discussed in the

context of the Buckley-James approach.�is is not by accident: in the

computation of E(Y |Z, δ, x) one would need a non-parametric estima-
tor of the joint distribution of ε from censored data that additionally
should solve a self-consistency equation, maximise a non-parametric

likelihood, and, for practical reasons, should allow for easy computation

of conditional expectations along half-lines or orthants.

In dimension 2 or higher, there is no unique self-consistent non-parametric

maximum likelihood estimator (NPMLE) of the distribution function of

ε. In fact, the EM type argument leading to (8.11) will not even result in a
consistent estimate. To �x ideas, consider the two-dimensional problem,

k = 2, disregarding covariates for the moment. Suppose one observes

(z1, z2, 0, 1), censored in the �rst component, but exactly observed in the

second.�is says that the underlying tuple (y1, y2) is located on the ray

{(y1, y2) | y1 > z1, y2 = z2} parallel to the �rst axis. But if the distribution
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8. A Multivariate Buckley-James Estimator

of (Y1, Y2) is absolutely continuous, the probability of obtaining another

uncensored observation lying on this ray is 0.

Without uncensored observations on the ray there is no empirical

support for the computation of the distribution function along this ray.

To compute a self-consistent estimator, one needs an expression for

Pr((Y1, Y2) ≤ (u1, u2) | (Y1, Y2) ∈ {(y1, y2) | y1 > z1, y2 = z2}), the last
term in the self-consistency equation (8.11) based on a current estimate

of the joint distribution. If there are no uncensored observations on

the ray, the conditioning event has probability 0 for all sensible starting

estimates.�erefore the conditional probability can be de�ned arbitrarily.

But updates of the estimator based on the self-consistency equation

will not change due to probability mass transferred from the censored

observation to uncensored observations, thus leading to inconsistent

estimators.

In response to these di�culties several alternative estimators of the joint

distribution of multivariate censored observations have been developed.

Pruitt (1993) describes six estimators, summarises their known prop-

erties, and compares their small sample behaviour in a limited Monte

Carlo experiment. Further comparisons are contained in van der Laan

(1997). Some of these estimators are based on a decomposition of the

joint distribution into conditional times marginal distributions.�e

approaches then proceed using the one-dimensional Kaplan-Meier esti-

mator. But the resulting estimators will generally depend on the ordering

of the decomposition. Other approaches use smoothing techniques

for singly censored observations, thus depending on the choice of a

smoothing parameter.�e proposals of Dabrowska (1988, 1989) and

Prentice and Cai (1992) use special representations of the multivariate

survivor function, both representations giving rise to explicit estimators

of the distribution function. Gill (1992) provides a lucid introduction to

these methods, and both are discussed in Pruitt’s 1993 article.�ough

computationally attractive, both estimators are neither solutions to some

self-consistency equation nor are they of maximum likelihood type.

All these approaches may yield negative mass for the increments of the

estimated distribution function (Pruitt 1991).�is property is especially

disturbing when one is interested in computing conditional expectations

324



8.6. �e Missing Information Principle

EF̂(Y1 |Y1 > z1, Y2 = y2) which may result in values≤ z1 for these esti-

mators. Moreover, the implied computation of conditional expectations

used in (8.15) are indetermined in general and cannot directly be used

in a generalisation of the Buckley-James procedure.

In contrast, there is an essentially unique non-parametric estimator for

discrete censored data maximising a likelihood. It was �rst considered by

Campbel (1981a,b).�is let van der Laan (1995, 1996, 1997) to consider a

non-parametric MLE based on discretised censored observations. In

the two-dimensional case, let D = D1 × D2 be a rectangle covering the

observations so that (z1i, z2i) ∈ D for all observations. Partition the

side of D1 into q1 intervals of equal length, i1,l , l = 1, . . . , q1. Partition D2
into q2 intervals i2,l , l = 1, . . . , q2, also of equal length.�is partitions

D into q1q2 congruent rectangular boxes i1,l × i2,m. Now coarsen the

observations as follows: if the observation is uncensored ((δ1, δ2) = (1, 1))

or censored in both dimensions ((δ1, δ2) = (0, 0)), keep the data as

(z1, z2, δ1, δ2). If the observation is censored in only one dimension

((δ1, δ2) = (0, 1) or (δ1, δ2) = (1, 0)), replace the uncensored dimension

by the interval it falls into.�at is, if the observation is censored in the

�rst dimension, (z1, z2, 0, 1), replace z2 with the interval i2,l to which

z2 belongs.�e corresponding (y1, y2) are therefore assumed to lie in

the strip {(y1, y2) | y1 > z1, y2 ∈ i2l}. Moreover, the strip is restricted to
the domain D, {(y1, y2) | y1 > z1, y2 ∈ i2l} ∩ D. Similarly, observations

only censored in the second dimension, (z1, z2, 1, 0), are grouped into

(i1,l , z2, 1, 0) ∩ D.

In �gure 8.1 �ve observations are depicted.�e �lled circles represent

uncensored observations while the hollow ones represent singly and dou-

bly censored observations. Feasible values of (y1, y2) in the case of singly

censored observations lie on the rays indicated by solid lines, while values

corresponding to the doubly censored observation lie in the orthant indi-

cated by the brocken line.�e box around the �gure indicates the domain

D which is partitioned by intervals of equal length along its two sides.

�e resulting grid is shown by light lines.�e coarsening of the observa-

tions does not change the uncensored or doubly censored observations.

However, the values of (y1, y2) corresponding to the two singly censored

observations are now assumed to lie in the shaded strips. While the rays
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8. A Multivariate Buckley-James Estimator

do not contain any uncensored observations, the strip corresponding

to the observation censored in the second dimension now contains an

uncensored observation. For the reduced data the self-consistency equa-
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Figure 8.1.: Coarsening censored observations

tions contain the term Pr((Y1, Y2) ≤ (u1, u2) | (Y1, Y2) ∈ {(y1, y2) | y1 >
z1, y2 ∈ i2,l(z2)}) for observations singly censored in the �rst dimension,
where l(z2) = {l ∈ {1, . . . , k} | z2 ∈ i2l}. In general, there will be uncen-
sored observations in the strips corresponding to the conditioning event.

�us, changes in the mass attributed to the uncensored observations will

be re�ected in the updating scheme for the singly censored observations.
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One may hope that this recaptures the properties of self-consistent

estimators in the discrete multivariate and the one-dimensional case,

albeit at the cost of throwing away some data.

In fact, van der Laan (1996) showed that the self-consistent MLE based

on the reduced data is uniformly consistent and asymptotically normal5.

To achieve asymptotic e�ciency of the reduced data MLE, he shows that

the length of the coarsening intervals i in the two-dimensional case have

to shrink to 0 at a rate slower than n−1/18 (van der Laan 1996:�eorem
5.1).�is does not provide much guidance for sample sizes practically

encountered. His simulations (1997) suggest that a small interval length

of 0.02 for the square [0, 1]× [0, 1] and n = 200 works well. Our limited
experience indicates that in order to attain stable estimates of conditional

expectations for the use in Buckley-James iterations it is expedient to use

rather larger coarsening intervals.

�e procedure is easily generalised to k dimensions. All observations

with 0 <
∑k

l=1 δl < k are coarsened to a lattice in D = D1 × . . . × Dk

induced by a partition of the Dj into intervals of equal length.�is will

ensure that the conditioning events in the self-consistency equations will

have positive k-dimensional contents.�e estimation procedure for the

non-parametric self-consistent MLE of the reduced k-dimensional data

can be summarised as follows:

5
In his simulations and the proofs van der Laan uses a slightly more complicated

method of data reduction than the one proposed above. It involves a simultane-

ous coarsening of the censoring variables C in addition to the coarsening of the
uncensored dimensions. If Y is independent of C this is no longer true for the
coarsened data version, since Pr(Y1 ∈ i1,l , δ1 = 1) = Pr(Y1 ∈ i1,l ,C1 ≥ Y1) =R
i1,l
1− G1(u−)dF1(u), where F1 and G1 are the (marginal) distributions of Y1 and

C1, respectively.�us the likelihood no longer factors into a term only containing

F and another only depending on the censoring distribution G. Van der Laan’s

proposal retains the orthogonality between C and Y and thus allows asymptotic
arguments based on a sequence of identical models. From a practical point of

view and considering that the independence of the censoring scheme cannot be

ascertained from the observations one may as well assume that the non-parametric

likelihood in the coarsened model factors. One should then bear in mind that

di�erent models for the original and coarsened experiment are used, and that one

changes models when changing the coarsening grid.
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1. Choose a region D = D1 × . . . × Dk. I use Dl =]mini zli −
σ , maxi zli + σ]. Note that the choice σ = 0 will exclude obser-

vations that are either right censored in this component at the

maximum, or are uncensored in this component at the minimum

of the observations.

2. Choose the number ql of intervals il for each dimension l. Partition

each side Dl into ql intervals il,1, . . . , il,ql . I use le� open and

right closed intervals. Partition D accordingly in
∏k

l=1 ql boxes

i1,m1 × . . . × ik,mk
.

3. Choose starting values. �e NPMLE is discrete. It su�ces to

specify point masses for P̂r(Y = y). We choose to put mass 1/n on
all uncensored observations.�e mass of 1/n of censored observa-

tions is equally spread over the strips implied by the censoring

pattern of that observation. To all uncensored observations in the

strip and to all intersections of the strip with other strips or with

the boundary of D the appropriate part of 1/n is added.�is will

produce a superset of the support points of the NPMLE. Pruitt

(1993), Betensky and Finkelstein (1999), and Prentice (1999) dis-

cuss the exact determination of the support points of the NPMLE

in the two-dimensional case, but the formulation does not easily

generalise to higher dimensions.

4. Iterate the self-consistency equations: For each support point y
compute the new value P̂r

j+1
(Y = y) as the mean of the conditional

probabilities given the observed information, 1/n
∑

i P̂r
j
(Y =

y |Zi, δi), where the probability of the conditioning event is the

sum over the probabilities P̂r
j
(Y = y) lying in the strip determined

by (Z, δ)i.

5. Stop the iteration using some convergence criterion. I use the

maximum of |P̂rj+1(Y = y)− P̂rj(Y = y)| over all support points
as convergence criterion.

�is EM algorithm generally converges very slowly. Especially the mass

of points not in the support of the MLE, but given positive mass by our

determination of starting values, decreases only slowly to 0. Prentice
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(1999) and Betensky and Finkelstein (1999) proposed to use a direct

constraint maximisation algorithm based on the likelihood function.

But the approach will fail if the maximum of the likelihood is not

unique.�is happens if there are strips (or orthants) corresponding to

censored observations that intersectDwithout intersecting other strips or

uncensored observations. Region of non-uniqueness can be ascertained

in the two-dimensional case, though the procedure is quite tedious.

Excluding these region from the maximisation problem would make

direct maximisation algorithms very appealing. Unfortunately, we did

not �nd a feasible formulation for the regions of non-uniqueness in the

k-dimensional case. In contrast to the direct maximisation approaches

the EM algorithm is not hampered by the possible non-uniqueness

of the NPMLE. It simply does not change estimates in the regions of

non-uniqueness. Since the estimator is to be used repeatedly based on

changing data in the Buckley-James procedure, it seems appropriate to

use the slow but reliable EM algorithm.

8.7. �e Multivariate Buckley-James Estimator

With a NPMLE for the distribution of multivariate censored data at hand,

an algorithm for the computation of multivariate regression estimators

in the model (8.12) using the Buckley-James approach can be described

as follows:

1. Compute starting values for β. I use the least-squares estimator
treating all observations as uncensored.

2. For the j + 1-th iteration, compute the NPMLE of the residuals

based on the data (zi − xiβ̂
j
, δi).

3. Compute new values of the dependent variable as Y∗(j+1) = ŷ(β̂j
)

according to (8.15).�e conditional expectations of the censored

residuals ei are evaluated as the weighted means of the residuals ek.
�e estimates from step 2 are used as weights and the summation

is over the regions determined by the censoring pattern.
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4. Compute new regression coe�cients β̂
j+1
using a least squares

regression of Y∗(j+1) on x.

5. Go back to step 2 unless some convergence criterion is met. I use

the maximum of |β̂j+1
m − β̂

j
m|/ max(|β̂

j+1
m |, 1), wherem indexes the

elements of β.

�e distinctive feature of the estimator is the use of the joint distribution

of the residuals to compute expected values in step 3. To illustrate the

e�ectiveness of the computations, I generate n = 300 bivariate normal

observations with Y1 ∼ N(0, 1), Y2 ∼ N(0, 1) and corr(Y1, Y2) = 0.8.

�ese are censored in the second dimension only by C2 ∼ N(2.4, 1).

Figure 8.2 compares the estimated expected values of the censored

observations (circles) based on the joint distribution (diamonds) with

those based on the marginal distribution only (crosses).�e estimates

based on the joint distribution are clearly better in mimicking the

underlying distribution than are the estimates based on the marginal

distribution only. Figure 8.3 compares the two approaches in the case

of independent components Y1 ∼ N(0, 1), Y2 ∼ N(0, 1), once again

with n = 300 and C2 ∼ N(2.4, 1). In this situation the estimates based

on the joint distribution may be thought to fare less well. While the

joint distribution cannot supply any additional information over the

marginal distribution, the estimator based on the joint distribution

looses information due to the coarsening. In this (and the previous)

example I partitioned the �rst dimension into 10 intervals. It seems

apparent from �gure 8.3 that the estimates based on the joint distribution

do not su�er strongly from the coarsening.

As an example for the e�ect of joint versus marginal estimation on the

regression coe�cients I use data from Wei, Lin and Weissfeld (1989:

Table 1).�e data give natural logarithm of the number of days, zli, to

virus positivity in the l-th serum sample of the i-th patient, l = 1, 2, 3; i =

1, . . . , 36.�ere are thus three time dimensions. Patients were treated

with ribavirin.�ere are three treatment groups: placebo, low dose, and

high dose.�is covariate information is coded in two dummy variables

indicating low dose group and high dose group, respectively. �ere

are six observations with missing values in one of the zli.�ese were

excluded from the analysis. Table 8.1 compares the estimated regression
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Figure 8.2.: Conditional expectations: Correlation 0.8

coe�cients from a model using a marginal Kaplan-Meier estimator with

the proposed method using the joint distribution estimator.�e latter

was computed using a coarsening to �ve intervals of equal length in each

of the three dimensions.�e procedure converged a�er four Buckley-

James iterations in each of which the computation of the NPMLE took

four to �ve iterations.�e resulting estimated coe�cients are all slightly

smaller than the coe�cients from the marginal estimator.
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Table 8.1.: Dependent variable: natural logarithmof days to virus positivity

marginal joint

Table 8.1.: Dependent variable: natural logarithmof days to virus positivity

marginal joint

Constant 1 1.893 1.893

Constant 2 2.170 2.166

Constant 3 2.179 2.149

low dose 1 0.692 0.674

high dose 1 0.542 0.530

low dose 2 0.168 0.128

high dose 2 0.028 0.021

low dose 3 0.596 0.530

high dose 3 0.252 0.229

8.8. Discussion

�e suggestedmultivariate Buckley-James estimator seems to be a feasible

alternative to approaches based on the marginal distribution of the

residuals. I have tried it with real and simulated datasets with up to 4000

observations and up to 10 dimensions.�e most time consuming part of

its computation is the estimation of the joint distribution of the residuals,

which may o�en take 20 to 30 iterations. It would therefore be of interest

to develop reliable direct maximisation procedures for the NPMLE.

An obvious obstacle to the use of the estimator is the lack of a variance

estimator for regression coe�cients.�is is due to the fact that there

is no variance expression for the NPMLE. Nevertheless, it might be

possible to obtain variance estimators from a numerical approximation

of the score function.
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8. A Multivariate Buckley-James Estimator

8.9. Postscriptum

�e accelerated failure time model and in particular Buckley-James’

estimator for one dimensional failure time data has received quite a

lot of attention in recent research on regression models with censored

data. Johnson (2008) considers variable selection procedures. Kong and

Yu (2007) investigate the asymptotic distribution of the Buckley-James

estimator under non standard conditions and in particular when the

underlying distribution is discontinuous. Other asymptotic results are

given by Yu andWong (2003) and Gørgens (2003) Zhao and Chen (2008)

and Zhou and Li (2008) and Zhou (2005) as well as Subramanian (2007)

consider empirical likelihood methods. Zeng and Lin (2007) and Jin et al.

(2006) as well as Zeng and Lin (2008) explore the construction of e�cient

estimators. Datta et al. (2007) and Wang et al. (2008) discuss the use of

lasso type techniques in the presence of high dimensional convariates.

Yu et al. (2007) and Nan et al. (2006) discuss applications under a case

cohort design. Lu and Cheng (2007) uses synthetic data approach to

construct a partially linear single index model. Huang et al. (2007) and

Jin (2007), Fang and Zhao (2006), Ren (2003) as well as Zhou and Wang

(2005) discuss robusti�ed versions of the Buckley-James estimator. Leng

and Ma (2007) and Heuchenne and van Keilegom (2007a) investigate

nonlinear covariate e�ects in Buckley-James type estimators. General

discussions of least squares approaches to censored data problems are

provided by Jin et al. (2006) and Heuchenne and van Keilegom (2007b).

Rank estimators and smoothed versions of rank estimators are discussed

in Chen et al. (2005), Brown andWang (2007), Peng and Fine (2006),

Khan and Tamer (2007), Jin et al. (2003) and Heller (2007).�e problem

of discontinuity of the objective function of the Buckley-James estimator

is investigated by Song et al. (2007). Dimension reduction techniques

are introduced by Huang and Harrington (2004, 2005).

8.9.1. Multivariate Approaches

�e monograph by Martinussen and Scheike (2006: Chap. 9) discusses

recent approaches to the estimation in multivariate censored data. More
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recent developments include discussions of nonparametric approaches

to the estimation of multivariate distributions when data are censored

(Aalen et al. 2004, Akritas and Van Keilegom 2003, Van Keilegom

2004, Prentice et al. 2004, Gentleman and Vandal 2002, Alavi and

�avaneswaran 2002, Modarres 2003, Chatterje and Shih 2001, Tien

and Sen 2002, Bandeen-Roche and Liang 2002, Wang andWells 2000,

Henriques and Oliveira 2003 and Van der Laan et al. 2002). An emergent

�eld of research is the consideration of semiparametric copula models

(Wang 2003, Rivest and Wells 2001, Oakes and Wang 2003, Jiang et al.

2005). Inference for quantiles is discussed by Yin et al. (2003) and Cai

and Kim (2003).

Regression models are considered by Van Keilegom and Hettmansperger

(2002), Fan and Prentice (2002), He and Lawless (2005), Jin et al. (2006),

Lu (2005) and Cai et al. (2008). Oakes and Ritz (2000) discuss the use of

copula models in the context of regression and Ivano� and Merzbach

(2004) use the concept of random clouds to discuss aspects ofmultivariate

censored survival analysis. Extensions to more complicated incomplete

data models have been discussed by Chen et al. (2008) Antony and

Sankaran (2008). Nonparametric kernel regression with censored data

was considered by Yu and Lin (2008).
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9

On Proportionality of

Regression Coefficients in

Mis-specified General Linear

RegressionModels

9.1. Summary

It is shown that estimated regression coe�cients in mis-speci�ed general

linear regression models (the conditional distribution of the variable

of interest given the regressors is a function of a linear combination of

the regressors) are approximately proportional to the “true” regression

coe�cients.�e constant of proportionality is computed explicitly and

a second order approximation is given. �e connexion of this result

with similar but stronger �ndings under the additional assumptions of a

convex loss function and normally distributed regressors (Li and Duan

1989: 1009–1052) is clari�ed.

9.2. Introduction

Over recent years a large amount of empirical evidence—both obtained

from real data sets and simulations—has been accumulated for a peculiar
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9. Proportional Regression Coe�cients in Mis-speci�ed Models

stability property of regression models. Using di�erent and possibly mis-

speci�ed models results in estimates of regression parameters that are

roughly proportional.�is is true also if certain kinds of incomplete data

are ignored in the analysis. It has long been known that Probit and Logit

models o�en give similar results (Chambers and Cox 1967). D’Agostino

et al. (1990) show that a pooled logistic regressionmodel and two variants

of Cox’ proportional hazards model give nearly identical results for their

data sets and o�er some reason for the identity. Based on simulations a

similar comparison is made by Ingram and Kleinman (1989). Doksum

and Gasko (1990) discuss the general relationship between models in

binary regression and survival analysis. Addison and Portugal (1987)

compare several parametric regressions for a data set on the duration

of unemployment and �nd proportional regression coe�cients in all

models. Bergström and Edin (1992) give similar results also, using data

on unemployment duration. In addition they show that grouping of

the dependent variable will attenuate the regression coe�cients by a

constant factor. Petersen (1991) and Petersen and Koput (1992) treat the

e�ects of grouping in censored regression.

In contrast to the abundance and generality of the empirical �ndings,

theoretical explanations are rare and cover only special cases. Atten-

uation e�ects were shown by Bretagnolle and Huber-Carol (1985) for

Cox’ proportional hazards model if covariates are le� out. Ruud (1986)

reviews earlier results on proportionality of regression parameters in

“limited dependent variable” models with normal regressors. Results for

mis-speci�ed correlated Logits were obtained by Neuhaus et al. (1992).

Consistency results for linear location-scale models were given by Gould

and Lawless (1988). In the case of least squares estimates in a grouped

normal regression Stewart (1983) shows that proportionality is asymptot-

ically exact for jointly normal regressors. Chung and Goldberger (1984)

generalise his �ndings to arbitrary information loss under a linearity

condition on the reverse regression. More recently, Goldenshluger and

Polyak (1993) showed consistency of the least squares estimator in linear

models posing very weak conditions on the error term (the models allow

for auto-regression and other forms of dependence as well as nearly

arbitrary distributions) when the regressors are i.i.d. with a symmetric

joint distribution, with expectation 0 and �nite fourth moment.
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9.2. Introduction

However, there are two general theoretical approaches towards an explana-

tion that seem to cover most of the empirical �ndings.�e �rst approach

places restrictions on the joint distribution of the covariates. It originated

from observations on the behaviour of ordinary least squares estima-

tors in nonlinear situations when the regressors are normal (Brillinger

1983).�ese results were later generalised for models of binary outcomes

and other “limited dependent variable” models (see Ruud 1986). Li

and Duan (1989) o�ered the most general proof to date for the class

of general linear regression models.�ese include models for binary

outcomes, transformation models, censored regression and generalised

linear models.

�e second approach is based on a Taylor approximation argument that

requires no conditions on the distribution of the regressors. Solomon

(1984, 1986) was apparently the �rst to use it for the comparison of a

proportional hazards model when an accelerated life model is true and

for an accelerated life model when a proportional hazards model is true.

Struthers and Kalb�eisch (1986) gave more general conditions for the

behaviour of the partial likelihood estimator (similar to the ones given

later by Hjort (1992)), but also used a Taylor approximation argument to

get the proportionality result in the partial likelihood case. In a discussion

of a paper by Cox and Reid (1987), Skinner (1987) hinted at the possibility

of extending the argument of Solomon to the general linear regression

case. Later he expanded on the interpretability of proportional regression

coe�cients (Skinner 1989). In that paper he used the same arguments as

Li and Duan for the general linear regression case but did not give a

proof via the alternative Taylor approximation.

In this paper I will make Skinner’s remarks explicit. �e constant of

proportionality will be computed and the second order approximation

will be given.�en I try to elucidate the relation between Skinner’s and

Li and Duan’s result.
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9.3. Notation

�e conditional distribution of an outcome variable Y given the values of

covariates x describes a general linear regressionmodel if the distribution

of Y depends on x only through a linear combination of the x. �e

conditional density (or probability) of Y may be written as

f (y | α0 + xα) (9.1)

where f (. | .) belongs to some classF of regular conditional densities, x is
a (1×p) row vector, α0 is a scalar, and α is the (p× 1) vector of regression
coe�cients. It will be assumed that the parameter α is identi�ed at least

up to a scalar multiple:

f (y | α0 + xα) = g(y | α∗0 + xα∗) ∀x, y; f , g ∈ F (9.2)

=⇒ α∗ = γα , γ ∈ R\{0}

�e class of general regression models retains the interpretability of

relative magnitudes of regression coe�cients, a point stressed by Skinner

(1989): Let ei be the i-th unit vector, δ a real scalar.�en

f (y | (x + δei)α) = f (y | xα + δαi)

= f

(
y | xα + δ

αi

αj
αj

)
= f

(
y | (x + δ

αi

αj
ej)α

)
so that αi/αj, αj 6= 0 is the amount of change in xj required to achieve an
e�ect on the density equivalent to a unit change in xi. By the identi�ability

assumption (9.2) these “equivalent e�ects” ratios (Skinner 1989) do not

depend on the chosen representation, f .

It is sometimes useful to describe the model given by (9.1) in terms of

random variables instead of densities. Let us write

Y = T(h(xα, є)), є ∼ G(.) (9.3)
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9.3. Notation

where є is a real valued random variable with distribution function

G(.) independent of x, h(., .) is a strictly monotonic function in its

second argument and T(.) is a (not necessarily strictly) monotonic

function. A transformation from (9.1) to the representation (9.3) may

be accomplished by choosing T(h(., .)) to be the generalised inverse

of the conditional distribution function in (9.1) and G(.) to be the

uniform distribution on (0, 1). If (9.3) holds, (9.1) follows because the

independence of є and x implies that the conditional distribution of Y

given X = x only depends on xα. Note that the representation (9.3) is

not unique:�e functions T(.) and h(., .) can always be merged into

a single h∗(., .) and G(.) may be chosen as the uniform distribution
by accommodating the function h∗(., .) accordingly. However, (9.3)
allows an interpretation in terms of a latent variable Y∗ = h(xα, є) that is

observed only a�er some form of transformation or information loss

represented by the function Y = T(Y∗). Most of the “limited dependent
variable” models are motivated by such a construction. Moreover, if

a continuous covariate xi with non-zero regression coe�cient αi is

present, and h(., .) is also strictly monotonic in its �rst argument, then a

conceptually simple estimator consistent for α/‖α‖ is easily constructed:
take the normalised value α̂ that maximises the rank correlation between

xα and Y (see Han (1987) for details). Obviously this works even if T(.)

and h(., .) are unknown. Note that the existence of consistent estimators

implies identi�ability as in (9.2) for that class of models (see e.g. Deistler

and Seifert 1978).

To complete the description of the stochastic setup let (Yi,Xi)i=1...n be a

sequence of i.i.d. vectors where the conditional density ofY givenX = x is

given by (9.1), and the marginal distribution of X is non-degenerate with

E(X′X) = Σ > 0 and—without loss of generality—E(X) = 0. Sometimes
further assumptions on the existence of moments, the di�erentiability of

certain functions and the interchange of di�erentiation and integration

will be needed.�ese will be clear from the context.

Only maximum likelihood type estimators will be considered explicitly.

Denote by∑
i

ℓ(yi, xi; β) =
∑
i

ln g(yi | xiβ) (9.4)
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9. Proportional Regression Coe�cients in Mis-speci�ed Models

the log-likelihood function under an assumed model g(. | .) in the class
of general regression models but not necessarily identical to the data

generating model (9.1).�e �rst order conditions for a maximum of the

log-likelihood function are given by setting the pseudo score functions

to 0:

∑
i

U(yi, xi; β̂) =
∑
i

∂

∂ β
ℓ(yi, xi; β)|β=β̂

=
∑
i

x′ig
∗(yi, xiβ̂) = 0 (9.5)

where g∗(., .) denotes the derivative of ln g(. | .) with respect to its second
argument.�e formulation allows for nuisance parameters as long as

the solution of (9.5) is una�ected by them.�e sequence of estimators

β̂n, n→∞ solving (9.5) will be Fisher consistent for the solution of

E
(
U(Y ,X; β̂)

)
= E

(
X′g∗(Y ,Xβ̂)

)
= EX

(
X′ EY|X

(
g∗(Y , xβ̂) | X = x

))
= 0

(9.6)

provided such a solution exists.�is generally implies strong consistency.

Under some further smoothness assumptions on ℓ(.), asymptotic nor-

mality of the estimators follows. See (Li and Duan 1989: 1029pp) and the

literature on the behaviour of maximum likelihood type estimators in

mis-speci�ed models (see e.g. Huber 1967, White 1982, 1983, Gourieroux

et al. 1984, Fahrmeir 1990). Hjort (1992) gave similar results for censored

data using the counting process framework.

Sincemost of the arguments belowuse only the basic structureE(X′g∗(., .))
or similar structures for the expected value of the log-likelihood ℓ(.)

under the true model, the results will also pertain to any estimators of

analogous form.�is includes e.g. Cox’ partial likelihood in the propor-

tional hazards case, and anyM-estimator derived from maximising a

criterion function by setting its derivative with respect to β to 0.
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9.4. Two Special Cases: Linear Models and Least

Squares under Information Loss

9.4.1. Linear Models

�e “true” model is given by a location-scale model with a �xed density

f0(.).�at is

f (y | α0 + xα) = σ−1f0

(
y− α0 − xα

σ

)
, Y = α0 + xα + σє, є ∼ F0

Estimation is carried out by assuming another location-scale model with

density g0(.):

g(y | β0 + xβ) = τ−1g0

(
y− β0 − xβ

τ

)
(9.7)

If maximum likelihood estimation based on the model (9.7) is used, the

expected score function U(.) for β becomes

E(U(Y ,X; β)) = − 1
τ
EX

(
X′EY|X

[
g∗0

(
Y − β0 − xβ

τ

)
| X = x

])
= 0

Conditional on X = x

Y − β0 − xβ = x(α − β) + (α0 − β0) + σє (9.8)

Setting β = α makes the inner expectation independent of X so that

the expectation with respect to X will be 0 (remember E(X′) = 0).
�erefore β = α is a solution of the expected score function which implies

consistency of the regression coe�cients despite mis-speci�cation of the

disturbance distribution.�is is the result of Gould and Lawless (1988): If

a location-scale model is true, then using any other location-scale model

for maximum likelihood estimation will lead to consistent estimators of

the regression slopes, without any further restrictions on the covariates.

Note that the nuisance parameters τ and α0 do not a�ect the solution of

the expected score equation.
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9.4.2. Least Squares under Transformations and Information Loss

Assume that a general regressionmodel holds for a latent variableY∗ with
�xed distribution of the disturbance є. LetY = T(Y∗) be observed, where
T(.) is some arbitrary function. Examples include binary regression

models with T(z) = 1[z ≥ 0] (where 1[.] is the indicator function),

grouped data situations, and transformation of the dependent variable

as in Box-Cox transforms. �e least squares normal equations with

expectation

E(X′(Y − Xβ̂ − β̂0)) = 0

are used as estimating equations.�e solution for the slopes is

β̂ = Σ−1E(X′Y)

Now assume that the conditional expectation of X given Y∗ is linear in
Y∗:

E(X | Y∗ = y∗) = δ(y∗ − E(Y∗)) (9.9)

�is places some restrictions on the distribution of the regressors X. E.g.,

the condition is implied by joint normality of the regressors together

with the regression structure given by (9.1).

Observe that δ is the least squares projection of X on Y∗,

δ = E(X′Y∗)/var(Y∗)

�en

E(X′Y) = EY∗
(
YEX |Y∗(X | Y∗)

)
= EY∗

(
Yδ(Y∗ − E(Y∗))

)
= δ cov(Y , Y∗)

By the preceding example, the regression slopes in the underlying model

are given by α = Σ−1E(X, Y∗).�erefore

β = Σ−1E(X′Y) = Σ−1δ cov(Y , Y∗)
= Σ−1

(
E(X′Y∗)/var(Y∗)

)
cov(Y , Y∗)
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= Σ−1
(
Σα/var(Y∗)

)
cov(Y , Y∗) = α

(
cov(Y , Y∗)/var(Y∗)

)
(9.10)

�e least squares estimator in the model under information loss is

proportional to the underlying vector of regression slopes and the

proportionality factor is given by the least squares regression slope of Y

on Y∗.

A special case of the result was given in Stewart (1983) for grouped

normal regression.�e present version is due to Chung and Goldberger

(1984). �ey also point out that it is su�cient to treat the regression

slopes of the least squares regression of Y∗ on X as the “true” parameter
α without assuming an explicit model for the conditional distribution of

Y∗ given X.�us, assuming only the existence of moments, a regression
result is compared with the one that would have been obtained if there

had been no information loss.�is operationalistic view may prove to

be very helpful for judging empirical �ndings.

9.5. Skinner’s Approach

Returning to the general situation, assume that data are generated by a

model of the form (9.1) for some f (.), α0, α. Score functions from an

assumed model g(., .) of the form (9.5) are used for estimation.�ese

estimators will converge to the solution of the expected score equation

(9.6). If a solution exists and is unique, Skinner (1987) proposed to use a

Taylor approximation to β(α) in terms of α around α = 0.

In fact, if α = 0, setting β = 0 makes g∗(., .) independent of X so
that the outer expectation in (9.6)—the covariance between X and

EY|X(g
∗(Y , xβ) | X = x)—vanishes. So a solution of (9.6) exists for

α = 0.

Taking derivatives with respect to β in the expected score equation (9.6)

at α = β = 0—assuming the interchange of derivative and expectation is
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justi�ed—results in

∂

∂β
E(X′g∗(Y ,Xβ))

∣∣∣
α=β=0

= E(X′Xg∗2 (Y , 0))

where g∗2 (y, η) is the derivative of g
∗(y, η) with respect to η. Since

−g∗2 (y, η) is the “observed” information for η in the assumed model, it

will be positive unless the model is unidenti�ed.�erefore its expectation

with respect to Y given X will also be positive so that the derivative

reduces to

∂

∂β
E(U(Y ,X; β)) = κΣ (9.11)

for some scalar κ < 0.

Taken together, the implicit function theorem may be invoked and the

function β(α) may be approximated by

β(α) ' β(0) + Dβ(0)α = Dβ(0)α

around α = 0, whereD is the di�erential operator. It remains to compute

Dβ(0) explicitly. Set

k(xα, xβ) := EY|X(g
∗(Y , xβ) | X = x)

�en

Dβ(0) =
∂β(α)

∂α

∣∣∣
α=0

= −
[
∂

∂β
EX(X

′k(Xα,Xβ))
∣∣∣
α=β=0

]−1
×[

∂

∂α
EX(X

′k(Xα,Xβ))
∣∣∣
α=β=0

]
= −

[
k2(0, 0)Σ

]−1[
k1(0, 0)Σ

]
= − k1(0, 0)

k2(0, 0)
I = γI (9.12)
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where k1(µ, η), k2(µ, η) are the partial derivatives of k(µ, η) with respect

to µ resp. η and interchanges of integral and derivative are once again

assumed to be valid. Since the terms for the covariances of X cancel,

Dβ(0) reduces to a scalar times the identity matrix.�us the slopes of

the regression under the assumed model are (to �rst order) proportional

to the regression slopes under the data generating model.

It is instructive to compare this result to the example 9.4.2. When the

linearity condition (9.9) does not hold, the conclusion of the example

may not be applicable. Nevertheless, it is possible, with the help of the

preceding formula to give an approximation to the least squares estimator

under information loss. Speci�cally, let T(z) = 1[z ≥ 0].�at is, least
squares method is applied to binary data generated from T(xα + α0 + є),

є ∼ F(.).�en:

∂

∂β
EX(X

′EY|X(T(xα + α0 + є)− xβ − β0)) = −EX(X
′X) = −Σ

Moreover,

∂

∂α
EX(X

′EY|X(T(xα + α0 + є)− xβ − β0))
∣∣∣
α=0

=
∂

∂α
EX(X

′(1− F(−Xα − α0)))
∣∣∣
α=0
= f (−α0)Σ (9.13)

�erefore, the constant of proportionality in this case is given by

γ = f (−α0)

If (X, є) is jointly normal, this coincides with the solution (9.10). Further

explicit expressions for the constant of proportionality in special cases

are given in Solomon (1984) and Galler and Pötter (1992).

Higher orders of approximation may be obtained from the implicit

function theorem together with a further application of the chain rule

along the lines of (9.12). To second order, the Taylor approximation is

given by

β(α) ' Dβ(0)α +
1

2
(α′D2l β(0)α)l=1...p
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with D2l β(0) the Hessian of βl(α) |α=0. Now

D2β(0) = −
[
E(X′Xg∗2 (Y , 0))

]−1
×
(
D21EX(X

′k(Xα,Xβ))

+ 2Dβ(0)D21,2EX(X
′k(Xα,Xβ))

+ (Dβ(0))2D22EX(X
′k(Xα,Xβ))

)
where D21 is the second order di�erential operator with respect to α,

D22 the one with respect to β and D21,2 the one with respect to α and

β. At α = β = 0 all terms except the �rst (inverse) term evaluate to

E(XiXjXl)i,j,l∈{1...p} times a constant.�erefore, the second order term
vanishes if all third order moments vanish.�is happens e.g. if the joint

distribution of X is symmetric with respect to 0, and the third moments

exist. Note that no assumption of absolute continuity of the distribution

of the covariates needs to be imposed. Some explicit results on the

second order terms were given by Solomon (1984) in the special case of

the partial likelihood under accelerated failure models.

9.6. �e Approach Based on Normal Regressors

�e second general approach to explain the stability of regression ratios

starts with placing restrictions on the distribution of regressors. Let the

expected log-likelihoodE(ℓ(Y ; β0+Xβ)) be convex inXβ. IfEX|Xα(Xβ |
xα) is linear in xα for all β ∈ Rp, then the maximiser of the likelihood

β̂ converges to γα, where γ is a scalar (Li and Duan 1989,�eorem

2.1). Since α is unknown in applications, the linearity condition will

normally be required for all values of α. In this case the proportionality

of regression coe�cients holds for all values of α, not only approximately

for small α. But the restriction on the marginal distribution of the

regressors is rather severe: It is e.g. implied by elliptical distributions, but

discrete covariates or non-elliptical distributions are excluded.
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�e proof of Li and Duan’s result is very simple:

E (ℓ(Y ; b0 + Xb))
= EXα,є

(
EX|Xα,є

(
ℓ (T(h(Xα, є)); b0 + Xb) | Xα, є

))
≤ EXα,є

(
ℓ
(
T(h(Xα, є)); b0 + EX|Xα,є

(
Xb | Xα, є

)))
(by Jensen’s inequality)

= EXα,є

(
ℓ(T (h(Xα, є)) ; b0 + c + γXα)

)
(by linearity)

�erefore the expected log-likelihood at some b is always smaller than

the expected log-likelihood at γα, and the result follows.

�e convexity condition can be dispensed with at the price of strength-

ening the distributional assumptions. If X is jointly normal, then the

conclusion of the theorem holds without the convexity condition. Li and

Duan (1989:�eorem 2.2) prove this by a direct appeal to properties of

the multivariate normal distribution. However, it is possible to prove

proportionality of regression results using Stein’s lemma, thus providing

some insight into a possible connexion with the previous results. Recall

Stein’s lemma: if X is multivariate normal with covariance I (for simplic-

ity) and g(.) a real, di�erentiable function with E(‖Dg(X)‖) <∞, then
E(X′g(X)) = E(Dg(X)) (see e.g. Ibragimov and Has’minskii 1981: 25).
Now suppose the regressors are multivariate normal.�en

0 = E(U(Xβ, Y)) = EX(X
′k(Xα,Xβ))

= (α, β)EX

(
k1(Xα,Xβ)

k2(Xα,Xβ)

)
by Stein’s lemma.�erefore,

β = −EX(k1(Xα,Xβ))

EX(k2(Xα,Xβ))
α (9.14)

�is proves proportionality without using the convexity of the log-

likelihood, but requires normality. Note that the constant of propor-

tionality agrees with the previous result (9.12) for α = β = 0, so that

a Taylor argument would lead to the result of Skinner, though using
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much stronger assumptions. Note also that the proof starts with the

expected score function, not with the expected log-likelihood.�ese

similarities together with the second order result (9.13) prompt for

generalisations either via generalisations of Stein’s lemma or via Skinner’s

approach. But trying higher orders of the approximation seems to be

less promising: although the accumulating moment conditions may

lead to approximations to the normal distribution, it would require

increasingly stronger di�erentiability assumptions for the score function,

thus excluding many interesting estimators. Moreover, such assumptions

are absent in the approach based on normal regressors.

Another strategy might be to apply generalisations of Stein’s lemma

to non-normal distributions, perhaps on the lines of Cacoullos and

Papathanasiou (1992).�ey give identities similar to Stein’s that hold

for a larger class of densities, so that a standard integration by parts

argument works. Unfortunately, they also show that the class of densities

where this works also has to ful�l a moment condition:�e conditional

expectation of Xi given all other variables is linear in these variables.

�is is rather close to the conditions imposed by Li and Duan.

9.7. Conclusions

Under a wide variety of circumstances regression models seem to pos-

sess a remarkable property of stability: the relative magnitude of the

regression coe�cients are stable across di�erent models used for estima-

tion and under many forms of information loss. Despite of the many

empirical �ndings a solid theoretical understanding of this property is

still missing. I have concentrated here on one speci�c approach towards

an explanation: the use of Taylor approximations via expected estimating

equations.�is approach has been implicit in the work of Solomon (1984),

Skinner (1987) and others. I developed a more explicit version, computed

the constant of proportionality and gave a second order approximation.

�is, and a reanalysis of the other general approach via normality as-

sumptions showed some similarities between them. But still neither

could be reduced to the other. Moreover, as the examples in section
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9.4 demonstrate, neither approach is able to incorporate su�ciently

these special results: in the �rst example the constant of proportionality

equals one throughout the parameter space without any conditions on

the regressors, in the second linearity of the inverse regression is needed.

�is is implied by the assumption of normal errors together with the

linear form of the models, but not vice versa. Moreover, it was possible

to compute the constant of proportionality having a nice interpretation,

while the computation from the approximation formula is generally

awkward.

While it seems relatively straightforward to extend both approaches

to include stochastic forms of data loss (censoring, selection etc.) and

to give results for multivariate response models, general results on the

set of models and situations in which a given model leads to consistent

estimators (up to scale) seem not to be easily derived. �e work of

Lazrieva and Toronjadze (1991) gives some answers in this direction,

though they deal with the partial likelihood scheme which lends itself

easily to such questions.

9.8. Postscriptum

While there has been no progress in developing a general theory of mis-

speci�ed regression models and in particular of misspeci�ed regression

incorporating incomplete data, there is a wealth of additional results

concerning particular models.

Hattori (2006) investigates an additive hazards model and shows that

tests of zero e�ects of covariates are consistent despite misspeci�cation

of the covariate model. Angrist et al. (2006) consider quantile regression

estimators and use a representation in terms of a weighted mean squared

error loss function to derive an omitted variable bias formula. Müller et

al. (2008) investigate the e�ects of estimators of semi-Markov models

when transition distributions are misspeci�ed. Müller (2007) considers

misspeci�ed nonlinear regression models. O’Brien et al. (2006) consider

the e�ect of misspeci�cation on the power of tests of association of

covariates with a dependent variable in the class of generalised linear
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models. Pantazis and Touloumi (2007) present a simulation study on the

robustness of parametric models for bivariate censored data when the

censoring is informative and the joint distribution is misspeci�ed. Zhang

et al. (2006) discuss the e�ects of misspeci�ed linear transformation

models in the presence of censoring. Pascual (2005) derives asymptotic

approximations to the bias of parameter estimates in misspeci�ed log-

normal and Weibull distributions when data can either be type I or type

II censored. Fushiki (2005) treats the statistical prediction problem when

models are misspeci�ed. Similarly, Cai et al. (2008) consider predictions

based on misspeci�ed regression models. Meister (2004) shows the e�ect

of misspecifying the error density in a deconvolution problem on the

mean integrated squared error. Gustafson (2001) suggests sensitivity

measures for the degree of misspeci�cation in parametric models. Finally,

DiRienzo and Lagakos (2001) analyse the e�ect of model speci�cation

on the power of tests of no e�ect in censored Cox models.

Most investigations of misspeci�cation in recent years concentrated on

the analysis of misspeci�ed dependence structures in longitudinal data

models. Imention only Keiding et al. (1997), Litière et al. (2007), Jowaheer

(2006), Agresti et al. (2004), Wang and Carey (2003), Rizopoulos et al.

(2008), Wan et al. (2007), Wang and Lin (2005), Verbeke and Fieuws

(2007), Jacqmin-Gadda et al. (2007), Cheng and Shao (2006).

A more general approach has been advocated by Royall and Tsou (2003)

who construct robust adjusted likelihood ratios in general parametric

models (see also Kateri and Balakrishnan (2008) for an application to

contingency tables). Patilea (2001) investigates the connection between

convexly parametrised models and the behaviour of maximum likeli-

hood estimators when the model is misspeci�ed. Classes of convexly

parametrised models are also used by van der Laan and Robins (2003)

in their discussion of the double robustness of certain estimators in

incomplete data models. Finally, Brown et al. (2006) survey recent results

and generalisations of Stein’s Lemma.
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A

An Implementation of a Class of

Distribution Function

Estimators

�is section describes an implementation of a basic building block in

many incomplete data problems, namely the construction of estimators

of a cumulative distribution function from right censored data. �e

building block has been used for the multivariate Buckley-James esti-

mator suggested in Chapter 8 and is closely related to the estimation

method used in Chapter 6. I will start by describing the general setup of

the so�ware and will then discuss the particular algorithms used in a

variety of special cases.

�e procedure is implemented in TDA (available from http://www.
stat.rub.de/tda.html). A command gdf is provided that can be
used to calculate marginal and joint distribution and survivor functions

based on possibly incomplete (censored) data.�e syntax of the com-

mand is shown in Box 1. Most parameters are optional. Required is the

name of a variable (speci�ed with the yl parameter) and the name of an
output �le to be given on the right-hand side.

Input datamust be de�ned for i = 1, . . . , n units. Each unit can contribute

observations for (a subset of) m dimensions. If available, yij is the

observation for unit i in dimension j. In general, each observation

353

http://www.stat.rub.de/tda.html
http://www.stat.rub.de/tda.html


A. An Implementation of a Class of Distribution Function Estimators

consists of two parts

(yij, δij)

where yij is the observed value, and δij indicates whether the observation

is uncensored (δij = 1), or is right censored (δij = 0).�e corresponding

data matrix variables can be speci�ed with the yl and cen parameters,
respectively.�e following combinations are possible.

1. Only observed values are speci�ed with the yl parameter.�en all
observations are assumed to be exact with corresponding values.

2. Observed values are speci�ed with the yl parameter and a censoring
indicator is speci�ed with the cen parameter. An observations is
then interpreted as exact at yij if δij = 1 and is interpreted as right

censored if δij = 0.

By default, the command assumes a single dimension (m = 1) and

n = NOC units, where NOC is the number of cases in the current data
matrix.�e grp parameter can be used to specify multivariate data.�e
syntax is

grp = ID, L1,

where ID and L1 are names of data matrix variables. Each block of data
matrix rows where ID has identical values is interpreted as data for one
unit. Any values are possible and since the data matrix is always sorted

with respect to ID and L1, it is not required that blocks are contiguous.
�e L1 variable must contain positive integers.�e number of di�erent
integers found in this variable is interpreted as the number dimensions.

Again, it is not required that these numbers are contiguous. Each data

matrix row provides one observation for the unit given by the ID variable
and dimension given by the corresponding L1 variable.

To illustrate, consider the data in Box 2. In this example there are three

units and six observations in all.�e number of dimensions ism = 3.

Dimensions are mapped to the values of the L1 variable in ascending
order. �us, dimension 1, 2, and 3 correspond, respectively, to L1 =
1, L1 = 3, and L1 = 4.�e �rst unit (ID = 1) has observations for

354



Box 1: Syntax for gdf command.

gdf (
opt=..., method, def. 1

1 = marginal calculation

2 = joint calculation, method 1

3 = joint calculation, method 2

prn=..., output option, def. 0

0 = distribution functions

1 = survivor functions

2 = expected values

yl=..., variable name for observed values

cen=..., variable name for censoring information

grp=ID,L1, speci�cation of dimensions

sc=..., o�set for domain (method 1 and 2), def. 0

n=..., number of boxes in grid (method 1), def. 100

mxit=..., maximal number of iterations (method 1), def. 20

tolf=..., tolerance for convergence (method 1), def. 0.001

d=..., delta speci�cation (method 2), def. 0.1

fmt=..., print format for output �le, def. 10.4

prot=..., protocol �le with diagnostic information

) = fname;

Box 2: Example data to illustrate grp parameter.

ID L1 YL D
----------------

1 1 3 1
1 3 5 1
1 4 4 0
2 3 0 1
5 1 7 0
2 4 1 0

all three dimensions.�e observation is exact in the �rst and second

dimension, and right censored in the third dimension. Unit 2 contributes

an exact observation to the second dimension and a right censored
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observation to the third dimension.�e third unit (ID = 5) contributes
a right censored observation to the �rst dimension.

A.1. Marginal Distribution Functions

If opt = 1 (default), the command calculates marginal distributions,
separately for each dimension present in the input data. Assuming that

there are nj observations for the jth dimension, the data are:

(y1j, δ1j), . . . , (ynjj, δnjj)

Depending onprn, these data are used to calculate a distribution function
(prn=0), a survivor function (prn=1), or expected values (prn=2).

Marginal EDF: Exact Observations

If the data for one dimension contain only exact observations, the

command calculates a standard empirical distribution function,

Fj(yij) =

nj∑
i=1

1(Yj ≤ yij)

if prn = 0, or survivor function,

Sj(yij) = 1− Fj(yij)

if prn = 1. Here Yj denotes the variable in the jth dimension and refers

to the possible values yij, i = 1, . . . , nj. 1() denotes the indicator function.

In this case, if prn = 2, the expected values equal the observed values.

Box 3 provides an illustration. Input data are given by the variable YL.
�e command

gdf (yl=YL) = df0;
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Box 3: Illustration of calculations with exact observations.

df0 (prn = 0) ds0 (prn = 1)
YL D Y F D Y S

-- ----------------------- -----------------------
1 1 -1.0000 0.1667 1 -1.0000 0.8333
7 1 1.0000 0.3333 1 1.0000 0.6667

-1 1 5.0000 0.5000 1 5.0000 0.5000
5 1 7.0000 0.8333 1 7.0000 0.1667
7 1 9.0000 1.0000 1 9.0000 0.0000
9

creates the output �le df0, the command

gdf (yl=YL,prn=1) = ds0;

creates the output �le ds0.1�e �rst column in the output �les shows
the dimension, then follow the value of the variable (sorted in ascending

order) and the corresponding value of the distribution or survivor

function. If the input data refer to more than one dimension, the output

�le will contain the same information separately for each dimension.

Marginal EDF: Right Censored Observations

A second situation occurs if the input data, for one dimension, contain

both, exact and right censored observations.�e command then uses the

standard Kaplan-Meier procedure to calculate a marginal distribution,

or survivor, function. Considering the jth dimension, the observations

for Yj are sorted in ascending order. If there are exact and right censored

observations for the same value of the variable, exact observations come

�rst, followed by right censored observations.�e highest value of Yj is

always treated as uncensored. In consequence, the expectation computed

from the estimated distribution function will always be �nite.�en, in

the order from lowest to highest values, the mass of each right censored

observation is distributed to the right (over all observations with larger

values, see Efron (1988)).

1
�e data �le for this and the following examples is gdf1.dat.�e command �le is
gdf1.cf. Both are contained in the TDA example archive.
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Box 4: Marginal distributions with right censored observations.

df1 (prn = 0) ds1 (prn = 1)

YL DELTA D Y F D Y S
-------- ----------------------- -----------------------
3 1 1 1.0000 0.1667 1 1.0000 0.8333
3 0 1 3.0000 0.3750 1 3.0000 0.6250
2 0 1 4.0000 0.6875 1 4.0000 0.3125
1 1 1 5.0000 1.0000 1 5.0000 0.0000
4 1
5 1

An example is given in Box 4. Input data are given by the variables YL
and DELTA.�e command

gdf (yl=YL,cen=DELTA) = df1;

computes the distribution function. Adding the parameter prn = 1
computes the corresponding survivor function.

A.1.1. Marginal EDF: Expected Values

If prn = 2, the gdf command calculates expected values based on the
marginal distributions. If an observation is exact its expected value equals

its observed value. If the observation is right censored, the command

calculates

y∗ij = EFj(Yj |Yj > yij) =

∫ ∞
yij

y dFj
/ ∫ ∞

yij

dFj

where Fj is the Kaplan-Meier estimate of the marginal distribution

function in the jth dimension.

To illustrate, consider the data in Box 5 (same as in Box 4).�e command

is now

gdf (yl=YL,cen=DELTA,prn=2) = de1;
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Box 5: Expected values based on marginal distribution.

de1 (prn = 2)

YL DELTA D Y CEN E
-------- --------------------------
3 1 1 3.0000 1 3.0000
3 0 1 3.0000 0 4.5000
2 0 1 2.0000 0 4.1250
1 1 1 1.0000 1 1.0000
4 1 1 4.0000 1 4.0000
5 1 1 5.0000 1 5.0000

�e resulting output �le, also shown in Box 5, contains four columns.�e

�rst column refers to the current dimension, the second column contains

the observed values, and the third column shows the censoring status of

the observation.�e last column contains the expected value.�is will

equal the observed value if the observation is uncensored, otherwise the

expected value as calculated from the Kaplan-Meier survivor function.

Note that with this option, the input data are not sorted. Note also that

the largest observation is always assumed to be uncensored.

A.2. Joint Distributions

We now discuss the calculation of joint distribution functions.�is is

done separately for eachmarginal pattern which is found in the input data.

�e word "‘marginal pattern"’ refers to a combination of dimensions,

(d1, ..., dmk
) where 1 ≤ d1 < d2 < · · · < dmk

≤ m

m being the maximal number of dimensions as given by the input data.

For ease of notation, the following discussion refers to a full marginal

pattern, i.e. thatmk = m. Now, let n denote the number of units for the

marginal pattern. We then havem observations for each unit, as follows:

(yi1, δi1), . . . , (yim, δim) i = 1, . . . , n
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Based on these data, the command calculates marginal distributions (if

opt = 1) or joint distributions (if opt = 2 or opt = 3). Calculations
depend on whether the data contain right censored observations.�e

contents of the resulting output �le depends on the prn parameter.
�e command calculates a distribution function if prn = 0, a survivor
function if prn = 1, or expected values if prn = 2.

A.2.1. Joint Distribution: Exact Observations

If all observations are exact, the command calculates a standard m-

dimensional distribution function, de�ned as

F(y1, . . . , ym) =

n∑
i=1

m∏
j=1

1(Yj ≤ yi)

or the corresponding survivor function

S(y1, . . . , ym) =

n∑
i=1

m∏
j=1

1(Yj > yi)

�e functions are calculated and tabulated in the output �le, for all data

points in the input data.

To illustrate, consider the data shown in Box 6.�ere are four units, all

having observations for two dimensions.�e joint distribution function,

shown in the upper half of the right part of the box, was calculated with

the command

gdf (grp=ID,L1,yl=YL,opt=2,prn=0) = df3;

�e corresponding survivor function was calculated with the command

gdf (grp=ID,L1,yl=YL,opt=2,prn=1) = ds3;

In both cases, the �rst column in the output �le refers to the current

marginal pattern, followed by the dimensions (values of L1 variable)
that de�ne this pattern.�e nextm columns contain the observations,
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Box 6: Joint distribution with exact observations

ID L1 YL MP D1 D2 F Y1 Y2
------------ ------------------------------------------
1 1 1.0 1 1 2 0.2500 -1.0000 1.0000
1 2 2.0 1 1 2 0.5000 1.0000 2.0000
2 1 -1.0 1 1 2 0.5000 2.0000 1.0000
2 2 1.0 1 1 2 0.7500 3.0000 1.5000
3 1 3.0
3 2 1.5 MP D1 D2 S Y1 Y2
4 1 2.0 ------------------------------------------
4 2 1.0 1 1 2 0.0000 3.0000 1.5000

1 1 2 0.2500 2.0000 1.0000
1 1 2 0.0000 1.0000 2.0000
1 1 2 0.5000 -1.0000 1.0000

sorted in ascending or descending order.�e �nal column contains the

corresponding value of the distribution or survivor function.

If there are only exact observations, and prn = 2, the output �le will
simply contain the observations, a censoring indicator that always has

value 1, and expected values that equal the observed values. In this case,

the input data are not sorted.

A.2.2. Censored Observations, Method 1

We now consider a situation where the multivariate data contain right

censored observations. Unfortunately, there is no simple generalization

of the 1-dimensional Kaplan-Meier procedure. Discussion in the liter-

ature has proposed several di�erent approaches. �e gdf command
o�ers two methods.�e �rst one (selected with opt = 2) can be used
with observations which might be censored simultaneously in several

dimensions.�e second method (selected with opt = 3) can only be
used with observations which are censored at most in one dimension.

�is section describes the �rst method (opt = 2).

�is method uses an iterative EM-like procedure that tries to �nd a

self-consistent estimate of the distribution function. In explaining the
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procedure we refer, again, to a full marginal pattern. Data are given by

(yi1, δi1), . . . , (yim, δim) i = 1, . . . , n

In a �rst step, we calculate a domain as anm-dimensional interval

D = D1 × · · · × Dm

where

Dj = ]min
i
{yij} − σ , max

i
{yij} + σ]

By default, the o�set is σ = 0.�is implies that observations which have

an exact component on a le� side of the domain, or a right censored

component on a right side of the domain, will not be used.2 In order

to include all observations one can specify a positive o�set with the sc
parameter, see Box 1.

�e iterative procedure is based on a partition of the domain into a grid

of boxes.�e jth dimension is partitioned into qj intervals

ij(k) = ] lj(k), uj(k) ] k = 1, . . . , qj

�ese intervals, and the corresponding boxes, are treated as open on

the le� side and closed on the right side. Since the number of boxes

rapidly increases in higher dimensions, we require the user to specify a

total number of boxes for the whole grid with the n parameter, default is
n = 100.�e command then tries to �nd an integer q such that qm ≈ n

and sets

q1 = . . . = qm = q

�e minimum is q = 1, that is, the grid consists of only a single box. Let

now Bj = {1, . . . , qj}.�en, each

(k1, . . . , km) ∈ B1 × · · · × Bm

2
Corresponding values of the distribution function, or survivor function, will then be

-1, and expected values will then equal the observed (possibly censored) values.
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refers to one box in the grid, namely

B(k1, . . . , km) = i1(k1)× · · · × im(km)

We now de�ne for each observation (yij, δij) a subset

bj(yij, δij) ⊆ Bj

containing pointers to those boxes (in the jth dimension) where the

observation possibly has values. Explicitly, if the observation is exact,

the de�nition is

bj(yij, δij) = { k ∈ Bj | yij ∈ ij(k) }

and if the observation is right censored, the de�nition is

bj(yij, δij) = { k ∈ Bj | ∃ δ > 0 : yij + δ ∈ ij(k) }

�en, for each unit i,

b̄i = b1(yi1, δi1)× · · · × bm(yim, δim)

provides pointers to those boxes in the domain where unit i has, possibly,

an m-dimensional value. Of course, b̄i will be empty, if unit i has a

component not covered by the domain.

Using these notations, Box 7 shows the iterative algorithm.3�e maximal

number of iterations can be speci�ed with the mxit parameter, default is
20. Convergence is assumed if

max
k1 ,...,km

{ | f (k1, . . . , km)− f ′(k1, . . . , km) | } ≤ TOLF

where f ′() refers to the density from the previous iteration. By default,
TOLF = 0.001; other values can be speci�ed with the tolf parameter.

Information about the number of iterations and the �nal value of the

convergence criterion is given in the standard output. In any case,

3
�e notation ‘+=’ means that the expression on the right-hand side is added to the

expression on the le�-hand side.
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Box 7: Iterative algorithm for joint distribution (method 1)

(1) ∀ (k1, . . . , km) ∈ B1 × · · · × Bm : f
∗(k1, . . . , km) = 0

(2) ∀ i ∀ (k1, . . . , km) ∈ b̄i : f
∗(k1, . . . , km) +=

1

n | b̄i |
(3) ∀ (k1, . . . , km) ∈ B1 × · · · × Bm : f (k1, . . . , km) = 0

(4) ∀ i ∀ (k1, . . . , km) ∈ b̄i :

f (k1, . . . , km) +=
1

n

f ∗(k1, . . . , km)∑
(l1 ,...,lm)∈b̄i f ∗(l1, . . . , lm)

(5) end if convergence has been achieved, or the maximal

number of iterations has been reached.

(6) ∀ (k1, . . . , km) ∈ B1 × · · · × Bm :

f ∗(k1, . . . , km) = f (k1, . . . , km)

(7) continue with (3)

depending on prn, the gdf command �nally calculates a distribution
function, a survivor function, or expected values. In order to explain the

calculation, let

kij = min { kj | kj ∈ bj(yij, δij) }

meaning that kij refers to the box where, in dimension j, observation yij
begins.�e distribution function is then calculated using the formula

F(yi1, . . . , yim) =
∑

k1=1,...,ki1

· · ·
∑

km=1,...,kim

f (k1, . . . , km)

Correspondingly, calculation of the survivor function uses the formula

S(yi1, . . . , yim) =
∑

k1=ki1 ,...,q1

· · ·
∑

km=kim ,...,qm

f (k1, . . . , km)

364



A.2. Joint Distributions

Box 8: Example data set (Pruitt [1993])

ID L1 Y CEN
---------------
1 1 1 0
1 2 6 1
2 1 2 0
2 2 4 1
3 1 3 0
3 2 5 0
4 1 4 1
4 2 3 1
5 1 5 1
5 2 2 0
6 1 6 1
6 2 7 1
7 1 7 0
7 2 1 0
8 1 8 1
8 2 8 1

If prn = 2, the command calculates expected values. To explain this
option, let (yi1, . . . , yim) be one of them-dimensional observations.�e

expected value, in the jth dimension, will equal yij if this component is

not censored. Otherwise, it is calculated by∑
(k1 ,...,km)∈b̄i zj(k1, . . . , km) f (k1, . . . , km)∑

(k1 ,...,km)∈b̄i f (k1, . . . , km)

zj(k1, . . . , km) is the jth component of the mean value of all exact obser-

vations falling in box (k1, . . . , km) or, if the box does not contain exact

observations, equals the mean of ij(kj).

Example 1. For a �rst illustration we use some example data from Pruitt
[1993], shown in Box 8.4 In order to estimate a distribution function, we

use the command

gdf(opt=2,prn=0,yl=Y,cen=CEN,grp=ID,L1,n=64,sc=0.5) = df5;

4
�e data �le is gdf2.dat, contained in the TDA example archive.
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Box 9: Estimated distribution function

MP D1 D2 Y1 Y2 F
------------------------------------------
1 1 2 1.0000 6.0000 0.0000
1 1 2 2.0000 4.0000 0.0000
1 1 2 3.0000 5.0000 0.0001
1 1 2 4.0000 3.0000 0.1250
1 1 2 5.0000 2.0000 0.0000
1 1 2 6.0000 7.0000 0.6290
1 1 2 7.0000 1.0000 0.0000
1 1 2 8.0000 8.0000 1.0000

Box 10: Estimated expected values

MP D1 D2 Y1 (obs) Y2 (obs) CEN Y1 (est) Y2 (est)
-------------------------------------------------------------
1 1 2 1.0000 6.0000 0 1 5.6197 6.0000
1 1 2 2.0000 4.0000 0 1 5.5839 4.0000
1 1 2 3.0000 5.0000 0 0 6.6101 6.9849
1 1 2 4.0000 3.0000 1 1 4.0000 3.0000
1 1 2 5.0000 2.0000 1 0 5.0000 5.1561
1 1 2 6.0000 7.0000 1 1 6.0000 7.0000
1 1 2 7.0000 1.0000 0 0 7.8492 7.1540
1 1 2 8.0000 8.0000 1 1 8.0000 8.0000

In this example, we have used a total number of 64 boxes and added a

small o�set to the domain in order to cover all observations.5

Box 9 shows the resulting output �le. Estimated expected values, calcu-

lated with the prn=2 option are shown in Box 10.

Example 2. For a second illustration, we create 100 data points

(yi1, yi2) i = 1, . . . , 100

where

yi1 = i, yi2 = i + ri

5
�e command �le is gdf2.cf.
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Figure A.1.: Illustration of observed data points and estimated expected
values. Estimation with marginal Kaplan-Meier procedure (x) and with

joint estimation (method 1, n = 100 boxes).

and ri are random numbers which are equally distributed in [−10, 10].
We then have randomly censored 13 of these data points in the second

dimension.�e resulting data points are shown in Figure 1.

We then estimated expected values, �rst using a marginal Kaplan-Meier

procedure.6 �e resulting estimated values are indicated in Figure 1

by cross (x) symbols. We then used the iterative procedure described

above to estimate expected values.�e resulting estimated values are

indicated in Figure 1 by � symbols.�ey obviously provide somewhat
better estimates.

6
�e command �le for data generation and estimation is gdf3.cf in the TDA
example archive.
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Box 11: Algorithm for joint distribution (method 2)

(1) Sort observations (yi1, . . . , yim) in ascending order,

�rst wrt �rst component, then wrt second component,

and so on; in case of ties, exact observations precede

censored observations.

(2) for i = 1, . . . , n : f (i) = 1/n

(3) i = 1

(4) If (yi1, . . . , yim) is exact in all components,

continue with step (8).

(5) Let (yi1, . . . , yim) be censored in dimension j0.

Calculate an index set B(i, j0) containing indices of all

data points (yk1, . . . , ykm) for which:

a) ykj > yij

b) ∀ j 6= j0 : ykj is exact

c) ∀ j 6= j0 : | ykj − yij | ≤ ∆j0 /2

(6) ∀ k ∈ B(i, j0) : f (k) +=
f (i)

|B(i, j0) |(7) f (i) = 0

(8) i += 1

(9) if i ≤ n continue with (4).

A.2.3. Censored Observations, Method 2

We now describe an alternative approach (selected with opt = 3) that
can be used when the observations are censored in at most a single

dimension.�e basic idea is quite simple: we use a local Kaplan-Meier

procedure based on all observations that are available in one of the

censored dimensions.

Box 11 explains the algorithm. It is controlled by parameters ∆j that de�ne
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the size of the subsets of the domain used for the local Kaplan-Meier

procedure.�ese parameters are calculated by using the parameter d

that can be speci�ed by the user, see Box 1.�en

∆j = dWj

whereWj denotes the width of the domain in dimension j. Default is

d = 0.1.

�e algorithm results in densities, f (i), for all data points i that do not

contain censored observations. Depending on prn, they are �nally used
to calculate a distribution function

F(yi1, . . . , yim) =
∑

(yk1 ,...,ykm)≤(yi1 ,...,yim)
f (k)

if prn = 0, or a survivor function

S(yi1, . . . , yim) =
∑

(yk1 ,...,ykm)>(yi1 ,...,yim)

f (k)

if prn = 1. �ese values are tabulated in the output �le for all data
points.�e data points are not sorted.

If prn = 2, the command calculates expected values. For each data point
(yi1, . . . , yim), if yij is exact, this will equal the corresponding expected

component. If yij is censored, the expected value is calculated by

ŷij =

∑
k∈B(i,j)ykjf (k)∑
k∈B(i,j)f (k)

For the de�nition of B(i, j) see Box 11. If this index set is empty, ŷij will

equal the observed value, yij.

Example 3. For an illustration, we use the 2-dimensional data from
example 2. �ere are 100 data points, 13 are censored in the second

dimension. Since the data points are censored in only a single dimension,

we can use both methods, 1 and 2. Box 12 shows the censored data points
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Box 12: Estimated expected values (method 1 and method 2)

method 1 method 2
Y1 (obs) Y2 (obs) CEN Y1 (est) Y2 (est) Y2 (est)
--------------------------------------------------------
34.0000 27.3464 1 0 34.0000 37.6603 37.3177
36.0000 30.3996 1 0 36.0000 37.6603 38.0035
43.0000 15.3593 1 0 43.0000 46.2104 46.2348
45.0000 43.5366 1 0 45.0000 48.9264 48.4735
49.0000 50.6783 1 0 49.0000 54.3749 51.9167
68.0000 50.5112 1 0 68.0000 61.4348 71.7563
69.0000 47.4082 1 0 69.0000 61.4348 71.7563
73.0000 49.9009 1 0 73.0000 74.5214 73.0277
75.0000 65.2591 1 0 75.0000 74.5214 73.7913
79.0000 38.7495 1 0 79.0000 74.5214 79.1623
84.0000 53.5625 1 0 84.0000 82.3746 83.4225
85.0000 62.9593 1 0 85.0000 82.3746 85.3742
93.0000 33.8836 1 0 93.0000 99.9475 103.4777

and estimated expected values for their censored component.7 It is seen

that, in this example, both methods give quite similar estimates.

Example 4. Ifd = 1, the algorithmuses all observations (in the censored
dimension) and becomes identical with a standard marginal Kaplan-

Meier procedure. For an illustration see command �le gdf5.cf in the
TDA example archive.

7
�e command �le is gdf4.cf.
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