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The heterogeneous choice model (HCM) has been proposed as an extension of

the standard logit and probit models (Williams, 2009). In this note, I show

that in an important special case, this model is just another way to specify an

interaction effect.

For developing the argument I refer to a logit model. Let Y denote a binary

variable. The logit model makes the distribution of Y dependent on values of

explanatory variables:

Pr(Y = 1 |X = x, Z = z) = L(α+ xβx + z βz) (1)

where X is a vector of explanatory variables with corresponding parameter vec-

tor βx, Z is a further explanatory variable with parameter βz, α is a constant,

and L(x) := exp(x)/(1 + exp(x)) is the standard logistic distribution function.

In (1), L is not used as a distribution function for a corresponding random

variable but as a function for linking covariates to the distribution of Y , that

is, a binomial distribution characterized by a single parameter. The HCM

starts from a different model that relates to a latent variable, say Y ∗, which is

connected with Y through Y = 1 ⇐⇒ Y ∗ > 0:

Y ∗ = α+ xβx + z βz + ǫ (2)

Assuming that ǫ has a standard logistic distribution, (1) can be derived from

(2). However, in model (2) there is now a newly created random variable, ǫ,

and one can refer to its variance. While this variance cannot be estimated with

data on Y , X and Z, one nevertheless can set up a model which makes this

variance dependent on some of the covariates. This is the HCM which, for

example, can be specified as

Y ∗ = α+ xβx + z βz + ǫ exp(z γ) (3)

where it is now assumed that the residual variance depends on the value of Z

(exp(.) is used to guarantee a positive value). Dividing by exp(z γ), one gets

the corresponding logit formulation

Pr(Y = 1 |X = x, Z = z) = L(α/ exp(zγ)+xβx/ exp(zγ)+z βz/ exp(zγ)) (4)

I now consider the special case where Z is a binary variable. Instead of (4),

one can consider a logit model with an interaction term x z (being a vector of

interaction terms if x is a vector):

Pr(Y = 1 |X = x, Z = z) = L(α∗ + xβ∗

x
+ z β∗

z
+ x z β∗

xz
) (5)
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Both models are equivalent, meaning that they entail the same conditional

probabilities. This can be achieved by setting

α∗ = α, β∗

x
= βx

β∗

z
= α (1/ exp(γ)− 1) + βz/ exp(γ) (6)

β∗

xz
= βx (1/ exp(γ)− 1)

In fact, these relationships are implicitly satisfied when estimating the models

with maximum likelihood. They also entail that one cannot add the exp(zγ)

term to a logit model which already includes an interaction term.

How to interpret the equivalence of (4) and (5) depends on the intended

analysis. I suppose that one is interested in investigating how a binary variable,

Y , depends on another binary variable (representing, e.g., two groups). The

interest concerns the dependence of the probabilities Pr(Y =1 |X = x, Z = z)

on values of Z, or on values of X conditional on values of Z. One should then

start from model (5) which includes a parameter, β∗

xz
, for a possible interaction

between X and Z (in addition to interactions entailed by the nonlinearity of

the logit link function).

Given a significant interaction parameter, one might ask whether the HCM

suggests a different interpretation. The answer depends on the understanding

of the HCM. I first assume that the HCM is taken as a model for the binary

variable Y as formulated in (4). Then, if X and Z interact in model (5), the

same is true for model (4). Of course, both models provide different parameter

values, but this is just a consequence of a different parameterization of the

same model. For the research interest mentioned above, it is only important

that both parameterizations entail identical conditional probabilities.

Now I assume that the HCM is taken as a model for the latent variable Y ∗

as formulated in (3). Referring to the conditional expectation of Y ∗, that is

E(Y ∗ |x, z) = α+ xβx + zβz

suggests the conclusion that the effect ofX on Y ∗ is independent of Z. However,

the interest eventually concerns the effect of X on Y , not on Y ∗, and the effect

of X on Y not only depends on the expectation of Y ∗, but also on its variance.

Consequently, if the variance of Y ∗ depends on Z, as assumed by the HCM,

one immediately gets an interaction between X and Z (as already shown by

the equivalence of (4) and (5)).
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