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Abstract

When investigating relationships between education and health one has to take

into account age. Conditioning on age entails conditioning on surviving. It has

been argued that this might lead to a ‘selection bias’. In this note, I argue that

surviving should be considered as a necessary precondition for the relationships

of interest and, therefore, not as a possible source of bias. I criticize models of

health trajectories which do not condition on surviving.

Keywords: Age trajectories of health; Mortality selection; Growth-curve mod-

eling; Hierarchical models

When investigating relationships between education and health one has to take

into account age. Conditioning on age entails conditioning on surviving. It has

been argued that this might lead to a ‘selection bias’ and should be coped with

in some way (e.g., Beckett 2000; Lynch 2003; Kim and Durden 2007; Chen

et al. 2010). In this note, I argue that surviving should be considered as a

necessary precondition for the relationships of interest and, therefore, not as a

possible source of bias.

I begin with a brief introduction of the conceptual framework, and then

consider mean health trajectories which are defined conditional on surviving. I

criticize the argument that references to selective mortality can help to explain

differences of mean health trajectories of persons with different educational

levels. I then consider age-specific changes of health and argue that also these

changes must be defined conditional on surviving. Finally, I briefly consider

growth curve models. If estimated in a temporally local way that allows con-

ditioning on surviving they are tools for modeling mean health trajectories. In

contrast, results of hierarchical growth curve models are difficult to interpret

and potentially misleading because these models implicitly assume that all in-

dividual trajectories are defined for a common temporal domain. I end with a

brief conclusion.

Conceptual framework

Let H∗
t be a quantitative variable representing the health of a person at age

t = 0, 1, 2, . . . (measured in years). In subsequent notations, I assume that H∗
t

is a discrete variable which can assume only nonnegative values. Using L for

the person’s length of life, one can start from Pr(H∗
t = h |L ≥ t), that is, the

probability of H∗
t = h at age t conditional on having survived at least until

that age. A further variable, X , will be used to record the person’s level of

education. It will be assumed that this is a time-constant variable conditional
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on L ≥ t0 (e.g., t0 = 30). The interest concerns how

Pr(H∗
t = h |L ≥ t,X = x) (1)

for t ≥ t0, depends on age and education (and possibly further covariates). The

quantities of interest are conditional on surviving because a person’s health is

only defined while she is alive.

In order to stress that surviving is a necessary precondition for values of H∗
t

to exist, I also use a variable Ht which equals H∗
t but, in addition, can take the

value Ht = −1 meaning that, at the age t, the person is already dead (L < t).

In contrast to H∗
t , Ht is defined for all possible ages, and the basic quantities

of interest can be written as

Pr(Ht = h |Ht ≥ 0, X = x) (2)

without a reference to L. It often suffices to consider conditional mean values

defined by

E(Ht |Ht ≥ 0, X = x) =
∑

h
hPr(Ht = h |Ht ≥ 0, X = x) (3)

Using this formal framework for empirical research requires a historical embed-

ding. I assume that this is given by a birth cohort, say C.1 Individual members

will be referred to by i = 1, . . . , N . So one can think of values of the variables

introduced above: hit, li, and xi, respectively. By definition, hit = −1 iff li < t.

Furthermore, one can define individual health trajectories:

hi := (hi,t0 , . . . , hi,tm) (4)

where tm is some fixed highest age. As mentioned, the trajectories start from

an age, t0, in which the level of education, X , is reached. To ease notations, I

assume li ≥ t0 for all members of C.

The reference to a particular birth cohort allows one to think of the prob-

abilities introduced in (2) as frequencies defined by

Pr(Ht = h |Ht ≥ 0, X = x) :≡

∑
i I[hit = h, xi = x]∑
i I[hit ≥ 0, xi = x]

(5)

where I[.] denotes the indicator function, and the summation is over all mem-

bers of C.

Comparing mean health trajectories

A main research question concerns differences between health trajectories of

persons with different educational levels (e.g., Ross and Wu 1996; Beckett

2000; Lynch 2003, 2006; Herd 2006; Dupre 2007). Let Cx denote the subset of

C having members with educational level x. One aims to compare the health

trajectories of members of Cx′ with those of members of Cx′′ , where x′ and x′′

are two educational levels (I assume x′ < x′′). One possibility is to consider

∆t := E(Ht |Ht ≥ 0, X = x′′)− E(Ht |Ht ≥ 0, X = x′) (6)

1The need to explicitly distinguish between birth cohorts has been stressed by several

authors, e.g. Lauderdale (2001), Yang (2007).
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and investigate how these differences develop over the life course (e.g., become

smaller or larger with growing age). This approach basically consists in a

cross-sectional comparison of mean health trajectories defined by

h̄(x) := (h̄t0(x), . . . , h̄tm(x)) (7)

where h̄t(x) := E(Ht |Ht ≥ 0, X= x). It is noteworthy that such mean health

trajectories can be estimated with cross-sectional data. If C is defined by a birth

year tc, in order to estimate h̄t(x) it would suffice to have a representative

sample for the calendar year tc + t, and then consider persons born in tc.

Of course, since the sample has to be drawn in a delimited region, cohort

membership can change due to in- and out-migration.2

Selective mortality

Several studies found evidence for an ‘age-as-leveler’ hypothesis meaning that

values of ∆t become smaller in higher ages (e.g., Beckett 2000; Herd 2006;

Dupre 2007). This hypothesis motivated a discussion of whether a ‘leveling

effect of age’ could be explained by selective mortality. For example, Dupre

(2007: 3) says:

[T]he poorly educated often get sick and die at younger ages than

the well educated. Over time, the surviving population increas-

ingly comprises robust survivors with less education than the well-

educated subpopulation. Although this selection process causes the

average level of health to converge between educational groups, it

does not mean that education’s effect on health declines with age.

For the moment I only consider the question whether a reference to selective

mortality can add to an explanation of observed developments of ∆t.

How are the subsets Cx changed through mortality? It is obvious that their

size becomes monotonically smaller, and this depends on the educational level,

x, as described by the probabilities Pr(L ≥ t |X=x). Since surviving depends

on health, one can also think that mortality changes the distribution of health

in the surviving population.

This is illustrated in Figure 1, based on 30 individual trajectories hit =

αi + βi (t − 30).3 Values of αi are random draws, uniformly distributed in

the interval (0, 4), and βi = −0.05. In accordance with the definition of Ht,

individuals are assumed to be dead if hit < 0. The bold line shows the mean

values of the surviving individuals’ health.4

However, the implications of mortality illustrated in Figure 1 do not allow

drawing any definite conclusions for the comparison of mean health trajectories

of two groups, Cx′ and Cx′′ . This is illustrated in Figure 2 which compares mean

health trajectories of two groups. Cx′′ consists of the 30 trajectories already

2Additional problems occur when cohorts are based on a broad range of birth years; for

some discussion see Lauderdale (2001).
3This is, of course, an extremely simplified model. Real individual health trajectories

show a wide variety of different, in general not linear and often not monotonic, forms.
4Lynch (2003) uses a similar graphic to illustrate selective mortality. However, in his

graphic individual trajectories can assume negative values (‘unobserved health for decedent’)

which, from the point of view of the present paper, are not meaningful.
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Figure 1 Dashed lines represent 30 individual health trajectories as

described in the text. The bold line shows their mean values.
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Figure 2 Comparison of two mean health trajectories. The up-

per curve is identical with the mean trajectory shown in Figure 1.

The lower curve results from 30 individual trajectories with slope -0.07.

shown in Figure 1. Cx′ consists of 30 trajectories which equal those in Cx′′ at

t0, but decline with slope -0.07 (instead of -0.05). Obviously, there is a rising

gap between the two mean health trajectories. So the conclusion, drawn by

Dupre, that the ‘selection process causes the average level of health to converge

between educational groups’, is, in general, not warranted.

There is, however, a more fundamental reason why a reference to selective

mortality is problematic. Given the distribution ofHt−1, conditional onX = x,

the mean value E(Ht |Ht ≥ 0, X=x) is a result of both mortality and a change

in the health of the surviving persons. This can be formally expressed as

E(Ht |Ht ≥ 0, X=x) = (8)∑
h≥0

E(Ht |Ht ≥ 0, Ht−1=h,X=x) Pr(Ht−1=h |Ht ≥ 0, X=x)

Due to mortality,

Pr(Ht−1=h |Ht ≥ 0, X=x) 6= Pr(Ht−1=h |Ht−1 ≥ 0, X=x) (9)
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and the difference between these two probability distributions could be called a

‘mortality effect’ (at the respective age). However, since surviving is a necessary

precondition for the mean value (8) to exist, this mortality effect cannot be

hypothetically dismissed.5 In fact, assuming that this mortality effect is zero

would entail

Pr(Ht ≥ 0 |Ht−1 = h,X=x) = Pr(Ht ≥ 0 |Ht−1 ≥ 0, X=x) (10)

so that surviving at age t would be independent of the health Ht−1. But then,

surviving should also be independent of the educational level, or otherwise the

health could not depend on education.

Changes of health

Mean health trajectories describe the development of age-specific mean val-

ues of the health of surviving persons. As illustrated by Figure 1, they are

not mean values of individual trajectories. In fact, since there is no common

temporal support, an ‘average of individual trajectories’ cannot be defined in

a temporally extended way. One possibility to come closer to a consideration

of individual trajectories is to focus on changes of health between consecutive

ages. In the present conceptual framework, such changes can be defined as

δt(x) := E(Ht −Ht−1 |Ht≥0, X=x) (11)

that is, the expectation of the difference in health between age t−1 and t,

conditional on education and having survived at least until t. The conditioning

on surviving is required for the definition of a change, and also is the reason

why δt(x) is, in general, not equal to a change of the mean health trajectory

defined as

δ∗t (x) := E(Ht |Ht≥0, X=x)− E(Ht−1 |Ht−1≥0, X=x) (12)

While δt(x) is the mean of the age-specific changes of the individual health

trajectories, δ∗t (x) is the age-specific change of the mean health trajectory. The

difference is immediately visible in Figure 1. In this example, all individual

trajectories change in the same way, and independent of age. The mean of

these changes is simply the gradient -0.05, and is obviously different from the

age-dependent gradients of the mean trajectory.

The difference between the two ways of assessing change is due to mortality.

To think of an individual’s change of health between t−1 and t requires that

the individual survives at least until t. In contrast, the mean health trajectory

relates to a group of individuals which continuously changes through mortality.

However, this is not a source of bias; δt(x) and δ∗t (x) are simply different

concepts, both providing relevant information.

Note that δt(x) is a mean value (derived from a broad variety of underlying

individual changes, h∗
i,t − h∗

i,t−1), and δt(x
′′) − δt(x

′) is therefore to be inter-

preted as a ‘between-person’ effect. Also note that the quantities δt(x) only

5To impute health values for deceased persons obviously contradicts an empirical research

strategy. It seems already difficult to consider this as a Gedankenexperiment as proposed by

Herd (2006); see also Noymer (2001).
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Figure 3 The individual trajectories are those of Figure 1. The arrows show

mean changes of individual health as defined in (13) with d = 3.

provide temporally local descriptions. This is illustrated in Figure 3, again

using the 30 trajectories from Figure 1. The arrows are defined by

[t, E(Ht |Ht+d≥0)] −→ [t+ d, E(Ht+d |Ht+d≥0)] (13)

where d = 3.6 They show the temporally local mean direction of health change

in 3-year intervals. A concatenation of the arrow heads would equal the mean

health trajectory shown in Figure 1. However, since the arrows presuppose

surviving until at least the endpoint of the arrow, they cannot be concatenated

in a continuous way.

Growth curve models

Researchers often use growth curve models to investigate how health depends on

age, education and/or further covariates. In terms of conditional mean values,

a simple growth curve model for the present application can be specified as

E(Ht |Ht ≥ 0, X=x) = α+ t β + t2 γ + xαx + t x βx + t2 x γx (14)

Without explicitly assuming a distribution of residuals, the model can be es-

timated with OLS. The resulting growth curves are then parametric models

of mean health trajectories. This is illustrated in Figure 4 where the growth

curve is derived from OLS estimation of (14) with x = 0 for the 30 trajectories

in Figure 1.

Instead of estimating model (14) with OLS, one can consider hierarchical

growth curve models. Several researchers have proposed that such models could

be used to investigate how individual (in contrast to mean) health trajectories

depend on education, or some measure of SES (e.g., Lynch 2003, Herd 2006,

Chen et al. 2010). A basic version begins with representing individual health

trajectories as

h∗
it = α0i + t β0i + t2 γ0i + ǫit (15)

6The plot is inspired by ‘aging-vector graphs’ as used by Kim and Durden (2007).
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Figure 4 The dotted line shows the mean health trajectory from Fig. 1, the

solid line shows a growth curve resulting from OLS estimation of model (14).

The parameters are then assumed to depend on education:

α0i = α+ xi αx + να,i, β0i = β + xi βx + νβ,i, γ0i = γ + xi γx + νγ,i (16)

Combining these specifications, the resulting model is

h∗
it = α+ t β+ t2 γ+xi αx+ t xi βx+ t2 xi γx+να,i+ t νβ,i+ t2 νγ,i+ ǫit (17)

This notation is in terms of individual values. In order to get a formulation

in terms of variables, one assumes that να,i, νβ,i, νγ,i and ǫit are realizations

of random variables denoted, respectively, by να, νβ, νγ and ǫt. One further

assumes that these variables have a zero mean (and one makes assumptions

about their joint distribution). In terms of variables, the model can then be

written as

H∗
t = α+ t β + t2 γ + xαx + t x βx + t2 x γx + να + t νβ + t2 νγ + ǫt (18)

with E(να) = E(νβ) = E(νγ) = E(ǫt) = 0. This formulation allows one to con-

sider the structural core of the model in terms of expectations of the dependent

variable:

E(H∗
t |Age = t,X=x) = α+ t β + t2 γ + xαx + t x βx + t2 x γx (19)

This structural core of the model is identical with (14) and entails a single

‘expected health trajectory’ for all persons with the same educational level.

How to think of ‘expected health trajectories’ estimated with a hierarchical

growth curve model? I first consider again the 30 trajectories from Figure 1.

Because all individual trajectories have the same time-constant slope, it suffices

to consider the model H∗
t = α+ t β + να + ǫ. The solid line in Figure 5 shows

the estimated growth curve (α̂ = 3.364, β̂ = −0.05). This is obviously neither

a possible individual trajectory nor some mean of the individual trajectories.

One might interpret the curve as a fictitious reference that allows one to think

of the individual trajectories as random deviations (as defined by the stochastic

part of the model).7

7For discussion of this question see also Kurland et al. (2009). They consider the hierar-
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Figure 5 The dotted line shows the mean health trajectory from Fig. 1, the

solid line shows a growth curve resulting from the hierarchical growth curve

model H∗

t = α+ t β + να + ǫ.

In this example, the estimated curve correctly represents the slopes of the

individual trajectories. This is due to the fact that all individual trajectories

have the same time-constant slope. In general, one does not get correct mean

values of individual slopes. In order to show this, I consider a second example

consisting of 30 trajectories generated according to

h∗
it = α′

i − (0.008 + β′
i) t− (0.0004 + γ′

i) t
2 + ǫit (20)

where α′
i, δ

′
i and γ′

i are random numbers uniformly distributed in the intervals

(1, 5), (−0.003, 0.003) and (−0.0001, 0.0001), respectively, and ǫit ∼ N (0, 0.01).

The dashed curves in Figure 6 show the individual health trajectories with

random fluctuations due to ǫit suppressed. The figure also shows the mean

health trajectory (dotted), and a growth curve estimated with a hierarchical

growth curve model (solid). Again, this growth curve does not describe a

meaningful trajectory but might be interpreted as a fictitious reference.

Mean changes of health can be assessed with the quantities δt(x) defined in

the previous section. Alternatively, one can consider the individual trajectories

as continuous functions of time and start from their slopes

sit := −(0.008 + β′
i)− 2 (0.0004+ γ′

i) t (21)

Mean values which correspond to δt(x) can be defined as

s̄t :=
1

nt

∑
i:li≥t

sit (22)

where nt is the number of persons surviving at least until t. These mean values

are shown in Figure 7 as a dotted curve. In contrast, the solid curve shows the

slope of the growth curve estimated with a hierarchical growth curve model (as

chical growth curve model as a (w.r.t. surviving) ‘unconditional model’ which requires values

of the dependent variable also for deceased persons. This model is contrasted with a ‘partly

conditional model’ which relates to the surviving members of a cohort and is basically equal

to model (14).
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Figure 6 30 individual health trajectories generated according to (20). Also

shown a mean health trajectory (dotted) and a growth curve resulting from

estimating a hierarchical growth model.
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Figure 7 The dotted curve shows the development of mean changes of health

(s̄t). The solid line shows the slope of the growth curve of a hierarchical model.

shown in Figure 6). This curve corresponds to mean slopes defined by
∑

isit/n,

which presuppose a common temporal domain for all individual trajectories.

Conclusion

I have argued that a person’s surviving is a necessary precondition for a mean-

ingful reference to her health. Statements about the dependence of health on

age, education and/or further covariates must be understood as being condi-

tional on surviving. Selective mortality should not be considered as a source

of bias which can hypothetically be dismissed.8

Given this understanding, mean health trajectories which are defined con-

8This is not to say that omitted variables cannot distort an assessment of the relationship

between education and health. This will be so if an omitted variable affects both health and

mortality, so that, conditional on surviving, its correlation with education changes. However,

this problem cannot be avoided by hypothetically dismissing the conditioning on survival.
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ditional on surviving provide meaningful descriptions of the health of the sur-

viving members of a cohort. However, age-dependent changes of a mean health

trajectory must be distinguished from mean values of health changes of indi-

vidual persons.

Selective mortality also has consequences for the understanding of growth

curve models. Simple growth curve models (where residuals have a tempo-

rally local definition) can be understood as tools for investigating how mean

health trajectories depend on education and/or further covariates. Hierarchical

growth curve models, in contrast, implicitly assume that all individual health

trajectories have an identical temporal extension. Growth curves estimated

with these models therefore do not represent the actually observed health tra-

jectories. Because there is no conditioning on surviving, these models also

misrepresent age-dependent changes of health.
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