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1 Introduction

Attempts to cope with unit nonresponse in surveys are often based on prob-

abilistic models which posit ‘probabilities of response’, and then think of

these probabilities as being dependent on a set of identifiable (and known)

variables. This paper discusses how to understand and use such models.

The discussion is based on a distinction between two purposes for which

the sampled data can be used. (a) Descriptive estimation of statistical

distributions which are defined for a particular target population from

which the sample is drawn. (b) Estimation of functional models (models

formalizing probabilistic rules) which concern the behavior of a generic unit

conditional on known values of some variables. The distinction is helpful

because relationships with response models are different. Being itself a

kind of functional model, a response model can be directly integrated into

the primarily interesting functional model in order to assess what can

be estimated with the available data. In contrast, there is no easy way

to integrate response models into the standard approach to descriptive

estimation that is based on randomization via a sampling design.

The paper is only concerned with unit nonresponse resulting from de-

cisions of (through the sampling design) selected units after they have

been contacted. It will be assumed throughout that respondents provide

complete information about all variables of interest. In section 2 I discuss

descriptive estimation; functional models will be considered in section 3.

Section 4 concludes with a suggestion for the presentation of data.

2 Consideration of Descriptive Estimation

2.1 The Formal Framework

Let Ω denote the target population, a finite set of units. The interest may

concern:

a) The distribution of a statistical variable Y , to be understood as a func-

tion Y : Ω −→ Y which assigns to each unit ω ∈ Ω an element Y (ω) of

the variable’s property space Y. (Y , like all other variables introduced
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below, may consist of two or more components.) The distribution of

Y in Ω will be denoted by P[Y ]; for specific values I use the notation

P(Y = y), meaning the proportion of units in Ω having the value y of

the variable Y . Of course, one might also be interested in quantities

derived from Y ’s distribution (e.g., the mean of Y ).

b) Regression functions which are derived from the distribution of a two-

dimensional statistical variable (X,Y ) : Ω −→ X × Y. I use the nota-

tion

x −→ P[Y |X=x] (1)

meaning that the regression function assigns to each value x ∈ X

the conditional distribution of Y given X = x. Specific values of the

conditional distribution will be denoted by P(Y =y |X=x).1

Now let S ⊂ Ω denote a sample of units randomly drawn from Ω. Until

further notice I assume that S is a simple random sample (design-based

weights will be considered in section 2.4.4). Variables restricted to the

sample will be denoted by Y s and (Xs, Y s), respectively. If complete

information would be available, one could use P[Y s] and P[Y s|Xs=x] for

estimating P[Y ] and P[Y |X=x]. However, in case of unit nonresponse, one

knows values of the variables only for a subset of the sample, say Sr ⊂ S.

This can be described by introducing a variable Rs : S −→ {0, 1}, with

Rs(ω) = 1 if ω ∈ Sr and Rs(ω) = 0 otherwise. The information available

is then given by the distributions P[Y s|Rs=1] and P[Y s|Xs=x,Rs=1],

respectively. In case of descriptive estimation, the question is how one can

use this information for the estimation of P[Y ] and P[Y |X = x]. More

specifically, there are two questions:

(1) Under which conditions does P[Y s|Rs = 1] provide a plausible esti-

mate of P[Y s] (that is, nonresponse can be ignored)?

(2) Given that there is a nonresponse bias (defined in some way by quan-

tifying the difference between P[Y s] and P[Y s|Rs=1]), can one find

1For ease of notation, I suppose that all variables have a discrete property space.
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a better estimate of P[Y s] which reduces this bias?

Analogous questions can be formulated for conditional distributions (re-

gression functions).

2.2 Probabilistic Models of Unit Nonresponse

The basic idea is to posit ‘probabilities of response’ and then to think

of these probabilities as being dependent, in some regular way, on values

of identifiable variables. As a formal framework for this idea, I use the

notation

h −→ Pr(Ṙ=1 | Ḧ=h) (2)

to be interpreted as a probabilistic rule: If the variable Ḧ has the value

h (an element in the property space H), then the probability of response,

recorded by Ṙ = 1, is Pr(Ṙ = 1 | Ḧ = h).2 Notice that neither Ḧ nor Ṙ

are statistical variables.3 In contrast to the statistical variable Rs, Ṙ is

a random variable (indicated by the dot). Moreover, there is no uncondi-

tional distribution of Ṙ; the model only provides probability distributions

conditional on values of Ḧ . The model neither requires nor implies a dis-

tribution of Ḧ; this is an exogenous variable of the model (indicated by

two dots), and only serves to specify the if -part of the rule formulated by

the model (2).

How to understand the random variable Ṙ ? A first question concerns

the nature of the associated conditional probability distributions. In a

first understanding, the model formulates a rule for predictions: Referring

to a unit, say ω, being approached to participate in the survey (in order

to get information about values of the variables of interest), and knowing

ω’s value of Ḧ, one could use (2) to probabilistically predict whether ω

will participate (and one will get the information). However, there is no

2Pr is used for probabilities and should be distinguished from frequencies, referred to

by P, which are defined as proportions in finite reference sets.

3I use this term to denote a function having a sample or target population as its

domain, like Y introduced above.
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point in using (2) for such predictions; and in fact, when dealing with the

questions formulated at the end of section 2.1, the most important role

is played by assumptions, not entailed in the formulation of the response

model. These assumptions concern the approximate independence of Ṙ

from the variables of interest, conditional on values of the variable Ḧ that

is used in the response model.

A further question concerns the demarcation of units for which the

model is intended to hold. I distinguish between a global response model,

assumed to be valid for all units in the target population, and a local

response model, assumed to be valid only for units in the selected sample.

In the following considerations I always assume a local response model.

2.3 Formulating Independence Assumptions

How to formulate assumptions about conditional independence between

Ṙ and the variables of interest depends on the conceptual framework. In

this section, I consider first a direct reference to statistical variables, then

very briefly a probabilistic modeling approach. (Another kind of modeling

approach which is not restricted to descriptive estimation will be discussed

in section 3.)

2.3.1 Direct Use of Statistical Variables

Suppose that the statistical variable of interest is Y . In order to establish

a relationship of the response model with this variable, one can include a

correspondingly defined exogenous variable, Ÿ , in the model; the indepen-

dence assumption can then be formulated as

Pr(Ṙ=1 | Ḧ=h, Ÿ =y) = Pr(Ṙ=1 | Ḧ=h) (3)

This assumption can be used to argue that

P(Rs=1 |Hs=h, Y s=y) ≈ P(Rs=1 |Hs=h)

7

(where Hs is a statistical variable, defined for the sample S, corresponding

to Ḧ) holds approximately;4 and consequently

P(Y s=y |Hs=h) ≈ P(Y s=y |Hs=h,Rs=1) (4)

Finally one can derive

P(Y s=y) ≈
∑

h
P(Y s=y |Hs=h,Rs=1)P(Hs=h) (5)

showing how P[Y s], and consequently P[Y ], can plausibly be estimated by

using the information from the realized sample Sr in combination with the

distribution of Hs in the complete sample.5 The argument only requires a

local response model. However, in addition to the assumption that all units

in the selected sample have a positive response probability, also the actually

observed response proportions, P(Rs=1|Hs=h), must be positive.

An analogous consideration can be used for the estimation of condi-

tional distributions (regression functions). Starting from the independence

assumption

Pr(Ṙ=1 | Ḧ=h, Ÿ =y, Ẍ=x) = Pr(Ṙ=1 | Ḧ=h, Ẍ=x)

one could assume that

P(Rs=1 |Hs=h, Y s=y,Xs=x) ≈ P(Rs=1 |Hs=h,Xs=x)

is approximately valid for the sample. This would allow one to derive

P(Y s=y |Xs=x,Hs=h,Rs=1) ≈ P(Y s=y |Xs=x,Hs=h)

4Using the approximation sign ≈ instead of an equal sign is required because the notion

of stochastic independence has no direct counterpart for frequencies in finite sets.

5If values of Hs are not available for nonrespondents, it might sometimes be possible

to use known population proportions P(H = h) instead of P(Hs = h). The approach

then becomes a form of post-stratification (Holt and Elliot 1991). If Hs consists of

several components, say Hs = (Hs

1
, . . . ,Hs

m), procedures also depend on whether the

complete distribution or only marginal distributions of the components are known. For

the latter case, raking procedures have been suggested (Deville, Särndal and Sautory,

1993).
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and finally

P(Y s=y |Xs=x) ≈ (6)
∑

h
P(Y s=y |Xs=x,Hs=h,Rs=1)P(Hs=h|Xs=x)

One would need the conditional frequencies P(Hs = h |Xs = x) for the

complete sample S. If they are not available, an easy solution would be

to consider the enlarged regression function (x, h) −→ P[Y |X=x,H=h]

which includes H (now with domain Ω) as a regressor variable. More

generally formulated, unit nonresponse can be ignored if, conditional on

the regressor variables, responses do not depend on the dependent variable

of the regression function.

2.3.2 Using a Probabilistic Modeling Approach

The approach just described requires to formally use approximate relation-

ships between statistical distributions which cannot be quantified easily. A

probabilistic modeling approach provides an alternative. Supposing that

the statistical variable of interest is Y s, this approach views the values

of this variable as realizations of a random variable Ẏ s (having the same

property space as Y s).6 Using a local response model, the independence

assumption can then be formulated with a strict equality sign as

Pr(Ṙ=1, Ẏ s=y | Ḧ=h) = Pr(Ṙ=1 | Ḧ=h) Pr(Ẏ s=y | Ḧ=h) (7)

This allows one to derive

Pr(Ẏ s=y | Ḧ=h) = Pr(Ẏ s=y | Ḧ=h, Ṙ=1) (8)

corresponding to (4). Based on this equation, one can argue that the

observed distributions P[Y s|Hs = h,Rs = 1], for h ∈ H, can be used to

6In my understanding, this conceptual framework does not require to posit a process

that randomly generated the values of Y s in the selected sample. It suffices to think

of the distribution of Ẏ s as a model intended to provide an approximate representa-

tion of the distribution of Y s. The suggestion is to conceptually distinguish between

‘representation’ and ‘generation’.
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estimate the distribution of Ẏ s. Since Ẏ s is intended to represent Y s, one

would use

Pr(Ẏ s=y) =
∑

h
Pr(Ẏ s=y | Ḧ=h, Ṙ=1)P(Hs=h)

≈
∑

h
P(Y s=y |Hs=h,Rs=1)P(Hs=h)

which employs the observed proportions, P(Hs = h). Again, the argu-

ment presupposes that all units in the selected sample have a positive

response probability. (Further requirements depend on the parameteriza-

tion of Pr(Ẏ s=y | Ḧ=h) and the chosen estimation method.)

Analogous formulations can be used when the interest concerns condi-

tional distributions (regression functions). This will be further discussed

in section 3 where I consider functional models which are not intended to

make descriptive statements about a particular target population.

2.3.3 Propensity Scores

The response probabilities posited by a response model can be considered

as propensity scores (Rosenbaum and Rubin, 1983). Given a local response

model (2), and assuming that there is a variable Hs providing values of Ḧ

for all units in S, one can define a statistical variable rH : S −→ R having

values

rH(ω) := Pr(Ṙ = 1 | Ḧ = Hs(ω)) (9)

rH(ω) is called ω’s propensity score (for response).7 As discussed by Rosen-

baum and Rubin (1983), presupposing the conditional independence (7),

propensity scores can be used to construct a coarsening of the condition-

ing.8 The argument uses the relationship

rH =r ⇐⇒ Hs ∈ Ar := {h ∈ H |Pr(Ṙ=1 | Ḧ=h) = r}

7In the present discussion, these propensity scores always concern the conditional

probability distribution of the response variable Ṙ. This is different from Rosenbaum

and Rubin’s discussion where propensity scores concern the assignment to a treatment

or a control group. I discuss this difference in section 3.3.

8Which degree of coarsening is possible depends on the circumstances. It is quite

possible that no coarsening can be achieved; an example will be given in section 2.4.3.
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Starting from (7), one can derive9

Pr(Ṙ=1, Ẏ s=y | rH =r) = Pr(Ṙ=1 | rH =r) Pr(Ẏ s=y | rH =r) (10)

This shows that it suffices to condition on values of the propensity score

variable rH .

It should be stressed that the notion of propensity scores, in order

to become useful, presupposes the conditional independence assumption

(7) to hold at least approximately. Of course, even without making this

assumption, based on knowledge of the values of a variable Hs for all

units in the sample S, one can set up a response model in the sense of

(2). Depending on the property space H, this might require to employ

a parametric form of the model.10 The model can then be estimated,

and propensity scores, as defined in (9), can be calculated for all units

in S. However, such an exercise of estimating a response model does not

contribute any argument for believing the assumption (7).

2.4 Nonresponse Adjustment Weights

The considerations in section 2.3 concern the first of the two questions

distinguished at the end of section 2.1: If the relevant independence as-

sumption holds, unit nonresponse can be ignored. However, such assump-

tions are not entailed by the response model but must explicitly be added;

9The derivation uses the following general rule (α and β are arbitrary suitable expres-

sions): If Pr(α |β, Ḧ=h) = c for all h ∈ A, then Pr(α |β, Ḧ ∈ A) = c. Therefore, since

for all h ∈ Ar

Pr(Ṙ=1 | Ẏ s=y, Ḧ=h) = Pr(Ṙ=1 | Ḧ=h) = r,

it follows that Pr(Ṙ=1 | Ẏ s=y, Ḧ ∈ Ar) = Pr(Ṙ=1 | Ḧ ∈ Ar) = r, or equivalently,

Pr(Ṙ=1 | Ẏ s=y, rH =r) = Pr(Ṙ=1 | rH =r) = r

from which (10) immediately follows. Of course, propensity scores must not be zero.

10If the number of values of Hs is large, the observed frequencies P(Rs = 1|Hs = h)

will often be zero or one and cannot immediately be used as propensity scores intended

to be usable as conditions. This can be avoided by defining propensity scores by a

parametric model (see Rosenbaum and Rubin, 1983: 47).
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and it is difficult (if at all possible) to check and justify such assumptions.

It is important, therefore, to consider also the second question: whether,

and how, a nonresponse bias that would result from using the realized

sample without further adjustment can be reduced. In this section I con-

sider definitions of adjustment weights that possibly contribute to reducing

nonresponse bias.

2.4.1 A First Definition of Adjustment Weights

A first definition (corresponding to the argument in section 2.3.1) directly

uses reciprocal values of the observed response proportions:

wa
ω := 1/P(Rs=1 |Hs=Hs(ω)) (11)

and therefore presupposes that these proportions are positive. The defi-

nition entails that Σω∈Srwa
ω = |S|. Referring then to ‘adjustment cells’

Sh := {ω ∈ S |Hs(ω) = h}, and using Sr
h := {ω ∈ Sh |R

s(ω) = 1} to de-

note the subsets of responding units, the approximation (4) can be written

as:11

∑
ω∈Sh

I[Y s=y](ω) ≈
∑

ω∈Sr
h

wa
ω I[Y s=y](ω) (12)

It follows that

∑
ω∈S

I[Y s=y](ω) ≈
∑

ω∈Sr
wa

ω I[Y s=y](ω)

and this approximation can be used as a starting point for the formulation

of estimators which attempt to compensate for unit nonresponse. For

example, one can use

1

|S|

∑
ω∈Sr

wa
ω I[Y s=y](ω) (13)

to estimate P(Y s=y).

11Here and below I use indicator variables, e.g. I[Y s = y](ω) = 1 if Y s(ω) = y, and 0

otherwise.



12

Table 1 Artificial data for a sample consisting of 10 units.

Unit Y
s

R
s

H
s

1 H
s

2

ω1 1 1 1 1

ω2 1 1 2 2

ω3 1 1 2 2

ω4 1 1 2 1

ω5 1 0 1 2

ω6 0 1 1 1

ω7 0 1 1 1

ω8 0 0 1 2

ω9 0 0 1 2

ω10 0 0 1 2

2.4.2 Reduction of Nonresponse Bias?

It is well possible that the estimator (13) reduces the nonresponse bias

that would result from using the uncorrected estimator P(Y s= y |Rs= 1),

given that the independence assumption (4) does not hold. It is, however,

difficult to identify conditions for this to be the case. An example can

show that there is no simple relationship with response predictions.

Table 1 shows artificial data for a sample consisting of 10 units. The

variable of interest is Y s, and it is assumed that P(Y s = 1) = 0.5. The

response rate is P(Rs = 1) = 0.6. The uncorrected estimate is obviously

biased: P(Y s=1|Rs=1) = 0.67. The table also shows two auxiliary vari-

ables, Hs
1 and Hs

2 , which can be used to calculate values of the estimator

(13). The example shows two things.

a) Using nonresponse adjustment weights can lead to a decrease, but also

to an increase of the nonresponse bias. In the example, using Hs
1 , the

new estimate is 0.53, but using Hs
2 , the new estimate is 0.8.

b) Hs
2 leads to an increased bias although it provides better predictions

of Rs than Hs
1 . (Based on Hs

1 , the proportion of correct predictions of

Rs is 0.7, based on Hs
2 , the proportion is 0.8.) This shows that there

13

is no simple relationship between nonresponse bias reduction and the

degree to which auxiliary variables allow one to predict responses.

There is, however, a possibly useful argument that starts from the obser-

vation that the size of (a version of) nonresponse error depends on the

correlation between Y s and Rs. Using M for the mean of statistical vari-

ables, the covariance of Y s and Rs can be written as

Cov(Y s, Rs) = M(Y sRs)−M(Y s)M(Rs) (14)

= M(Y s|Rs=1)M(Rs)−M(Y s)M(Rs)

A version of nonresponse bias is then given by

M(Y s|Rs=1)−M(Y s) =
Cov(Y s, Rs)

M(Rs)
(15)

This shows that, given a fixed response rate M(Rs) = P(Rs = 1), the

nonresponse bias is positively related to the covariance of Rs and Y s.

Therefore, in order to hopefully reduce the nonresponse bias with the help

of auxiliary variables, one should find such variables which correlate with

Y s and thereby reduce the conditional covariance of Rs and Y s. This is

illustrated by the example: Cov(Y s, Hs
1) = 0.15, Cov(Y s, Hs

2) = 0.

Notice that (15) cannot immediately be used to suggest a positive re-

lationship between the nonresponse bias and the nonresponse rate.12 The

covariance of Rs and Y s does not relate in any systematic way to the

nonresponse rate. It depends, of course, on Y s, and the nonresponse bias

therefore depends on the variable of interest.

2.4.3 Weights Derived from Parametric Models

Using the nonresponse adjustments weights wa
ω requires that there is at

least one respondent in each adjustment cell; this restricts to some degree

the possibilities of defining such cells. As an alternative, one can use the

response model to define weights:

wb
ω := 1/Pr(Ṙ=1 | Ḧ=Hs(ω)) (16)

12There also is only scarce empirical support for this sometimes supposed relationship;

see Groves (2006).
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Of course, when using P(Rs =1 |Hs=Hs(ω)) to estimate Pr(Ṙ=1 | Ḧ=

Hs(ω)), the weights will be identical. However, starting from (16) opens

the opportunity to derive weights from parametric forms of response mod-

els. One can use, for example, a logit model

Pr(Ṙ=1 | Ḧ=h) ≈
exp(g(h; θ))

1 + exp(g(h; θ))

where g(h; θ) is a link function (whose specification depends on the prop-

erty space of Ḧ).13 This allows one to estimate, for each ω ∈ S, a response

probability (propensity score)

r̂(ω) :=
exp(g(Hs(ω); θ̂))

1 + exp(g(Hs(ω); θ̂))
(17)

These values can be used in two different ways.

a) One possibility is to define individual adjustment weights, say ŵb
ω ,

proportional to 1/r̂(ω) and scaled to satisfy Σω∈Sr ŵb
ω = |S|. This ap-

proach uses response probabilities only of units who actually responded

(are contained in Sr).

b) Alternatively, one can use the response probabilities of all units in S. A

simple approach uses quantiles of the distribution of these probabilities

to define adjustment cells. For example, in order to define five adjust-

ment cells one could use quintiles of the distribution of the response

probabilities r̂(ω).

It seems natural to form adjustment cells consisting of units with sim-

ilar propensity scores (as implied when using quantiles). The following

conjecture, if true, would provide an argument:

If |r − r1| < |r − r2| , then P[Y s|rH = r] is more similar (18)

to P[Y s|rH = r1] than to P[Y s|rH = r2].

13Many different models might be employed. However, when to be used for the con-

struction of nonresponse adjustment weights, the goal of such models is not to find

optimal predictions of responses; and it is therefore difficult to see in which sense such

models could be misspecified as it is sometimes suggested in the literature (e.g., da Silva

and Opsomer, 2009).
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Table 2 Artificial data for a sample consisting of 32 units.

ω Y
s

R
s

H
s

ω Y
s

R
s

H
s

ω Y
s

R
s

H
s

1 0 1 1 11 0 1 2 23 0 1 3

2 0 1 1 12 1 1 2 24 0 1 3

3 1 1 1 13 1 1 2 25 0 1 3

4 1 1 1 14 1 1 2 26 0 1 3

5 0 0 1 15 0 1 2 27 1 1 3

6 0 0 1 16 1 1 2 28 1 1 3

7 0 0 1 17 1 1 2 29 1 1 3

8 1 0 1 18 1 1 2 30 1 1 3

9 1 0 1 19 0 0 2 31 0 0 3

10 1 0 1 20 1 0 2 32 1 0 3

21 1 0 2

22 1 0 2

This is not generally true, however, even if the conditional independence

assumption (7) holds. Consider the artificial data in Table 2. The three

propensity scores and corresponding distributions of Y s are as follows:

if Hs = 1: rH = 0.4, P(Y s = 1 | rH = 0.4) = 0.5

if Hs = 2: rH = 0.67, P(Y s = 1 | rH = 0.67) = 0.75

if Hs = 3: rH = 0.8, P(Y s = 1 | rH = 0.8) = 0.5

They clearly contradict the conjecture (18). Note that Y s and Rs are

approximately independent in this example. The example also shows that

propensity score variables are not always coarser than the auxiliary vari-

ables from which they are derived.

That (18) is not true is relevant for the argumentation with propen-

sity scores. The basic argument is: Given the independence assumption

(7), conditioning on propensity scores makes observed values of Ṙ unin-

formative about the distribution of Ẏ s. Formally, Pr[Ẏ s | rh = r, Ṙ = 1] =

Pr[Ẏ s | rh = r] for the model, or P[Y s | rh = r, Rs = 1] ≈ P[Y s | rh = r] for

the actual observations. These relationships are no longer true, however,

when rH = r is substituted by rH ∈ [r1, r2] (an interval of propensity

scores). The important point is that there is no generally valid systematic
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relationship between propensity scores and quantities connected with the

distribution of Ẏ s (or Y s).

2.4.4 Combining Adjustment and Sampling Weights

So far I have assumed that S is a simple random sample. The aim of non-

response adjustment then is to find a plausible estimate of the distribution

of Y s. This must be modified if units are drawn with unequal probabilities.

In order to estimate P(Y = y), one would then use

1

|S|

∑
ω∈S

ws
ω I[Y s=y](ω)

where ws
ω are design-based weights, and the aim of nonresponse adjustment

should be to find a plausible estimate of this quantity.

Suitably modified, one can use the argument for simple random sam-

ples. Details depend on the sampling design. To illustrate, I consider

stratified sampling, based on a stratification variable K. The sample con-

sists of subsets, say S(k), which are simple random samples of the cor-

responding population strata. Analogous to (12), using adjustment cells

Sk,h := {ω ∈ S |Ks(ω) = k,Hs(ω) = h}, the assumption of approximate

conditional independence can then be written as

∑
ω∈Sk,h

I[Y s=y](ω) ≈
∑

ω∈Sr
k,h

wc
ω I[Y s=y](ω)

using adjustment weights wc
ω := 1/P(Rs=1 |Ks=Ks(ω), Hs=Hs(ω)). It

follows that

∑
ω∈S(k)

I[Y s=y](ω) ≈
∑

ω∈Sr
(k)

wc
ω I[Y s=y](ω)

and finally

1

|S|

∑
ω∈S

ws
ω I[Y s=y](ω) ≈

1

|S|

∑
ω∈Sr

ws
ωw

c
ω I[Y s=y](ω)

showing that nonresponse adjustment weights and design-based sampling

weights can be combined. Notice, however, that the adjustments weights

must be properly defined for the actual sampling design. If the response

17

proportions (or probabilities) depend on values of the stratification vari-

able, one cannot simply use the weights wa
ω (or wb

ω) which are based on

assuming a simple random sample.

2.5 The Quasi-Randomization Approach

It might seem tempting to draw an analogy between design-based and non-

response adjustment weights.14 The analogy is, however, superficial. In

contrast to selection probabilities defined by a sampling design, response

probabilities posited by a response model do not correspond to a random

generator. Justification of nonresponse adjustment weights cannot, there-

fore, be based on a randomization procedure. If such weights contribute to

providing better estimates, this is due to the assumption of independence

between Ẏ s (or Y s) and Ṙ being approximately valid in each adjustment

cell.

It also follows that randomization-based arguments for the unbiased-

ness of an estimator cannot easily be extended to situations involving

unit nonresponse. Such arguments for showing that an estimator, e.g.

for P(Y =y), is unbiased require that one has information about values of

Y for all units in the selected sample. In order to extend such arguments

to situations involving unit nonresponse, one first of all would need to de-

vise a random mechanism for the generation of realized samples. This has

been called a ‘quasi-randomization approach’ for dealing with unit nonre-

sponse.15 To illustrate, one might use the response model (2) to construct

14For example, Little and Vartivarian (2005: 161) remarked: “Nonresponse weighting

is primarily viewed as a device for reducing bias from unit nonresponse. This role of

weighting is analogous to the role of sampling weights, and is related to the design

unbiasedness property of the Horvitz-Thompson estimator of the total (Horvitz and

Thompson 1952), which weights units by the inverse of their selection probabilities.

Nonresponse weighting can be viewed as a natural extension of this idea, where in-

cluded units are weighted by the inverse of their inclusion probabilities, estimated as

the product of the probability of selection and the probability of response given selec-

tion; the inverse of the latter probability is the nonresponse weight.”

15Oh and Scheuren (1983). See also Särndal, Swensson and Wretman (1992: ch. 15)

where a similar approach is used.
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a random generator for realized samples in the following way:

Given S, for each ω ∈ S randomly generate a value of

Ṙ, conditional on Ḧ = Hs(ω), and define Sr as the set of

units having Ṙ = 1.

(19)

This would allow one to define inclusion variables that are random variables

w.r.t. (19): İrω(S
r) = 1 if ω ∈ Sr, and = 0 otherwise; and to derive

inclusion probabilities

Pr(İrω = 1) =
∑

Sr
İrω(S

r) Pr(Sr |Hs) = Pr(Ṙ=1 | Ḧ=Hs(ω))

These variables could then be used to define an estimator for P(Y s=y):16

ey,S(S
r) :=

1

|S|

∑
ω∈S

wb
ω I[Y s=y](ω) İrω(S

r)

employing the weights defined in (16). The expectation w.r.t. (19) is

E(ey,S) =
∑

Sr
ey,S(S

r) Pr(Sr|Hs)

=
∑

Sr

1

|S|

∑
ω∈S

wb
ω I[Y s=y](ω) İrω(S

r) Pr(Sr |Hs)

=
1

|S|

∑
ω∈S

wb
ω I[Y s=y](ω)

∑
Sr
İrω(S

r) Pr(Sr |Hs)

=
1

|S|

∑
ω∈S

wb
ω I[Y s=y](ω) Pr(Ṙ=1 | Ḧ=Hs(ω))

Obviously, the estimator would be unbiased w.r.t. the random generator

devised in (19).

However, since this random generator is purely fictitious, it is ques-

tionable whether the approach is useful. Consider the critical assumption

that responses and variables of interest are (approximately) independent

conditional on values of the regressor variables of the response model. This

assumption would be entailed if the random generator devised in (19) really

generated the realized sample. Since this is not the case, also the quasi-

randomization approach must presuppose this assumption. The fictitious

random generator therefore does not contribute any relevant argument to

showing that using the adjustment weights wb
ω (derived from the response

model) provides plausible estimates.

16Here I assume again that S is a simple random sample.
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3 Consideration of Functional Models

I now consider functional models that serve to formulate rules for generic

units (or situations). Such models can be conceptualized either as de-

terministic or as probabilistic models (Rohwer 2010a, 2010b). Here I only

consider probabilistic functional models (subsequently I drop the adjective

‘probabilistic’ and simply speak of functional models).

The most simple functional model assumes that the probability distri-

bution of an endogenous variable, say Ẏ (with property space Y) depends

on values of an exogenous variable, say Ẍ (with property space X ); graph-

ically depicted:

Ẍ −→→ Ẏ (20)

The exogenous variable Ẍ serves to specify conditions. Since its values can

be arbitrarily fixed, it can be conceived of neither as a statistical nor as a

random variable. To remind of its special status as an exogenous variable

without an associated distribution it is marked by two dots. Since Ẍ has

no distribution, there also is no distribution for Ẏ (and it is therefore not

a random variable in the usual sense of the word). However, in order to

make quantitative statements possible, one can think of distributions of Ẏ

if particular values of Ẍ are fixed. To make this idea explicit, one uses a

stochastic function, x −→ Pr[Ẏ | Ẍ=x], that assigns to each value x of Ẍ

a probability distribution of the variable Ẏ .

Functional models can be estimated with data from random samples.17

Details depend on whether and how the models are parameterized. Here

I only consider difficulties which could result from unit nonresponse. The

basic idea is to integrate a response model into the primarily interesting

functional model and then consider reduced models resulting from condi-

tioning on response (Ṙ=1).

17It would be possible to think of the functional model as intending a description of the

population from which the sample is drawn. However, the general notion of a functional

model does not require its linkage to any particular target population.



20

3.1 Basic Forms of Combined Models

I assume that (20) is the model of primary interest and there is a further

endogenous variable, Ṙ, indicating how the sampled data relate to the

model. The data only allow one to estimate Pr[Ẏ | Ẍ=x, Ṙ=1], and the

question is whether, and how, one can estimate Pr[Ẏ | Ẍ=x].

(A) A first situation occurs when the response variable only depends on

exogenous variables:

(21)
Ẏ

Ṙ

Ẍ --

??

This entails that, conditional on values of Ẍ, Ẏ and Ṙ are stochastically

independent:

Pr(Ẏ =y, Ṙ=1 | Ẍ=x) = Pr(Ẏ =y | Ẍ=x) Pr(Ṙ=1 | Ẍ=x) (22)

and consequently

Pr(Ẏ =y | Ẍ=x, Ṙ=1) = Pr(Ẏ =y | Ẍ=x) (23)

In order to estimate the model of interest, one can use the data from the

realized sample Sr without the need to adjust for unit nonresponse. Of

course, a consequence of nonresponse could be that for some values (or

regions) in the property space of Ẍ no, or only very few, observations are

available, and this must then be taken into account.

(B) Equation (22) will be valid if Ṙ, but not Ẏ , also depends on values of

a further exogenous variable, say Z̈. A possibly different situation occurs

when also Ẏ depends on Z̈:

(24)
Ẏ

Ṙ

Ẍ

Z̈

--

??
66

��

This formally equals (21) with an exogenous variable (Ẍ, Z̈) consisting
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of two components. A new situation occurs, however, when values of Z̈

cannot be observed. First of all, it is necessary then to explicitly define

the reduced model that one intends to estimate. Note that already the

definition of this reduced model requires either to fix a specific value of Z̈,

or to substitute Z̈ by a variable for which one can assume a distribution

(see Rohwer 2010a: 52ff).

Assume that Z̈ is substituted by a random variable, Ż, with an un-

known distribution, but the structure of the model is not changed so that

Ż is still an exogenous variable and independent of Ẍ . One might then be

interested in a reduced model, Ẍ −→→ Ẏ , defined by

Pr(Ẏ =y | Ẍ=x) =
∑

z
Pr(Ẏ =y | Ẍ=x, Ż=z) Pr(Ż=z)

Additional conditioning on Ṙ = 1 results in

Pr(Ẏ =y | Ẍ=x, Ṙ=1) =
∑

z
Pr(Ẏ =y | Ẍ=x, Ż=z) Pr(Ż=z | Ẍ=x, Ṙ=1)

Since Pr(Ż = z | Ẍ = x, Ṙ = 1) 6= Pr(Ż = z), unit nonresponse cannot be

ignored; and since Ż cannot be observed, there is no way to eliminate the

nonresponse error.

(C) A further situation occurs when the response variable also depends on

values of an endogenous variable in the model of primary interest:

(25)
Ẏ

Ṙ

Ẍ --

??
������

�����

The conditional independence formulated in (22) is no longer valid. The

available data only allow one to estimate Pr[Ẏ |Ẍ=x, Ṙ=1], and there are

no possibilities to empirically assess deviations from Pr[Ẏ |Ẍ=x].

It would not even suffice to know, or make assumptions about, the

response model (x, y) −→ Pr(Ṙ = 1 | Ẍ = x, Ẏ = y). The relationship

between the model of interest and the model that can be estimated with
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the realized sample is given by

Pr(Ẏ =y | Ẍ=x) = (26)

Pr(Ẏ =y | Ẍ=x, Ṙ=1)
Pr(Ṙ=1 | Ẍ=x)

Pr(Ṙ=1 | Ẍ=x, Ẏ = y)

showing that the joint distribution of Ẏ and Ṙ, conditional on values of

Ẍ, would be required.

3.2 Bias Reduction with Auxiliary Variables

Mainly two strategies have been proposed for situations in which responses

depend on an endogenous variable of a functional model. One strategy

relies on specific assumptions about the mathematical form of the joint

distribution of Ẏ and Ṙ. Another strategy that will be considered in the

present section is similar to the use of nonresponse adjustment weights in

the context of descriptive estimation.

I refer to the combined model (25). One is interested in Pr[Ẏ |Ẍ=x],

but the data only allow one to estimate Pr[Ẏ |Ẍ = x, Ṙ= 1]. In order to

assess the nonresponse error, one may use the equation

Cov(Ẏ, Ṙ | Ẍ=x) =

E(Ẏ | Ẍ=x, Ṙ=1)E(Ṙ | Ẍ=x)− E(Ẏ | Ẍ=x) E(Ṙ | Ẍ=x)

This is similar to (14), but now conditional on values of Ẍ , and implies

E(Ẏ | Ẍ=x, Ṙ=1)− E(Ẏ | Ẍ=x) =
Cov(Ẏ, Ṙ | Ẍ=x)

E(Ṙ | Ẍ=x)
(27)

showing that the nonresponse error is positively related to the covariance

between Ṙ and Ẏ , conditional on values of Ẍ. One should therefore try to

find auxiliary variables such that additional conditioning on these variables

diminishes the correlation between Ṙ and Ẏ .
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Instead of (25), there is then an enlarged model

(28)
Ẏ

Ṙ

Ẍ

Ḣ

--

?? ??
��

������

�����

which includes an endogenous auxiliary variable Ḣ. If Ḣ adds to the

prediction of Ṙ, it is likely that additional conditioning on this variable

will reduce (albeit in an unknown amount) the nonresponse error due to

the correlation between Ẏ and Ṙ.

Sometimes it might be possible to find auxiliary variables such that the

direct arrow from Ẏ to Ṙ can be omitted:

(29)
Ẏ

Ṙ

Ẍ

Ḣ

--

?? ??
��

If this is justified, the model entails the conditional independence relation

Pr(Ẏ =y | Ẍ=x, Ḣ=h, Ṙ=1) = Pr(Ẏ =y | Ẍ=x, Ḣ=h)

allowing to derive

Pr(Ẏ =y | Ẍ=x) =
∑

h
Pr(Ẏ =y | Ẍ=x, Ḣ=h, Ṙ=1)Pr(Ḣ=h | Ẍ=x)

However, in order to recover Pr(Ẏ = y|Ẍ=x), one would need the condi-

tional probabilities Pr(Ḣ =h | Ẍ=x) which cannot be estimated without

bias when observations are conditional on Ṙ = 1, even if the auxiliary

variable could be observed unconditionally.

3.3 Digression on Propensity Scores

Propensity scores, as introduced in section 2.3.3, concern responses of units

selected for inclusion in a sample. In this context, propensity scores are

identical with response probabilities modeled as being dependent on auxil-

iary variables in such a way that, conditional on these variables, responses
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and variables of interest are (hopefully) approximately independent. In

this section I briefly compare this understanding with a usage of propensity

scores, suggested by Rosenbaum and Rubin (1983), that intends to sim-

ulate randomization w.r.t. confounders in observational studies of causal

effects.

In this context, Ṙ represents not a response, but the presence of a

causal factor. Instead of (25), the functional model is then given by

(30)
Ẏ

Ṙ

Ẍ --

??
�����*

����*

The outcome variable, Ẏ , depends on values of Ṙ and Ẍ. Ṙ represents

the presence (Ṙ = 1) or absence (Ṙ = 0) of a particular causal factor; Ẍ

represents additional conditions on which Ẏ depends. Hinted at by calling

Ẍ a ‘confounder’, the interest concerns a reduced model, Ṙ−→→ Ẏ , where

Ẏ depends only on the particular causal factor. The causal effect of this

factor could then be defined by

Pr[Ẏ | Ṙ = 1]− Pr[Ẏ | Ṙ = 0] (31)

However, this reduced model cannot be derived from (30). In other words,

given this model, a causal effect as presupposed in (31) does not exist. In

order to define this effect, one would need a completely different model,

namely

(32)
Ẏ

R̈

Ẋ --

66
�����*

����*

where the confounding variable is endogenous and the treatment variable

is exogenous. This model would allow one to derive the reduced model

which is presupposed by (31), namely

Pr[Ẏ | R̈=r] =
∑

x
Pr[Ẏ | Ẋ=x, R̈=r] Pr(Ẋ=x | R̈=r) (33)
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The idea of randomization w.r.t. the confounding variable starts from the

model (32). The idea is to generate a situation in which Pr[Ẋ | R̈ = 1] =

Pr[Ẋ | R̈ = 0]. But this requires that the arrow from R̈ to Ẋ can be

dropped and Ẋ can be changed into an exogenous variable.

This might be possible in an experimental context where values of

R̈ can be randomly assigned to units. However, this cannot be done in

observational studies when treatment variables are endogenous as assumed

in the model (30). This model requires to take seriously that the outcome

variable depends on values of Ṙ and Ẍ and that these variables are not

independent. Of course, the model entails the stochastic function

(r, x) −→ Pr[Ẏ | R̈=r, Ẍ=x] (34)

which can be used to define conditional effects:

Pr[Ẏ | R̈=1, Ẍ=x]− Pr[Ẏ | R̈=0, Ẍ=x] (35)

It is now easy to understand what can be achieved with propensity scores

for ‘treatment assignment’. These are probabilities Pr(Ṙ=1|Ẍ=x), taken

as values of a variable, say S̈.18 Explicitly defined:

S̈=s ⇐⇒ Ẍ ∈ Xs := {x ∈ X |Pr(Ṙ=1 | Ẍ=x) = s}

This variable can be used instead of Ẍ in (34), but the only gain is a

possibly coarser formulation of the dependency on values of Ẍ :

(r, s) −→ Pr[Ẏ | R̈=r, S̈=s] = Pr[Ẏ | R̈=r, Ẍ∈Xs] (36)

As stressed by Rosenbaum and Rubin (1983), Ṙ is independent of Ẍ,

conditional on values of S̈; but this fact does not lead to a kind of ran-

domization. One still can only define conditional effects (by substituting

Ẍ = x with S̈ = s in (35)).

This finally reveals a further difference between the two uses of propen-

sity scores. When constructing propensity scores for responses in surveys

it might well be possible to find auxiliary variables such that, conditional

18S̈ is an exogenous variable because it is derived from the exogenous variable Ẍ.
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on their values, responses and variables of interest become approximately

independent. In contrast, starting from the model (30), propensity scores

for ‘treatment assignment’ (Ṙ = 1) are already fixed by the model and

therefore cannot be freely constructed in such a way that these assign-

ments become independent of further causally relevant conditions.

4 Conclusion

The main conclusion of the foregoing discussion is that there is no gen-

erally applicable method for successfully coping with unit nonresponse.

Each usage of data from samples with a relevant proportion of unit nonre-

sponse requires a separate consideration of whether the nonresponses can

be ignored or, if not, whether and how nonresponse bias can be reduced.

This conclusion leads to two suggestions for the arrangement of data sets:

a) Data sets should not be supplemented with ready-made nonresponse

adjustment weights.

b) Instead, the data set should be supplemented with a list of all units

originally selected, and values of all variables available for the complete

sample should be added.
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