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1 Introduction

This paper discusses the question whether one should use sampling weights

when estimating statistical models. It is argued that the answer depends,

in particular, on the kind of model to be estimated. I distinguish three

kinds:

– Descriptive models that intend to provide simplified descriptions of the

distribution of variables defined for a target population. I argue that,

except for some special situations, sampling weights should be taken

into account when estimating such models.

– Probabilistic data models which start from the idea that the data in a

given sample can be viewed as realizations of random variables. I argue

that thinking about the usage of sampling weights in the estimation of

such models depends on the understanding of the relationship between

the model and the random variables serving to represent the given

data.

– Probabilistic functional models which intend to formulate rules for a

generic unit defined without reference to any particular target popu-

lation. I argue that using sampling weights in the estimation of such

models is required only if the selection probabilities used in the sam-

pling procedure depend on endogenous variables of the model. I further

suggest to rethink, and possibly reformulate, the model if weighted and

unweighted estimates differ significantly.

I consider only sampling weights that can be derived from a stratified sam-

pling design. In particular, I do not discuss the usage of weights intended

to compensate for unequal response rates. A further limitation is that I

only discuss models for cross-sectional data.

2 Descriptive Models

I consider two kinds of descriptive models: Models intended to represent

distributions of statistical variables in a target population, and descriptive
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regression models intended to describe dependency relations between sta-

tistical variables in a target population. I begin with briefly explaining my

understanding of ‘descriptive estimation’.

2.1 Descriptive Estimation

The conceptual framework is given by a statistical variable

X : Ω −→ X

which is defined for a target population Ω consisting of a finite number

of units. To each unit ω, the variable X assigns an element X(ω) of the

variable’s property space X . X could consist of several components: X =

(X1, . . . , Xq) with a property space X = X1×· · ·×Xq. In any case, one can

refer to the variable’s distribution by quantities P(X = x) defined as the

proportion of units in Ω whose value of X is x (a specified element of X ).1

Descriptive estimation can then be understood as intending to estimate

the distribution P(X = x), or quantities derived from this distribution

(e.g. the mean of X), based on knowing the values of X for the members

of a random sample S ⊂ Ω.

Knowing the values of X for the members of a sample S entails that

one can refer to a statistical variable

Xs : S −→ X

with Xs(ω) = X(ω) for all ω ∈ S; and one can calculate the quantities

P(Xs = x) describing the distribution of Xs in the sample. How these

quantities can be used to estimate P(X = x) depends on the sampling

procedure. As a starting point, I take it that P(Xs = x) provides a

plausible estimate of P(X = x) if S is a simple random sample defined by

equal selection probabilities for all members of the population. (I discuss

below in which sense one can also speak of an ‘unbiased estimate’.)

1Analogously, one can use expressions like P(X ≤ x) and P(X ∈ M) where M is a

subset of X .
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In practice, sampling procedures often entail unequal selection prob-

abilities. As a general framework I consider stratified sampling based on

information about a stratification variable

H : Ω −→ {1, . . . ,m}

Knowing this variable, one can define m subpopulations (strata), Ωj =

{ω |H(ω) = j}, and one also knows their sizes, Nj , such that ΣjNj = N ,

the size of the target population Ω.

Given this framework, one can define several different kinds of stratified

sampling procedures. In the following I consider just one form: From

each subpopulation Ωj one takes a simple random sample, Sj , having

a predefined size nj . The overall sample is then defined as the union

S = S1 ∪ · · · ∪ Sm having the size n = n1 + · · ·+ nm.

If all sampling fractions nj/Nj equal n/N , the overall sample S is

a simple random sample from the target population and (by definition)

provides plausible estimates. If, however, the sampling fractions differ

across the strata, one should use sampling weights. This can be seen as

follows. One intends to estimate

P(X = x) =
∑

j
P(X = x |H = j)

Nj

N
(1)

Then, given that2

P(Xs = x |H = j) =
1

nj

∑

ω∈Sj

I[X = x](ω)

is a plausible estimate of P(X = x |H = j), and defining weights

wω =
Nj

nj N
for ω ∈ Sj (2)

(entailing the normalization Σω∈S wω = 1),

∑

ω∈S
wω I[X = x](ω) (3)

is a plausible estimate of P(X = x).

2I use I[X = x] as an indicator variable defined for Ω: I[X = x](ω) = 1 if X(ω) = x,

and I[X = x](ω) = 0 otherwise.
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Table 1 Distribution of (X,Z, Y ) in the population and in a stratified sample.

X Z Y Population Sample

0 0 0 20000 100

0 0 1 30000 150

0 1 0 4000 20

0 1 1 16000 80

1 0 0 2400 24

1 0 1 5600 56

1 1 0 2200 22

1 1 1 19800 198

Example

A simple example will be used for illustration. The target population

consists of N = 100000 school-children having completed a specified grade.

There are three variables: X records the school type (0 or 1), Y records

whether the grade was completed successfully (1) or not (0), and Z records

the parents’ educational level (0 = low or 1 = high). Table 1 shows the

distribution of these variables in the population and in a stratified sample.

The construction of the sample uses X (school type) as a stratification

variable. The two subpopulations are Ω1 consisting of N1 = 70000 school-

children with X = 0, and Ω2 consisting of N2 = 30000 school-children with

X = 1. The sampling fractions are, respectively, 0.5% and 1%, so that

n1 = 350 and n2 = 300, and the overall sample size is n = 650. For ease

of presentation, and since we are not concerned with sampling errors, it

is assumed that the variables’ distribution in the subsamples equals their

distribution in the corresponding subpopulations.

Now assume that we want to estimate P(Y = 1) = 0.714. Using the

sample without weights would result in a distorted estimate: 484/650 =

0.745. On the other hand, using the weights wω = N1/(n1N) = 0.002 for

ω ∈ S1, and wω = N2/(n2N) = 0.001 for ω ∈ S2, would give the plausible

estimate
∑

ω∈S
wω I[Y = 1](ω) = 0.714.
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Referring to a sampling frame

So far the discussion was in terms of ‘plausible estimates’ based on a given

simple or stratified random sample S from a target population Ω. In order

to introduce estimators the reference to a sampling frame is required. A

sampling frame describes a method that can be used to create random

samples from a target population and specifies a probability distribution

for the set of possible samples. I assume that all possible samples have the

same size, n, that is fixed in advance.

Reference to a sampling frame allows one to define, for each unit ω ∈ Ω,

an inclusion variable, that is, a random variable indicating whether the

unit is included in a randomly generated sample:

İω(S) =

{

1 if ω ∈ S

0 otherwise
(4)

To remind that this is a random variable (defined w.r.t. the sampling

frame), and not a statistical variable, it is marked by a dot. In addition

one can define inclusion probabilities

π(ω) =
∑

S
İω(S) Pr(S) (5)

to be interpreted as the probability of generating a sample that includes

the unit ω.

These notions can now be used to define estimators. For example, an

estimator for P(X = x) can be defined as

Ṗ[X = x](S) =
∑

ω∈Ω
wω I[X = x](ω) İω(S) (6)

with weights defined by wω = 1/(π(ω)N). Given the values of X for the

units in a sample S, one can use this estimator to calculate a specific

estimate of P(X = x). The weights are chosen as to make the estimator

unbiased , meaning that its expectation (defined w.r.t. the sampling frame)

equals the quantity to be estimated:

E
(

Ṗ[X = x]
)

=
∑

S

∑

ω∈Ω
wω I[X = x](ω) İω(S) Pr(S)

=
∑

ω∈Ω
wω I[X = x](ω)π(ω) = P(X = x)
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The weights are actually the same as defined in (2) since, in the stratified

sampling frame, the inclusion probability of units belonging to subpopula-

tion Ωj is π(ω) = nj/Nj . The argument shows that the plausible estimate

defined in (3) can be considered as produced by an unbiased estimator.

This allows one to speak of an ‘unbiased estimate’ in the sense that it is

an estimate generated with an unbiased estimator.

Joint and conditional distributions

Formula (3) can easily be extended to estimate joint distributions. For

example, to estimate the joint distribution of X and Z, one could use

∑

ω∈S
wω I[X = x, Z = z](ω) (7)

Using the data from the sample in table 1, one would get the following

estimates:

x z Estimate of P(X = x, Z = z)

0 0 0.002 · 250 = 0.50

0 1 0.002 · 100 = 0.20

1 0 0.001 · 80 = 0.08

1 1 0.001 · 220 = 0.22

Referring to the argument of the preceding subsection, these values can be

considered as unbiased estimates of the corresponding population quanti-

ties.

Estimates of conditional distributions can be derived from estimates

of joint distributions. If the selection probabilities used for sampling only

depend on variables serving as conditions, weights do not vary in the sub-

sample specified by the conditioning, and it is not necessary to employ

weights. In the example, P(Y s = y |Xs = x, Zs = z) already is a plausible

estimate of P(Y = y |X = x, Z = z). Since the correspondingly defined

estimator is not unbiased, this is an example of a biased estimate that is,

nevertheless, plausible.
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2.2 Models for Distributions

The idea is to represent the distribution of a variable X in the target

population, Ω, by a function depending on parameters to be estimated. I

use g(x; θ) as a generic formulation, to be interpreted as a frequency or a

density function, depending on whether the property space X is conceived

of as discrete or continuous.

How to estimate such models? In order to set up a well-defined esti-

mation problem one needs to define the model to be estimated (that is,

g(x; θ) and the particular value of the parameter θ that should be esti-

mated). The central idea of descriptive estimation, in my understanding,

is that one intends to estimate the model that could be calculated if com-

plete data for all units in the target population would be available. Of

course, the definition is incomplete until one also has specified a particular

method of fitting the model to the data. The general approach is to define

a distance function that allows one to quantify the size of the difference

between the distribution of X and the model, and then to use the param-

eter value that minimizes this difference. Several possibilities exist. Here

I refer to the maximum likelihood method which is based on the distance

function

dML(θ) =
∑

x∈X(Ω)
P(X = x)

(

log(P(X = x))− log(g(x; θ))
)

(8)

(X(Ω) is the set of different values of X in the target population).3 Mini-

mizing this distance function is equivalent with maximizing the following

log-likelihood function:

ℓ(θ) =
∑

x∈X(Ω)
P(X = x) log(g(x; θ)) (9)

The model to be estimated is g(x; θ∗) where θ∗ is the value of θ that

maximizes ℓ(θ).

The log-likelihood function immediately shows how to estimate the

model with data from a sample: P(X = x) should be substituted by a

3For further discussion of this distance function see Rohwer and Pötter (2001: 148ff.).
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plausible (unbiased) estimate that can be derived from the sample. Con-

sequently, if it is a simple random sample, one can use the log-likelihood

function

ℓs(θ) =
∑

x∈X(S)
P(Xs = x) log(g(x; θ)) (10)

Representing the sample as S = {ω1, . . . , ωn}, and defining xi = X(ωi),

this can also be written as

ℓs(θ) =
1

n

∑

i=1,n
log(g(xi; θ)) (11)

If θ̂ maximizes this function, g(x; θ̂) can be considered as a plausible esti-

mate of the model g(x; θ∗).

Stratified sampling

If the data result from stratified sampling, one has to use sampling weights.

The log-likelihood function (derived by substituting P(X = x) in (9) by

the plausible (unbiased) estimate (3)) is

ℓs(θ) =
∑

i=1,n
wi log(g(xi; θ)) (12)

where wi denotes the sampling weights as defined in (2): wi =
Nj

nj N
if xi

belongs to subpopulation Ωj .

To illustrate, I use the example introduced in section 2.1. The goal is

to estimate a model for the distribution of the variable Y . Since it is a

binary variable, a single parameter suffices for a complete representation

of the distribution; one can simply use a frequency function

g(y; θ) =

{

θ if y = 1

1− θ if y = 0

Inserting this into (12), one finds the maximand θ̂ =
∑

i=1,n wi yi. With

the sample data from table 1 one gets the value

θ̂ = 0.002 · 150 + 0.002 · 80 + 0.001 · 56 + 0.001 · 198 = 0.714

which equals the value found in section 2.1.
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Continuous distribution models

Now assume that Y records school-children’s scores in a competence test.

One might then use a model based on a continuous distribution, for ex-

ample a normal (or log-normal) density function, say φ(y;µ, σ). The log-

likelihood function to be maximized would be

ℓs(µ, σ) =
∑

i=1,n
wi log(φ(yi;µ, σ)) (13)

The estimated model would be φ(y; µ̂, σ̂) where µ̂ and σ̂ maximize ℓs(µ, σ).

2.3 Descriptive Regression Models

Given two variables, X with property space X and Y with property space

Y, defined for a target population Ω, I define a descriptive regression func-

tion as a function that assigns to each value x ∈ X the conditional distri-

bution of Y given X = x; symbolically depicted:

x −→ P(Y |X = x) (14)

Descriptive regression models are correspondingly defined functions which

substitute P(Y |X = x), which is itself a function and not a single num-

ber,4 by a simplified description. Notice that the approach of descriptive

estimation allows one to make a clear distinction between the model and

the thing to be represented by the model (here a descriptive regression

function).

If Y is a discrete variable, a straightforward approach employs condi-

tional frequencies. There is then, for each value y ∈ Y, a specific model

for the regression function

x −→ P(Y = y |X = x) (15)

Examples of such models will be considered in section 2.4. If Y is a quan-

titative variable, regression models often concern conditional mean values,

that is, are models of the regression function

x −→ M(Y |X = x) (16)

4P(Y |X = x) is a short-cut for the function y −→ P(Y = y |X = x).
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Some examples will be discussed in section 2.5.

A further possibility is to start from a parametric model for Y , say

g(y; θ), and to make θ a function of x. For example, if Y records the

school-children’s scores in a competence test, one might use a normal (or

log-normal) density function, say φ(y;µ, σ), and a linear link function µ =

α+ xβ. Obviously, the possibilities to specify regression models with this

approach are nearly unlimited.

An important goal to be served by regression models becomes visible

if X consists of several components, say X = (X1, . . . , Xq). Then the

regression function to be described by a model is

(x1, . . . , xq) −→ P(Y |X1 = x1, . . . , Xq = xq) (17)

and one might be interested in finding a simpler description of the depen-

dence on the independent variables. The simplest possibility would be to

use a linear link function, say θ = β0 + x1β1 + · · ·+ xqβq. Of course, this

ignores all interaction effects that might well be important.

I speak of descriptive regression models in order to stress that these

models are intended to describe (represent) regression functions which are

defined for statistical variables in a target population. This entails that it

will most often be necessary to employ sampling weights when estimating

such models with data resulting from stratified sampling. I briefly consider

this for two kinds of regression models.

2.4 Regression Models for Proportions

These are models for the regression function (15). I use gy(x; θ) as a

generic formulation for representing P(Y = y |X = x). If the model to be

estimated is defined with the maximum likelihood method, its definition

is based on minimizing the distance function

∑

x,y
P(Y = y,X = x)

(

log(P(Y = y |X = x)) − log(gy(x; θ))
)

This is equivalent with maximizing the log-likelihood function

ℓ(θ) =
∑

x,y
P(Y = y,X = x) log(gy(x; θ)) (18)
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The parameter value θ∗ that maximizes this function defines the model

for the target population. If this model is to be estimated with sample

data, one should use a log-likelihood function where P(Y = y,X = x) is

substituted by a plausible (unbiased) estimate.

Illustration with a binary logit model

To illustrate, I assume a binary dependent variable (Y = 0 or 1), and use

a logit model defined by

g1(x;α, β) =
exp(α+ xβ)

1 + exp(α+ xβ)

and g0(x;α, β) = 1 − g1(x;α, β). With data from a stratified random

sample one should use the log-likelihood function

ℓs(θ) =
∑

i=1,n
wi

(

yi log(g1(xi; θ)) + (1− yi) log(g0(xi; θ))
)

(19)

with sampling weights wi defined by (2). Notice that, except when esti-

mating a saturated model, the weights are required even if the selection

probabilities employed in the sampling design depend only on variables

that are used as independent variables in the model. To illustrate, I use a

logit model for the regression function

(x, z) −→ P(Y = y |X = x, Z = z) (20)

based on the example introduced in section 2.1. Sampling weights are not

required when estimating a saturated model

g1(x;α, βx, βz, βxz) =
exp(α+ xβx + z βz + x z βxz)

1 + exp(α+ xβx + z βz + x z βxz)

They should be used, however, as soon as the model is simplified by omit-

ting an interaction term. In this example, a simplified model would be

g1(x;α, βx, βz) =
exp(α+ xβx + z βz)

1 + exp(α+ xβx + z βz)
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Estimating this model with the data in table 1, one gets the following

results:

population sample with weights sample without weights

α̂ 0.3850 0.3850 0.3734

β̂x 0.6136 0.6136 0.5917

β̂z 1.0801 1.0801 1.1383

Obviously, sampling weights are required for plausible estimates of the

model parameters defined for the target population.

Sampling weights are required, in particular, when the selection prob-

abilities depend on the dependent variable of the model. In our example,

this would be a model in which the probability of visiting one or the other

school type (X) is made dependent on the parents’ educational level (Z).

The log-likelihood function (18) shows that model estimation would re-

quire a plausible estimate of the joint distribution P(X = x, Z = z).

2.5 Least Squares Estimation

Another estimation method is least squares (LS) estimation. It is often

used for the definition and estimation of regression models for conditional

mean values as depicted in (16). In order to refer to a model for mean

values M(Y |X = x), I use m(x; θ) as a generic formulation. The model

for the target population is then defined by a parameter value θ∗ that

minimizes the LS distance function

LS(θ) =
∑

x∈X(Ω)
P(X = x)

(

M(Y |X = x)−m(x; θ)
)2

(21)

This is equivalent (see Rohwer and Pötter 2001: 135f.) with minimizing

the function

∑

ω∈Ω

(

Y (ω)−m(X(ω); θ)
)2

This immediately leads to the usual formulation of LS estimation with

data from a simple random sample, namely,

∑

i=1,n

(

yi −m(xi; θ)
)2

(22)
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If the data result from stratified sampling, it is helpful to start from (21)

because this formulation shows what should be done in order to find plau-

sible parameter estimates: P(X = x) and M(Y |X = x) should be substi-

tuted by plausible (unbiased) estimates. In order to derive a formula for

weighted LS regression, one can start from rewriting (21) as

LS(θ) =
∑

x
P(X = x)

(

∑

y

y P(Y = y,X = x)

P(X = x)
−m(x; θ)

)2

Minimizing this function is equivalent with minimizing

∑

x
P(X = x)m(x; θ)2 − 2m(x; θ)

∑

y
y P(Y = y,X = x)

Substituting P(X = x) and P(Y = y,X = x) by plausible (unbiased)

estimates can now be done by using weights in the following way:

∑

i=1,n
wim(xi; θ)

2 − 2wim(xi; θ) yi

where the weights wi are defined by (2). Finally, minimizing this function

is equivalent with minimizing

∑

i=1,n
wi

(

yi −m(xi; θ)
)2

(23)

which is the standard formulation for LS estimation with sampling weights.

It is noteworthy that this formulation also covers the case where the

selection probabilities depend on the dependent variable of the model.

3 Probabilistic Data Models

I now consider probabilistic data models . The following quotation from

D.R. Cox and N. Wermuth (1996: 12) explains the basic ideas.

The basic assumptions of probabilistic analyses are as follows:

1. The data are observed values of random variables, i.e. of vari-

ables having a probability distribution. 2. Reasonable working

assumptions can be made about the nature of these distribu-

tions, usually that they are of a particular mathematical form

involving, however, unknown constants, called parameters. We
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call this representation a model, or more fully a probability

model, for the data. 3. Given the form of the model, we re-

gard the objective of the analysis to be the summarization of

evidence about either the unknown parameters in the model

or, occasionally, about the values of further random variables

connected with the model, and, very importantly, the interpre-

tation of that evidence.

The most important assumption underlying this modeling approach is that

the data in a given sample can be considered as values of random variables.

To make this explicit, I refer to a population, Ω, for which a statistical

variable X : Ω −→ X is defined, and to a sample S = {ω1, . . . , ωn} from

this population. The observed data are xi = X(ωi), for i = 1, . . . , n. The

basic assumption then is that one can think of these values as realizations

of random variables

Ẋ1, . . . , Ẋn (24)

Such variables will be called data representing random variables . To indi-

cate that these are random variables, and therefore conceptually different

from statistical variables, they are marked by a dot.

Probabilistic modeling consists in making assumptions about the prob-

ability distributions of these random variables. Unfortunately, it is unclear

how to understand these random variables, and different interpretations

exist (two interpretations will be discussed briefly in section 3.4).5 A fur-

ther obscurity concerns the goal of the modeling. It is often said that the

goal is to model ‘data-generating processes’. However, usage of this term

easily obscures an important distinction between two kinds of processes:

a) Processes that generate real-world facts. Referring to the example

introduced in section 2.1, one can think of the processes that generate

for each school-child specific values of the variablesX (school type) and

5I will not discuss so-called superpopulation models which start from random variables

defined for the population Ω (and not just for the given sample).
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Y (outcome). Such processes will be called fact-generating processes .6

b) Processes that generate data, that is, information about already ex-

isting facts. Such processes can properly be called data-generating

processes . They include, in particular, the selection of units to be in-

cluded in a (random) sample. Such processes obviously presuppose

that fact-generating processes have taken place.

Distributions of data representing random variables result from both kinds

of processes. I suppose that the theoretical interest concerns the fact-

generating processes. One therefore has to decide whether one needs to

distinguish the data representing random variables from the theoretical

interesting variables intended to represent the fact-generating processes.

3.1 Simple Stochastic Estimators

For ease of notation, I conceive of the random variables Ẋi as having

a discrete property space so that one can refer to probability functions

fi(x) = Pr(Ẋi = x). It is often supposed (not only if the data result from

simple random sampling) that the variables have identical distributions,

fi(x) = f(x) (being the distribution of a random variable Ẋ), and are

stochastically independent (briefly: i.i.d.). Now assume that one wants

to estimate f(x). Descriptive estimation in the understanding of section

2.1 is no longer appropriate. Instead, one can use the data representing

random variables to define an estimator that is itself a random variable.

One can start from random variables

İ[Ẋi = x] =

{

1 if Ẋi = x

0 otherwise
(25)

and use these variables to define the estimator

U̇x =
1

n

∑

i=1,n
İ[Ẋi = x] (26)

6In Rohwer (2010a), they have been called ‘substantial processes’. Since the term

‘substantial’ is ambiguous, I now prefer to speak of ‘fact-generating processes’.
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The sampled values x1, . . . , xn can then be viewed as providing a specific

value of this estimator, to be interpreted as an estimate of f(x). That the

estimator is a random variable opens the opportunity to define ‘unbiased’

in a way that is not available with descriptive estimation:

E(U̇x) = f(x)

Notice that the expectation, E(.), is here not defined w.r.t. the probabil-

ity distribution which is associated with the sampling procedure used to

generate the actual sample. Instead, it is defined w.r.t. the distribution of

the data representing random variables.

Moreover, one can think that the estimator has a variance that can be

estimated and used to assess the ‘precision’ of the estimate; in the current

example,

V(U̇x) =
f(x) (1 − f(x))

n

Stratified Samples

Now consider data from stratified sampling based on a stratification vari-

able H that distinguishes m subpopulations (I use the notation introduced

in section 2.1). One then needs to distinguish the data representing vari-

ables Ẋi from a theoretically interesting random variable, say Ẋ∗. Of

course, this variable must be defined before its distribution, say f∗(x), can

be estimated. One possibility is as follows. One starts from the assump-

tion that in each subsample, Sj , the variables Ẋi are i.i.d. with f(j)(x).

This allows one to define

f∗(x) =
∑

j=1,m

Nj

N
f(j)(x)

Using then

U̇x,j =
1

nj

∑

i∈Sj

İ[Ẋi = x]

as an estimator for f(j)(x), an appropriate estimator for f∗(x) is

U̇∗
x =

∑

i=1,n
wi İ[Ẋi = x] (27)
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where wi are the sampling weights defined in (2). This is formally analo-

gous to the function (3); the main difference is that (27) allows one to think

in terms of a stochastic estimator that can be defined without reference to

a sampling frame for the given sample.

3.2 Models for Distributions

I now briefly discuss models for distributions of data representing random

variables. I begin again with the supposition that the variables Ẋi are i.i.d.

with f(x). The theoretically assumed model is given by g(x; θ). Estimation

with the maximum likelihood method proceeds by minimizing the distance

function

∑

x
f(x)

(

log(f(x)) − log(g(x; θ))
)

This is equivalent with maximizing the log-likelihood function

∑

x
f(x) log(g(x; θ)) (28)

The model to be estimated is g(x; θ∗) where θ∗ is the value of θ that

maximizes this function.

This approach can also be viewed as providing a stochastic estimator.

Substituting f(x) by the estimator (26), one gets

1

n

∑

i=1,n

∑

x
İ[Ẋi = x] log(g(x; θ)) (29)

This also shows how to estimate a model for a distribution f∗(x) supposed

to exist if the data result from stratified sampling (see section 3.1). One

substitutes f∗(x) by the estimator (27), and then gets

∑

i=1,n

∑

x
wi İ[Ẋi = x] log(g(x; θ)) (30)

covering (29) as a special case. The corresponding estimator U̇(Ẋ1, . . . , Ẋn)

is defined as follows: If Ẋ1 = x1, . . . , Ẋn = xn and θ̂ maximizes

ℓ(θ) =
∑

i=1,n
wi log(g(xi; θ)) (31)

then U̇(Ẋ1, . . . , Ẋn) = θ̂. In this sense one can consider θ̂ as an estimate

of θ∗ that results from the sample x1, . . . , xn.
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3.3 Probabilistic Regression Models

I now consider probabilistic regression models that are based on data rep-

resenting random variables

(Ẋ1, Ẏ1), . . . , (Ẋn, Ẏn) (32)

I first assume that these variables are i.i.d. with a probability function

f(x, y) = P(Ẋ = x, Ẏ = y). As an example, I consider a model for the

regression function

x −→ E(Ẏ | Ẋ = x) (33)

Notice that, given x, E(Ẏ | Ẋ = x) is a fixed value, defined by assuming

a distribution f(x, y). The regression model is intended to model these

conditional expectations. I use m(x; θ) as a generic formulation. In addi-

tion, one must define the parameter, say θ∗, that one intends to estimate.

As was done in section 2.5, I use the least squares method, that is, θ∗ is

defined as the parameter value that minimizes

∑

x
f(x)

(

E(Ẏ | Ẋ = x)−m(x; θ)
)2

(34)

Starting from this definition, one gets an estimator of θ∗ by substituting

f(x) and E(Ẏ |Ẋ = x) =
∑

y yf(x, y)/f(x) by suitable estimators.

The same approach can be followed when the data representing vari-

ables (32) relate to a stratified sample. It is assumed, then, that the model

concerns a regression function

x −→ E(Ẏ ∗ | Ẋ∗ = x) (35)

where the theoretically interesting variable (Ẋ∗, Ẏ ∗) is defined by

f∗(x, y) =
∑

j=1,m

Nj

N
f(j)(x, y) (36)

(based on assuming that, in each subsample Sj , the variables (Ẋi, Ẏi) are

i.i.d. with f(j)(x, y)). The model to be estimated is now defined by the

parameter θ∗ that minimizes

∑

x
f∗(x)

(

E(Ẏ ∗ | Ẋ∗ = x)−m(x; θ)
)2

(37)
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In order to find a suitable estimator, one can substitute f∗(x) by the

estimator (27), and E(Ẏ ∗ | Ẋ∗ = x) by the estimator

∑

y

y
∑

iwiİ[Ẋi = x, Ẏi = y]
∑

iwiİ[Ẋi = x]
(38)

The resulting formula looks complicated, namely,

∑

x

∑

i
wi İ[Ẋi = x]

(

∑

y

y
∑

i wiİ[Ẋi = x, Ẏi = y]
∑

i wiİ[Ẋi = x]
−m(x; θ)

)2

(39)

However, the corresponding estimator for θ∗, say U̇(Ẋ1, Ẏ1, . . . , Ẋn, Ẏn), is

quite simple: If the sample is (x1, y1), . . . , (xn, yn), the estimator provides

the value U̇(Ẋ1, Ẏ1, . . . , Ẋn, Ẏn) = θ̂ that minimizes the function

∑

i=1,n
wi

(

yi −m(xi; θ)
)2

(40)

(see the formally analogous derivation in section 2.5).

When one should use sampling weights?

Notice that (40) requires weights even if the selection probabilities used in

the stratified sampling depend only on variables included as independent

variables in the regression model (the only exception occurs when there

is a separate model for each subsample (stratum)). This is a consequence

of understanding the conditional expectations, E(Ẏ |Ẋ = x), as quanti-

ties that are fixed independently of the modeling exercise. This entails

that the regression model, m(x; θ∗), must be understood as approximately

representing these quantities.

There is, however, another understanding of probabilistic regression

models that starts from the idea that one can use a model to make assump-

tions about the probability distribution of the data representing variables

(see above the quotation from Cox and Wermuth). An often made as-

sumption is that there is a parameter value θ∗ such that

E(Ẏ | Ẋ = x) = m(x; θ∗) (41)

This assumption allows one to argue that sampling weights are not required
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if they depend only on variables included as independent variables in the

model. This can be seen in the following way. If sampling weights depend

only on values of Ẋ, the weights wi in the estimator (38) cancel because

they do no vary. If furthermore (41) holds, also the probability function

f∗(x) in (37) can be dropped. Consequently, the function (39) which is

used to define the estimator can be simplified into

∑

x

(

∑

y

y
∑

i İ[Ẋi = x, Ẏi = y]
∑

i İ[Ẋi = x]
−m(x; θ)

)2

Finding then the minimum for a sample (x1, y1), . . . , (xn, yn) is equivalent

with minimizing the unweighted least squares function

∑

i=1,n

(

yi −m(xi; θ)
)2

(42)

If (41) holds, m(x; θ∗) could be called a ‘true regression model’.7 This

notion also motivates a specific understanding of ‘omitted variables’: vari-

ables that should be added to the model in order to make it a true regres-

sion model.

3.4 How to Understand the Approach?

The modeling approach based on data representing random variables is

quite flexible. As soon as one has introduced these variables one can make

arbitrary assumptions about their distributions and then use the methods

of formal probability theory to derive implications. Unfortunately, it is

unclear how to understand these random variables.

The main obscurity is due to the fact that these variables are defined by

reference to a given sample, say S = {ω1, . . . , ωn}. Otherwise it would not

be possible to distinguish data representing random variables by indices, i,

that refer to individual units. However, assume that the index i refers to a

particular unit, ωi, how then to make sense of realizations of the random

variable Ẋi ? Except for measurement errors, this variable can only have

a single value, the one that was recorded in the given sample.

7The belief that one has specified a true regression model is often thought to be a

prerequisite even for linear OLS regression; see e.g. Winship and Radbill (1994: 232).
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In order to avoid these obscurities, one can try to define data repre-

senting random variables by a sampling procedure. Given the notion of a

statistical variableX : Ω −→ X , one can define a random variable Ẋ in the

following way: randomly draw with replacement a unit ω, and then take

X(ω) as a realization of Ẋ. This is a conceptually valid definition, and it

entails a definite probability distribution for Ẋ : Pr(Ẋ = x) = P(X = x).

Of course, this is not normally the method that is used to create S.

If it is a simple random sample, one might, nevertheless, use Ẋ as an

approximately valid representation of the data generating process that

has produced the sampled values.8 However, these values must then be

conceived of as realizations of one single random variable, Ẋ , and indices

referring to particular units cannot be used.

In a similar way one could define data representing random variables by

referring to a stratified sampling procedure. For each subpopulation one

can define a separate random variable, say Ẋ(j). Assuming then known

fractions Nj/N , their distributions could be mixed to define a random

variable Ẋ representing the target population. Again, there would be no

possibility to introduce random variables indexed by references to partic-

ular units.

As a consequence of following this approach to introduce data repre-

senting random variables, models must be understood as descriptions of

probability distributions that are fixed before the modeling takes place

(and actually are derived from statistical distributions in a target popu-

lation). This entails that assumption (41) is most often not reasonable.

A different understanding of the data representing random variables is re-

quired in order to allow one to make arbitrary assumptions about their

distributions and, in particular, to think in terms of a ‘true regression

model’. The random variables must then be understood as theoretical fic-

tions invented to make a special form of probabilistic modeling possible

(see, e.g., Berk 2004: 53ff.).

8This assumption is often made, see e.g. DuMouchel and Duncan (1983: 536).
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4 Probabilistic Functional Models

I now consider functional models that serve to formulate rules for generic

units (or situations). Such models can be conceptualized either as deter-

ministic or as probabilistic models (see Rohwer 2010a, 2010b). Here I only

consider probabilistic functional models (subsequently I drop the adjective

and simply speak of functional models).

4.1 Modeling Probabilistic Rules

As an example of a probabilistic rule consider the following: The prob-

ability that a child successfully completes a grade is higher in schools of

type 1 than in schools of type 0. This is not a statement about any par-

ticular school-child, or any particular population of school-children. It

is not a descriptive statement at all. Instead, it is a rule which refers

to a generic school-child. How to formulate such rules? As a first step,

one can think that the rule formulates a dependency relation between two

variables; graphically depicted:

Ẍ −→→ Ẏ (43)

The variable Ẍ serves to make an assumption about the school type (0

or 1), and Ẏ serves to refer to possible outcomes (1 if success, 0 if no

success). Ẍ is an exogenous, Ẏ is an endogenous variable of the model.

Since values of Ẍ can be arbitrarily fixed, Ẍ can be conceived of neither

as a statistical nor as a random variable. To remind of its special status as

an exogenous variable without an associated distribution it is marked by

two dots. Since Ẍ has no distribution, there also is no distribution for Ẏ

(and it is therefore not a random variable in the usual sense of the word).

However, in order to make quantitative statements possible, one can think

of conditional distributions of Ẏ if particular values of Ẍ are fixed. To

make this idea explicit, one uses a stochastic function

x −→ Pr(Ẏ | Ẍ = x) (44)

that assigns to each value x of Ẍ a conditional probability distribution of

the variable Ẏ .
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In my understanding, these are epistemic probability distributions quan-

tifying the uncertainty of using the rule for a prediction. The probabilities

are not fixed by real-world facts but reflect the beliefs and the knowledge

of people who are interested in the predictions. Possibilities to find values

of these probabilities therefore depend on the application context. If one

can refer to an artificial random generator, or an analogously conceivable

process frame (a ‘random experiment’), classical inference methods which

presuppose objective probabilities can be used. In most social science ap-

plications process frames can be conceived of as random generators in only

a very loose sense, and quantification of epistemic probabilities must be

based on samples from historically changing populations. Of course, there

is no other possibility than to rely on observed conditional frequencies.

However, in contrast to distributions of statistical variables defined for

specified target populations, the epistemic probabilities to be estimated

cannot be assumed to be objectively fixed quantities, but must be un-

derstood as being defined by suitable estimation methods. (Notice that I

here and subsequently speak of ‘estimation’ without presupposing defined

quantities that could be estimated in a proper sense.)

4.2 Functional Models without Parameters

All models discussed in the present section refer to the example introduced

in section 2.1 (table 1). The focus is on how to estimate the models with

data which result from stratified sampling and, in particular, whether one

should use sampling weights.

Selection depends only on exogenous variables

A first situation occurs when the selection probabilities which are used in

the sampling procedure depend only on exogenous variables of the model.

As an example, one can think of a dependency relation Ẍ −→→ Ẏ where Ẍ

(corresponding to X) specifies the school type, and Ẏ (corresponding to

Y ) represents the outcome. Since both variables are binary, it suffices to
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consider stochastic function

x −→ Pr(Ẏ = 1 | Ẍ = x) (45)

as a quantitative functional model. The conditional probabilities can be

estimated by corresponding frequencies:

Pr(Ẏ = 1 | Ẍ = 0) estimated by P(Y s = 1 |Xs = 0) = 0.657

Pr(Ẏ = 1 | Ẍ = 1) estimated by P(Y s = 1 |Xs = 1) = 0.847

Since the selection probabilities depend only on X , there is no need to

employ sampling weights.

Selection depends on endogenous variables

A different situation occurs when the selection probabilities depend on an

endogenous variable of a functional model. To illustrate with the example,

one might be interested in the stochastic function

z −→ Pr(Ẋ = 1 | Z̈ = z) (46)

which assumes that the probability of visiting a school of a particular type

depends on the educational level of the child’s parents. Since the selection

probabilities used for the stratified sampling depend on the variable X ,

P(Xs = 1 |Zs = z) is certainly not a good estimate of Pr(Ẋ = 1 | Z̈ = z),

and one should use instead a plausible estimate of P(X = 1 |Z = z). For

example, as an estimate of Pr(Ẋ = 1 | Z̈ = 0) one can use the estimate

0.001P(Xs = 1, Zs = 0)

0.002P(Xs = 0, Zs = 0) + 0.001P(Xs = 1, Zs = 0)
= 0.138

This is the estimate that one would use in descriptive estimation. In the

present context, the argument for using this estimate is, however, differ-

ent. In the descriptive approach one is interested in estimating the quantity

P(X = 1 |Z = 0) that is defined for a particular target population. In-

stead, when estimating a functional model, one uses observed conditional

frequencies for the quantification of epistemic probabilities. The argument

for using sampling weights is then based on the intention to avoid distor-

tions produced by a data generating process.
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Selection depends on not included variables

Still another situation occurs when the selection probabilities depend on

variables that are not included in the model. As an example I consider the

stochastic function

z −→ Pr(Ẏ = 1 | Z̈ = z) (47)

which assumes that the probability of a child’s success in completing a

grade depends on the parents’ educational level. Should one use sampling

weights when estimating these conditional probabilities?

Since the goal is not to make descriptive statements about a target

population, there is no immediate answer. The first question should there-

fore be why there might be relevant differences between weighted and

unweighted estimates. Differences occur if the conditional probability dis-

tribution of Ẏ , in addition to being dependent on the model’s exogenous

variables, also depends on the variable used for the stratified sampling.

In the example, this is the variable X . The easiest solution therefore

is: If weighted and unweighted estimates differ (significantly), include the

variable used for stratification as an additional exogenous variable in the

model. In our example, the enlarged model would be

(x, z) −→ Pr(Ẏ = 1 | Ẍ = x, Z̈ = z) (48)

Estimation of this model does not require to use sampling weights.

Reference to this enlarged model also provides a hint why the question

of whether to use sampling weights when estimating (47) has no clear

answer. The model (47) cannot be derived from the enlarged model. To

do this would require a distribution for the variable Ẍ which does not

exist. In order to perform the derivation one would need to substitute Ẍ

by a statistical variable X (or a random variable Ẋ). Using a statistical

variable X , one could write:

Pr(Ẏ = 1 | Z̈ = z) =
∑

x
Pr(Ẏ = 1 | Z̈ = z,X = x) P(X = x | Z̈ = z)
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showing how Pr(Ẏ = 1 | Z̈ = z) depends on a statistical distribution. The

question which distribution should be used has no clear answer, however,

because the model (47) does not refer to any particular population.

Of course, one can think of functional models intended to make pre-

dictions for units in a particular population. This could provide an ar-

gument for using conditional frequencies which are plausible (unbiased)

estimates for the particular population. However, in social science appli-

cations where populations continuously change, one is seldom interested

in functional models restricted to a particular point in time.

Adding structural relationships

The ‘weighting problem’ has no unique solution as long as both, Ẍ and

Z̈, are viewed as exogenous variables of the model. One should therefore

think about possible relationships between the exogenous variables. There

are three possibilities.

(a) Z̈ depends on Ẍ. This entails a new functional model in which the

formerly exogenous variable Z̈ has become an endogenous variable, Ż.

Graphically depicted:

(49)
Ẏ

Ż

ẌPPPPPq

�����1

PPPPPq

�����1??

When estimating this model one would not need sampling weights.

(b) A second possibility is that Ẍ depends on Z̈. Again, this entails a new

functional model in which the formerly exogenous variable Ẍ has become

an endogenous variable, Ẋ. Graphically depicted:

(50)
Ẏ

Z̈

ẊPPPPPq

�����1

PPPPPq

�����1
66

Estimating this model would require to use sampling weights because the
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selection probabilities of the sampled data now depend on an endogenous

variable of the model.

(c) A third possibility is to substitute both, Ẍ and Z̈, by endogenous vari-

ables, Ẋ and Ż, which are assumed to depend on an exogenous variable,

say Ü . Graphically depicted:

(51)Ẏ

Ż

ẊXXXXXz
XXXXXz

����:
����:Ü

����:����:
XXXXz
XXXXz

If Ü is a meaningful variable and observations are included in the sample,

one should use weights to estimate the model (since selection probabili-

ties depend on an endogenous variable of the model). No solution of the

weighting problem will be gained, however, if Ü is an unobserved variable.

Only arbitrary assumptions about the common distribution of Ẋ and Ż

would then be possible.

4.3 Parametric Functional Models

The basic functional model concerns a dependency relation Ẍ −→→ Ẏ and

uses a stochastic function x −→ Pr(Ẏ |Ẍ = x) as a framework for quanti-

tative statements. If no specific parametric model is assumed, one directly

refers to the conditional probabilities Pr(Ẏ = y | Ẍ = x). Instead, one can

set up a parametric model, say

x −→ g(x; θ) (52)

In my understanding, this model uses g(x; θ) for giving Pr(Ẏ |Ẍ = x),

the epistemic probability distributions, a specific mathematical form; in

a sense, g(x; θ) then defines how to conceive of Pr(Ẏ |Ẍ = x). This un-

derstanding entails that g(x; θ) is not intended to describe a conditional

probability distribution that can be assumed to exist independently of the

model. (Consequently, there is no question whether the model might be

‘true’ or not.)

This view is in accord with the understanding that functional models
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serve to formulate rules and do not intend to describe distributions in a

target population. It follows that the principles of descriptive estimation

are not applicable to the estimation of parametric functional models. In

particular, there is no place for the argument that one should use sampling

weights in order to get unbiased estimates of parameters that are defined

by reference to a target population.

There is therefore a difference to the estimation of probabilistic data

models. As has been argued in section 3.3, when estimating these mod-

els one should use sampling weights even if the weights only depend on

independent variables of the regression model. This is not required when

estimating parametric functional models. Apart from this, all considera-

tions of sampling weights discussed in the previous subsection can also be

applied to the estimation of parametric functional models.
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