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Abstract. The article deals with the suggestion, made by Charles Ragin,

that theoretical statements in social research most often can be formulated

as statements about sets and set relations. In contrast to this view, it is

argued that theoretical statements in social research often require modal

notions referring to possibilities and probabilities which cannot be formu-

lated in terms of sets and set relations. In order to show this, the article

reformulates Ragin’s set-theoretic approach in the conceptual framework

of statistical variables, and then goes on to argue that social research is

often interested in modal generalizations (probabilistic and deterministic

rules) which require a fundamentally different conceptual framework.
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In a series of publications, Charles Ragin has proposed a “set-theoretic

approach” to social research that is based on the idea that observations

can often be represented by sets of cases demarcated by common proper-

ties (Ragin 1987; 2000; 2008). This representation allows one to use set-

theoretic notions, like set inclusion, for investigating relationships between

properties as they are manifested in given sets of cases. Corresponding

techniques have been called “Qualitative Comparative Analysis” (Ragin

1987; 2000) and, intended as a more general heading for a variety of similar

techniques, “Configurational Comparative Methods” (Rihoux and Ragin

2009). As a method of data analysis, this approach can certainly be use-

ful, in particular when one is interested in explicitly comparing a (small

or medium) number of actually observed and identifiable cases. In addi-

tion to this application of set-theoretic concepts, Ragin has suggested that

many, or even most, theoretical statements made in social research can be

formulated in terms of sets and set relations. He says

that almost all social science theory is verbal and, as such, is

formulated in terms of sets and set relations. When a theory

states, for example, that “small farmers are risk averse,” the

claim is set-theoretic: small farmers constitute a rough subset

of risk-averse individuals. (Ragin 2008: 13)

In contrast to this view, I argue that theoretical statements made in social

research1 often require modal notions referring to possibilities and proba-

bilities and cannot, then, be formulated in terms of sets and set relations.2

In sections 1 and 2, I briefly bring to mind Ragin’s set-theoretic ap-

proach and show that this approach can be reformulated in a conceptual

framework for descriptive statistics that is based on the notion of sta-

tistical variables. In section 3, I distinguish two kinds of generalizations:

descriptive generalizations which can be formulated as statements about

sets (populations), and modal generalizations having the form of proba-

1There is no clear demarcation of “theoretical statements.” I assume, as a minimal

condition, that theoretical statements are different from statements describing observed

facts.

2In this article, I only consider the modal notions ‘possible’, ‘probable’ and ‘neces-

sary/sufficient’; for a broader view see White (1975).
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bilistic or deterministic rules which cannot be formulated as statements

about sets; and I argue that social research is often interested in modal

generalizations. In section 4, I criticize Ragin’s suggestion that there is a

basic contrast between his set-theoretic approach and statistical methods.

I consider regression functions as a common framework, and argue that

the distinction between descriptive and modal generalizations also applies

to regression functions. I go on, in section 5, to show that the methods

of Qualitative Comparative Analysis (QCA) are basically techniques for

the construction of regression functions, broadly understood. In section

6, I argue that also statements about sufficient and/or necessary condi-

tions involve modal notions and cannot be formulated in terms of sets and

set relations, but require the supposition of deterministic rules. Finally, in

section 7, I briefly consider the question of how to formulate hypotheses

about causal conditions of observed facts, and contrast Ragin’s notion of

coverage with an approach in terms of probabilistic rules. The article ends

with a brief conclusion.

1 Statements about Sets

How to understand statements about sets in social research? Here is one

of Ragin’s examples.

When researchers argue, for example, that “religious funda-

mentalists are politically conservative,” they are stating, in ef-

fect, that they believe that religious fundamentalists form a

rough subset of the set of political conservatives, and may even

go so far as to argue that their fundamentalism is the cause of

their conservatism. (Ragin 2008: 14)

Ragin suggests to think of two sets, a set of religious fundamentalists, say

F , and a set of political conservatives, say C, and then to understand the

theoretical claim (leaving aside, for the moment, any causal connotations)

as the statement that most elements of F are also elements of C.

In order to understand Ragin’s suggestion, one needs to understand

the sets. It is obviously easy to think of a set F , consisting of religious

fundamentalists, and a set C, consisting of political conservatives, such
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that no element of F is an element of C. Simply assume that F and C

consist of different individuals.

In empirical research, this problem can be avoided by starting from

a common reference set, say Ω, consisting of people actually observed.

Then one can define F as the set of all members of Ω who are religious

fundamentalists, and C as the set of all members of Ω who are political

conservatives. It may then turn out that F is a subset of C, and stating

this would be a statement about Ω, namely:

For all ω ∈ Ω: if ω ∈ F , then ω ∈ C (1)

Of course, there could be exceptions such that F is no longer a subset

of C. As Ragin (2008: 45) acknowledges, in empirical social research one

most often finds such exceptions. One might then say that most members

of F are also members of C. This would be again a statement about Ω.

However, in contrast to (1), it cannot be formulated as a statement about

the individual members of Ω. Instead, it must be formulated as a statistical

statement, that is, a statement about (absolute or relative) frequencies; for

example:3

P(C|F ) =
#{ω ∈ Ω |ω ∈ C and ω ∈ F}

#{ω ∈ Ω |ω ∈ F}
≥ 0.9 (2)

As suggested by Ragin, P(C|F ) can be interpreted as a measure showing

the degree to which F is a subset of C; and having this interpretation in

mind, he calls it a measure of consistency (Ragin 2008: 45). In statistical

parlance, it is simply a conditional frequency.

The example suggests a general distinction between two kinds of state-

ments about sets:

a) Statements, like (1), which can be formulated as statements about the

individual members of a set. In this article, such statements will be

called quantified statements .

b) Statements, like (2), which characterize a set by describing (aspects of)

a frequency distribution defined for the set. Such statements will be

3I use #M to denote the number of elements of a finite set M .
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called statistical statements . (In this article, the term ‘statistical state-

ment’ will be restricted to statements about frequency distributions or

quantities derived from such distributions.)

It is well possible, however, to set up a conceptual framework that includes

both kinds of statements by using statistical variables which represent

properties of elements of a set. I define a statistical variable as a function

X : Ω −→ X . Ω is a set of objects (called the reference set of the statisti-

cal variable); X is a property space, i.e. a collection of attributes that can

be used to characterize the elements of Ω;4 and the statistical variable X

assigns, to each object ω ∈ Ω, a value X(ω) ∈ X that characterizes the

object. Given a statistical variable X : Ω −→ X , its frequency distribu-

tion is a function, say P, that associates, with each property set A ⊆ X ,

the proportion of members of Ω having a property value in A; formally

defined: P(A) := #{ω ∈ Ω |X(ω)∈A} / #Ω. Due to this definition, statis-

tical variables provide a well-suited starting point for descriptive statistics

concerned with the description of frequency distributions in empirically

identifiable sets of cases.5

This framework also allows one to consider relationships between sets of

cases in a general way. One can start, for example, from a two-dimensional

statistical variable, say (X, Y ) : Ω −→ X ×Y. Then, for any property sets

A ⊆ X and B ⊆ Y, one can consider relationships between the correspond-

ing object sets. Perhaps the relationship can be described by a quantified

statement:

For all ω ∈ Ω: if X(ω) ∈ A, then Y (ω) ∈ B (3)

Most often, however, such a statement will not be true and one has to

consider the conditional distribution

P(B|A) =
#{ω ∈ Ω |X(ω) ∈ A and Y (ω) ∈ B}

#{ω ∈ Ω |X(ω) ∈ A}
(4)

4It will be assumed that the attributes have a numerical representation such that X

can be considered as a set of real numbers or vectors. In particular, for binary variables,

the property space will be assumed to be {0, 1}.

5For additional discussion of statistical variables as a conceptual framework for de-

scriptive statistics see Rohwer (2010: chap. 1).
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In fact, using statistical variables as a conceptual framework, there is no

need to separately consider quantified statements. They are simply special

cases of statistical statements. For example, the statement (3) is equivalent

with P(B|A) = 1.

I conclude that Ragin’s set-theoretic approach, insofar it is based on

ordinary (“crisp”) sets, is formally identical with a statistical approach

that starts from binary statistical variables.

2 Why Using Fuzzy Sets?

Ragin is aware of the limitations of a set-theoretic approach that is based

on binary variables. He has therefore proposed to extend the approach by

using fuzzy sets (Ragin 2000; 2008; 2009). However, since a generalization

based on statistical variables is already available and in widespread use,

one may well ask whether this strategy is worthwhile.

In order to discuss this question, I first stress that a “fuzzy set” is not

another kind of set, or an extension or generalization of the ordinary notion

of set. In fact, it is not a set at all, but a function having an ordinary set

as its domain. Formally, a fuzzy set can be defined as a pair (Ω, g) where Ω

is an ordinary set, and g is a function from Ω into the interval [0, 1] of real

numbers. The function g is then interpreted as providing, for each element

ω ∈ Ω, a “grade of membership” value g(ω). However, since there is no

analogy with “being a member of a set,” the expression is metaphorical.

All objects that get a membership value by g are regular elements of Ω in

a set-theoretic understanding; and a further “set” that must be imagined

in order to speak of “gradual membership,” does not occur in the formal

definition of a fuzzy set.6

I do not deny that metaphorical talk of “grades of membership” could

be useful in some fields of application. However, it is not needed when

fuzzy sets only serve as a tool for transforming statistical variables into

sets. Ragin proposes to introduce fuzzy sets by starting from statistical

variables and “calibrating” their property spaces (Ragin 2008: part II). For-

mally, starting from a statistical variable, say X : Ω −→ X , its calibration

6See, e.g., Smithson and Verkuilen (2006: 7, 19).
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consists in constructing a function φ : X −→ [0, 1], that maps the vari-

able’s property space into the interval [0, 1] of real numbers. As a result

one gets the fuzzy set (Ω, X ′) having a membership function defined by

X ′(ω) := φ(X(ω)).

It is seen that this construction of a fuzzy set is basically the same

as a transformation of the variable’s property space. The resulting fuzzy

set is formally equivalent with a (transformed) statistical variable.7 Such

variables will subsequently be called f-calibrated variables.

It follows that, in order to apply set-theoretic notions, fuzzy sets are

not needed. Instead, one can directly start from, and work with, statistical

variables. Moreover, statements about fuzzy sets derived from statistical

variables can directly be formulated as statistical statements. To illustrate,

I consider the subset relation for fuzzy sets. Assume two fuzzy sets, say

(Ω, X ′) and (Ω, Y ′). The first is a fuzzy subset of the second one, if the

following statement holds: For all ω ∈ Ω: X ′(ω) ≤ Y ′(ω). This statement

is equivalent with the statistical statement P(X ′ ≤ Y ′) = 1.

Like the ordinary subset relation, also this fuzzy subset relation will

very often not hold. Starting from somehow calibrated statistical variables

X ′ and Y ′, P(X ′ ≤ Y ′) will most often be less than 1. In parallel to the

interpretation of P(C|F ) in section 1, Ragin has therefore proposed to

think of P(X ′ ≤ Y ′) as a measure of consistency, indicating the degree

to which the fuzzy subset relation holds.8 However, referring to fuzzy sets

(and a metaphorical talk of a roughly holding fuzzy subset relation) is

obviously not required to make sense of this statistical quantity.

Leaving aside the question whether the rhetoric of fuzzy sets might

be useful, there also is a theoretically interesting difference. In the case

7This conforms to the following remark made by Ragin and Pennings (2005: 424): “[A]

fuzzy set can be seen as a continuous variable that has been purposefully calibrated to

indicate degree of membership in a defined set.” The “defined set” is implicitly taken

as the ordinary set of all cases having a membership score equal to 1.

8See Ragin (2008: 48). There is another definition that takes values of the membership

functions into account (Ragin 2008: 52):

Σω min(X′(ω), Y ′(ω))

ΣωX′(ω)
=

mean value of min(X′, Y ′)

mean value of X′

Obviously, also this definition can be given a statistical formulation.
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of binary variables, the measure of consistency is defined as a conditional

frequency, and this allows one to interprete the measure conditionally on

values of one (the independent) variable. This is not possible with measures

of consistency for two f-calibrated variables (fuzzy sets), say X ′ and Y ′,

because these measures concern the common distribution of X ′ and Y ′. Of

course, one could formally condition on values of X ′. For example, referring

to an individual case ω having the value X ′(ω), one could consider the

conditional frequency P(X ′ ≤ Y ′|X ′ = X ′(ω)); but this quantity cannot

be interpreted in analogy with the unconditionally defined consistency

measure P(X ′ ≤ Y ′). A theoretically important consequence is that these

measures cannot be used to assess the causal relevance of individually

attributable properties (values of X ′). (I take up the argument in section

5.)

3 Factual Statements and Generalizations

Ragin’s set-theoretic approach, like the more general approach that is

based on statistical variables, can well be used as a conceptual frame-

work for factual statements about sets of observed cases. For example,

having observed 100 individuals of whom 20 are religious fundamentalists,

and found that 16 of these religious fundamentalists are political conserva-

tives, one can state that P(F ) = 0.2 and P(C|F ) = 0.8. These are factual

statements about a set Ω consisting of 100 observed individuals.

Further questions concern generalizations. Two kinds must be distin-

guished. One kind starts from the idea that the set of observed cases, say

Ω, can be considered as a subset of a larger set, say Ω∗, often called a

population in this context. Generalization then consists in making a state-

ment about Ω∗ that has the same linguistic form as the factual statement

about Ω. Statistical variables can help to clarify this approach. One starts

from a statistical variable X : Ω −→ X , defined for the observed set Ω,

and assumes a correspondingly defined statistical variable X∗ : Ω∗ −→ X ,

defined for the population Ω∗. The factual statement about the observed

distribution of X is then generalized to a corresponding statement about

the unobserved distribution of X∗.

In the example, Ω consists of 100 observed individuals, and the sta-
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tistical variable is (X, Y ); X records whether an individual is a religious

fundamentalist (X = 1) or not (X = 0), and Y records whether it is a

political conservative (Y = 1) or not (Y = 0). The observations can be

used to make a factual statement about the distribution of (X, Y ), e.g.

P(Y = 1 |X = 1) = 0.8. Assuming then that Ω is a sample from a pop-

ulation Ω∗, being the reference set of a correspondingly defined variable

(X∗, Y ∗), the generalization consists in making an analogous statement

about the distribution of (X∗, Y ∗), e.g. P(Y ∗=1 |X∗=1) ≈ 0.8.

This approach will be called descriptive generalization because the gen-

eralization can be formulated as a descriptive (quantified or statistical)

statement about a population of cases. The approach requires that the

population, Ω∗, for which the generalization is intended, is a set of empir-

ically identifiable cases, implying that they actually exist or have existed

in the past. Moreover, in order to think of Ω as a random sample from the

population Ω∗, this set can only consist of cases that actually exist while

the sample is drawn.

A quite different kind of generalization has the linguistic form of rules.

To illustrate, I refer to a random generator, for example, throwing a die.

By activating the random generator (i.e. throwing the die in a specified

way), one can generate an event that can be described by a number in

the set Z = {1, . . . , 6}. Doing this n times, the result can be represented

by a statistical variable, say Z : Ω −→ Z. The reference set Ω consists

of identifiers of the n events, say ω1, . . . , ωn, and for each event ωi, Z(ωi)

describes the outcome.

It follows that describing the distribution of Z makes a factual state-

ment about Ω, the set of realized events. However, this statement does

not describe the random generator as a method of generating events. In

order to describe this method, another kind of statement is required. In

this example, assuming that the die is not biased, it can be formulated as:

If the random generator is activated, there are six possible (5)

outcomes (1, . . . , 6), all having the same probability.

This statement does not describe a set of events generated with the random

generator. Moreover, there is no sense in which it describes a set, however

defined. In particular, there is no set of “possible events” that might be
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generated with the die. Of course, one can refer to the elements of Z, but

these are event types, not “possible events;” and what is more, (5) is not a

statement about this set. Instead, (5) is a modal statement, meaning here

that it conditionally refers to possibilities, and quantifies the possibilities

with probabilities.

Probabilistic rules like (5) will therefore be called modal generaliza-

tions . In general, such rules say what might be the case, or might happen,

given specified conditions, adding some evaluation of the probabilities of

the possible outcomes. Continuing with Ragin’s example, a probabilistic

rule could be:

If somebody is a religious fundamentalist, it is highly (6)

probable that he or she is a political conservative.

This is not a statement about any set of individuals, neither a set of ac-

tually observed nor a set of hypothetically imagined individuals. It is a

probabilistic rule, and in contrast to a descriptive generalization, it cannot

be formulated as a quantified or statistical statement.9

I suppose that theoretical interests in social research often aim at modal

generalizations. In fact, Ragin himself has stressed the goal of finding “reg-

ularities.”10 Given this interest, one needs a conceptual framework for the

formulation of modal generalizations that is in important respects different

from the conceptual framework of the set-theoretic approach.

4 Regression Functions and Rules

In sections 1 and 2, I showed that Ragin’s set-theoretic approach can be

reformulated in the framework of statistical variables. Quite differently

from this understanding, Ragin has suggested to think of a fundamental

contrast between his set-theoretic approach and statistical methods. Pre-

sumably, this is due to his belief that “the correlation coefficient” is “the

9This will be true even if the formulation refers to a population of cases, e.g. ‘It is highly

probable that a person, randomly drawn from the set of religious fundamentalists who

currently live in Germany, is a political conservative.’ This is not a statistical statement

about the set of religious fundamentalists who currently live in Germany, but describes

a random generator using the specified set in its definition.

10See Ragin (2006: 309). See also Rihoux (2006: 682), Berg-Schlosser et al. (2009: 11).
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cornerstone of conventional quantitative research” (Ragin 2008: 6; see also

Ragin 2000: 45-46). He then says:

A key contrast is the difference between the correlation (and

most other measures of association), which is symmetrical by

design, and the set relation, which is fundamentally asymmet-

rical. This distinction is important because set-theoretic anal-

ysis, like qualitative research more generally, focuses on unifor-

mities and near uniformities, not on general patterns of asso-

ciation. (Ragin 2008: 7)

I doubt that the correlation coefficient is “the cornerstone of conventional

quantitative research.” If there is any statistical method predominating

in social research, it is the construction of regression functions based on

a distinction between independent and dependent variables. The interest

focuses on dependency relations between variables which are asymmetrical

by definition. Insofar this interest also motivates Ragin’s set-theoretic ap-

proach, there is no essential difference. In fact, viewed as a technique, QCA

(Qualitative Comparative Analysis) is a version of regression analysis.

Before showing this in the next section, I briefly discuss how to under-

stand regression functions. In parallel to the distinctions discussed in the

previous section, one needs to distinguish between descriptive and modal

formulations of regression functions.

In order to discuss the difference, I begin with a regression function

derived from a statistical variable, say (X, Y ) : Ω −→ X × Y. Defining Y

as the dependent and X as the independent variable, a regression function

assigns to each value x ∈ X the conditional frequency distribution of Y

given x; formally: x −→ P[Y |X = x]. Note that the right-hand side is itself

a function (y −→ P(Y = y|X = x)). However, if Y is a binary variable it

suffices to consider the function

x −→ P(Y =1 |X =x) (7)

having the domain X , the property space of X . To each value x in X , this

function assigns the conditional frequency P(Y =1 |X =x).

For example, if (X, Y ) is the variable introduced in the previous section,

values of the regression function might be given by P(Y =1 |X =1) = 0.8
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and P(Y = 1 |X = 0) = 0.4, respectively. In general, a regression function

shows how the frequency distribution of a dependent variable (or a quantity

derived from this distribution, e.g. its mean) depends on values of the

independent variable (which, of course, can consist of several components).

A regression function derived from statistical variables makes a descrip-

tive statement about the variable’s reference set. If this reference set, say

Ω, is a set of observed cases, it will also be a factual statement, and one

can think about descriptive and modal generalizations. A descriptive gen-

eralization assumes that Ω is a (representative) sample from a population

Ω∗ for which analogously defined statistical variables can be assumed, say

(X∗, Y ∗) : Ω −→ X × Y. The regression function for the population is

x −→ P(Y ∗=1 |X∗=x) (8)

Completely parallel to the formulation (7), it makes a descriptive statement

about the population Ω∗.

A quite different generalization takes the form of a stochastic regression

function. Its domain is, again, the property space of the independent vari-

able, say X . However, the regression function no longer refers to statistical

variables defined for some reference set, and therefore cannot be formu-

lated in terms of conditional frequency distributions. Instead, a stochastic

regression function assigns to each value x ∈ X a conditional probability

distribution for the dependent variable. If the dependent variable is binary,

the regression function can be written analogously to (7)

x −→ Pr(Ẏ =1 | Ẍ =x) (9)

where now Pr is used instead of P to indicate a probability distribution.

A further consideration concerns the variables used in the notation of the

stochastic regression function. They cannot be understood as statistical

variables representing (observed or hypothetically assumed) facts but must

be given a modal interpretation, and I therefore use a different notation.

This is obvious for the independent variable, denoted Ẍ . Since no refer-

ence is made to any specific sample or population, there is no frequency

distribution for this variable. Instead, its values can be fixed arbitrarily by

the person who intends to use the regression function as a rule for making
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inferences. Consequently, there is also no probability distribution for this

variable.

Also the dependent variable, denoted Ẏ , does not represent values that

are realized in some reference set of actually existing cases, but must be

given a modal interpretation. The regression function formulates a state-

ment about possible values of this variable and quantifies the possibilities

in terms of probabilities. This is done conditionally on values of the inde-

pendent variable (which can be assigned arbitrarily). Consequently, there

is no (unconditional) probability distribution for the dependent variable.

Nevertheless, in contrast to the independent variable, Ẏ is a stochastic

variable allowing statements about conditional probability distributions.

In contrast to statistical variables, the variables Ẍ and Ẏ do not relate

to a set of actually existing cases, but serve to formulate theoretical rela-

tionships using modal notions. I find it helpful to think of these variables

as referring to a generic object or situation. For example, one might say:

Consider (imagine, think of) a person having the value Ẍ = 1, i.e. who is

a religious fundamentalist. This statement does not refer to a person that

can be empirically identified but to a generic individual that is partially

defined by the property ‘being a religious fundamentalist’ (any number of

further properties could be added). Then one might further ask whether

this person also is a political conservative, or in terms of variables, whether

a variable Ẏ , that can be defined for the generic individual, has the value 1.

Obviously, since the person referred to does not exist, the question cannot

be answered by a factual statement, but requires modal considerations.

This understanding of the variables is in accordance with interpreting

a stochastic regression function as a probabilistic rule that can be used to

make conditional inferences. Moreover, the formal framework of regression

functions allows one to think of the conditional probabilities as quantities

which can be numerically specified. This is not required by the general

notion of a probabilistic rule. As illustrated by the example formulated in

(6), vague qualifications often suffice. However, if one is interested in more

precise estimates, the framework of stochastic regression functions allows

one to use observed conditional frequencies as estimates of the conditional

probabilities.
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5 Regression with Binary and F-Calibrated Variables

Based on the understanding of regression functions discussed in the previ-

ous section, one can easily see that the methods proposed by Ragin under

the heading of Qualitative Comparative Analysis (QCA) are techniques

for the construction of regression functions. Assume that data are given

by a statistical variable consisting of m + 1 binary components:

(X1, . . . , Xm, Y ) : Ω −→ {0, 1}m+1 (10)

where Y represents an outcome, and one has decided to consider X1, . . . , Xm

as possibly relevant conditions for Y = 1. Considered as a technique for

data analysis, QCA consists in constructing a regression function

(x1, . . . , xm) −→ P(Y =1 |X1=x1, . . . , Xm =xm) (11)

The function provides, for each combination of values of the independent

variables, a conditional frequency distribution of the dependent variable.

It may turn out that these conditional frequencies always equal 1; one

then gets as a special case a Boolean function. However, most often at

least some of the frequencies will be less than 1, and a proper regression

function is required.

Now assume that the dependent variable is f-calibrated, say Y ′ (hav-

ing values that could be interpreted as scores of membership in a fuzzy

set), and that there is a further f-calibrated independent variable, say Z ′.

Analogously to (11), one could start from the general regression function

(x1, . . . , xm, z) −→ P[Y ′ |X1 =x1, . . . , Xm =xm, Z ′ = z] (12)

and consider, for example, characterizations of the right-hand side by con-

ditional mean values of Y ′, given values of the independent variables. How-

ever, being mainly interested in degrees to which subset relations hold

(measures of consistency), Ragin’s QCA with fuzzy sets takes a different

route. While the right-hand side of (11) already is a measure of consis-

tency, there is no direct analogy with f-calibrated variables. Definitions

of measures of consistency for f-calibrated variables require a reference to

their common distribution. For example, with Z ′ and Y ′, one could use

P(Z ′ ≤ Y ′), a quantity derived from the common distribution of both



15

variables (see section 2). Regression functions for QCA with f-calibrated

variables therefore have the general form

(x1, . . . , xm) −→ con(Z ′, Y ′ |X1 =x1, . . . , Xm =xm) (13)

where the right-hand side denotes a measure of consistency derived from

the common distribution of Z ′ and Y ′, conditional on given values of the

independent variables.

Both, (11) and (13), are regression functions. There is, however, a

remarkable difference (already mentioned at the end of section 2). The

function (11) allows one to consider each combination of its arguments,

(x1, . . . , xm), as a specific configuration of conditions for the dependent

variable, attributable to individual cases. In the function (13), the same is

true for values of X1, . . . , Xm, but not for values of the f-calibrated vari-

able Z ′. Of course, Z ′ can consist of two or more components, and one can

consider several measures of consistency based on the different possibilities

to combine the components into a single fuzzy set.11 Each combination of

components could then be viewed as a “configuration of conditions” for

the dependent variable.12 However, when used for measures of consistency,

these configurations are no longer attributable to individual cases, and it

becomes difficult to see how they could be given a causal interpretation.

Notwithstanding this difference that results from Ragin’s focus on set

relations, one can see that QCA basically consists of techniques for the con-

struction of regression functions. As I mentioned at the beginning, these

techniques could be quite useful for the analysis of data. However, formu-

lated in the set-theoretic framework, the resulting regression functions only

make descriptive statements about the cases contained in the reference

sets of their variables. Theoretical considerations, aiming at prospective

predictions or retrospective explanations, cannot be formulated in this de-

scriptive framework, but require an understanding of regression functions

in terms of modal variables which allow one to interpret these functions as

probabilistic or deterministic rules.

11For example, if Z′ has two components, Z′ = (Z′

1
, Z′

2
), one can consider the variables

min{Z′

1
, Z′

2
}, min{Z′

1
, (1−Z′

2
)}, min{(1−Z′

1
), Z′

2
} and min{(1−Z′

1
), (1−Z′

2
)} derived

from Z′ by applying standard fuzzy set operations.

12See Ragin (2000: 234-239; 2009: 100).
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6 Probabilistic and Deterministic Rules

In section 1 it was shown how quantified statements about finite sets of

cases can be considered as special cases of statistical statements. Similarly,

one might say that deterministic rules can be viewed as special cases of

probabilistic rules. Consider, for example, the deterministic rule:

If the bell-push is pressed, the bell will ring. (14)

This can also be formulated as a probabilistic rule where the conditional

probability has the value 1. Formally, using binary modal variables Ẍ (for

‘the bell-push is pressed’) and Ẏ (for ‘the bell is ringing’),13

Pr(Ẏ =1 | Ẍ =1) = 1 (15)

This is a deterministic rule, and it is formulated as a limiting case of a

probabilistic rule.

There is, however, an important difference between deterministic rules

on the one hand and probabilistic rules (which are now understood as em-

ploying conditional probabilities less than one) on the other. Deterministic

rules allow one to speak of sufficient and necessary conditions. For exam-

ple, (15) allows one to say that Ẍ = 1 is a sufficient condition for Ẏ = 1;

correspondingly, the deterministic rule Pr(Ẏ =0 | Ẍ =0) = 1 would allow

one to say that Ẍ = 1 is a necessary condition for Ẏ = 1.

These notions cannot be used with probabilistic rules. To continue with

the example, imagine that we observed that the bell didn’t always ring

when the bell-push was pressed, and assume that the observations suggest,

instead of (15), a probabilistic rule

Pr(Ẏ =1 | Ẍ =1) ≈ 0.95 (16)

Obviously, this rule does not allow one to speak of sufficient conditions. In

fact, it explicitly says that Ẍ =1 is not a sufficient condition for Ẏ =1.

In the present context, the distinction is important because Ragin (like

many other researchers in the field of comparative case studies) thinks of

13Since we only consider Ẍ = 1, there is no need for explicitly writing (15) as a regression

function.
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causation in terms of sufficient and/or necessary conditions.14 Moreover, he

suggests that the set-theoretic approach (QCA) can be used to formulate

and investigate hypotheses about sufficient and/or necessary conditions.

He says, for example:

The fact that democratic dyads constitute a perfect or near-

perfect subset of nonwarring dyads signals that this arrange-

ment (international relations between democracies) may be suf-

ficient for peaceful coexistence. (Ragin 2006: 292)

And in a more general formulation:

[I]f cases sharing several causally relevant conditions uniformly

exhibit the same outcome, then these cases constitute a subset

of instances of the outcome. Such a subset relation signals that

a specific combination of causally relevant conditions may be

interpreted as sufficient for the outcome. (Ragin 2009: 99)

He then adds the remark:

The interpretation of sufficiency, of course, must be grounded

in the researcher’s substantive and theoretical knowledge; it

does not follow automatically from the demonstration of the

subset relation. (Ragin 2009: 99)

This remark is certainly true, but circumvents the question how to make

the theoretical idea that is used in the interpretation of the observations

explicit. If the theoretical idea is that a complex of conditions is sufficient

for an outcome, this requires to presuppose a deterministic rule that allows

one to explicate the idea;15 and this rule cannot be formulated in terms of

sets and set relations. This framework would allow one to make statements

about subsets of a reference set, for example, that all cases exhibiting some

complex of conditions also exhibit a specified outcome.16 But this would

14See, e.g., Ragin (1987: 99; 2000: 104; 2008: 20); Rihoux and Ragin (2009: xix, 10). See

also Mahoney (2003), Mahoney and Goertz (2006: 232).

15To say that A is sufficient for B means that, given A, one can infer B; and this

requires a deterministic rule to be used for the inference.

16It should be clear that reference must be made to a set of cases. It wouldn’t make sense

to think of sets of causes that could be subsets of sets of effects; see Goertz (2003: 59).
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be a descriptive (factual) statement about a set of (observed) cases, not a

deterministic rule.

This argument concerns the formulation of theoretical claims. A differ-

ent question is whether deterministic rules, which are required for thinking

of sufficient and/or necessary conditions, are useful in social research. This

question will not be discussed in the present article.

7 Causal Conditions of Observed Facts

Social researchers are often interested in finding causes of facts (states,

events), observed in a single case or in some set of cases. There are two

(sometimes complementary) approaches. One approach investigates the

processes that generated the observed facts in the individual cases. This

is sometimes called “process tracing.”17 Another approach that will be

considered in the present section proceeds in terms of variables. There is

a set of cases, say Ω, and for each case ω ∈ Ω, one has observed the value

Y (ω) of an outcome variable. To simplify the discussion, I assume that Y

is a binary variable. The goal then is to find another variable, X , often

consisting of several components, say X = (X1, . . . , Xm), such that the

value X(ω) can be considered as a cause, meaning here a condition, or

complex of conditions, contributing to the occurrence of Y (ω).

Given this set-up in terms of variables, I argue that the set-theoretic

framework will not suffice, even if the theoretical interest only concerns

the observed cases. In order to develop the argument, I start from Ragin’s

notion of “coverage.” (Ragin 2008: 54-57) Assume that theoretical ideas

suggest to consider values of X as conditions which possibly contribute to

the occurrence of Y = 1. Then, for any value x of X , its coverage is defined

by

cov(X =x) := P(X =x |Y =1) (17)

In Ragin’s interpretation, cov(X = x) quantifies the proportion of cases

in which the condition X = x caused (contributed to the occurrence of)

Y = 1.

17See George and Bennett (2004).



19

It is remarkable that ‘coverage’ is a descriptive notion that can be de-

fined in a set-theoretic framework (with statistical variables), but not with

deterministic or probabilistic rules. To illustrate, I consider an example

where a bell’s ringing (Y = 1) can be accomplished by one of two bell-

pushes, represented by X = (X1, X2). I assume that one has observed 100

situations:

X1 X2 cases with Y = 1

0 0 0

1 0 90

0 1 8

1 1 2

(18)

It follows that cov(X1 = 1) = 0.92, meaning that in 92% of the observed

cases pressing the first bell-push caused (contributed to) the bell’s ringing;

and cov(X2 = 1) = 0.10, meaning that in 10% of the cases pressing the

second bell-push caused (contributed to) the bell’s ringing.

Now assume that we want to construct a model representing a generic

situation where one of two bell-pushes could be used for ringing a bell.

This could be a deterministic or a probabilistic model. I first assume a

deterministic rule

Pr(Ẏ =1 | Ẍ1 =x1, Ẍ2 =x1) =

{

1 if x1 = 1 or x2 = 1

0 otherwise
(19)

Obviously, the model does not allow one to define something like coverage.

This would require that one could refer to a distribution of values of the

variables Ẍ1 and Ẍ2. But these are exogenous variables of the model which

do not have a distribution. If one only knows the rule (19), one cannot even

make some informed guess about how often the first or the second bell-push

might have been used. This conclusion holds independently of whether the

model is deterministic or stochastic.

In order to make predictions about causes of observed events, one would

need another rule. If there could be different causes, as it is the case in

the example, this must be a probabilistic rule where the variables have

changed their role. Instead of Ẏ , one has to define an exogenous variable

Ÿ that can be used to assume that the bell did ring (Ÿ = 1). And instead
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of the formerly exogenous variables one has to define stochastic variables,

Ẋ1 and Ẋ2, that allow one to consider conditional probabilities. Then one

can think of a probabilistic rule

(x1, x2) −→ Pr(Ẋ1 =x1, Ẋ2 =x2 | Ÿ =1) (20)

that could be used for probabilistic statements about possible causes.

In a sense, there is a correspondence between the conditional frequen-

cies, called ‘coverage’ by Ragin, and the conditional probabilities on the

right-hand side of (20). The observed conditional frequencies could be used

as estimates of the theoretically supposed conditional probabilities. There

is, however, not only the conceptual difference between facts (observed

frequencies) and modalities (theoretically assumed probabilities). A prob-

abilistic rule, like (20), also presupposes a theoretical model and, in par-

ticular, that all possible causes have a representation in the model. In

contrast, statements about coverage, as defined in the set-theoretic frame-

work, do not require this assumption; they simply describe what has been

observed.

A further point should be mentioned. Ragin has suggested that the

coverage of a (causally relevant) condition can be interpreted sensibly only

if the condition has a high consistency (Ragin 2008: 55). For example,

following this suggestion, the interpretation of cov(X =x), defined in (17),

would require that P(Y =1 |X =x) ≥ α, where α is some number near to 1.

However, one can easily find examples where the suggestion is misleading.

Think, for example, of throwing a die; X = 1 records the event that the

die is thrown, Y records the outcome. For each possible outcome y ∈

{1, . . . , 6}, the consistency, P(Y = y |X = 1), is low; but the coverage has

a high value, P(X = 1 |Y = y) = 1, and has a clear interpretation: In all

observed cases, the die was thrown before the outcome showed up.

8 Conclusion

The article discussed the suggestion, made by Charles Ragin, that many,

or even most, theoretical statements in social research can be formulated

in a set-theoretic framework. In order to discuss the suggestion, it was

shown that Ragin’s set-theoretic approach, including his usage of fuzzy-
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set notions, can be reformulated in the conceptual framework of statistical

variables. The article then developed the argument that this framework can

only be used for descriptive statements (including descriptive generaliza-

tions). And it was further argued that social research is often interested in

modal generalizations, consisting of probabilistic and deterministic rules,

which cannot be formulated in the set-theoretic framework. In particular,

this framework does not allow one to formulate hypotheses about sufficient

and/or necessary conditions, since these notions presuppose deterministic

rules.

The article also criticized Ragin’s opposition between his set-theoretic

approach and conventional statistical methods. Based on the reformula-

tion of this approach in terms of statistical variables, it was shown that

the methods of Qualitative Comparative Analysis (QCA) basically are

techniques for the construction of regression functions. Finally, the article

briefly considered the explanation of actually observed facts in terms of

variables, and showed that Ragin’s concept of ‘coverage’ cannot be used

for these explanations.
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