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Abstract: In the framework of a simple model in which schooling outcomes

depend only on birth cohorts and parents’ education, illustrated with data from

the German National Educational Panel Study, the paper considers definitions

of effects which are derived from conditional probabilities without presupposing

a particular parametric model (logit models are only used as tools for smoothing

observations). Effects are interpreted as partial descriptions of a structure

defined by the conditional distributions which relate explanatory and outcome

variables. Due to the interaction between birth cohorts and parents’ education,

only counterfactual definitions of direct and indirect effects of birth cohorts

are possible. Although not effects in an ordinary sense, they can provide a

quantification of the contribution of changes of parents’ education to changes

in the distribution of schooling outcomes. Using this interpretation, it is shown

that an increasing part of the tendency towards higher schooling outcomes in

Germany was due to changes in the distribution of parents’ education.

Keywords: Models of schooling outcomes; Logit models; Definitions of effects;

Direct and indirect effects; Interaction.
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1 Introduction

Researchers interested in schooling outcomes often use probabilistic models in

order to investigate how the probability of leaving the school system with a

particular outcome depends on explanatory variables. A methodological ques-

tion concerns how to define effects of the explanatory variables and whether

and how one can distinguish between direct and indirect effects. Definitions

suggested in the literature often presuppose particular parametric models, e.g.,

logit models (e.g., Long, 1997; Wooldridge, 2002). In this note, following Kuha

and Goldthorpe (2010), I start from definitions which only use notions of con-

ditional probability. Parametric models are considered as possibly helpful tools

for the estimation (instead of definition) of effects.

As an example, I consider the question of how probabilities of schooling

outcomes depend on parents’ educational level. Of course, one has to take into

account historical changes. The most simple theoretical framework is then the

following:

X

C Y

✻
✲

❳❳❳❳❳❳❳❳❳❳③

where the dependent variable, Y , represents possible schooling outcomes, X

records parents’ educational level, and C distinguishes between birth cohorts.

The framework assumes two functional relationships. The first is

c −→ Pr(X = x |C = c) (1)

which assumes that the distribution of parents’ education depends on birth

cohorts. The second is

(c, x) −→ Pr(Y = j |C = c,X = x) (2)

which assumes that the distribution of schooling outcomes depends on both

birth cohorts and parents’ education.

To illustrate the discussion, I use data from the German National Edu-

cational Panel Study (NEPS). In the next section, I describe the data and

consider estimates of the relationship (2) (estimates of (1) will be presented in

Section 4). In Section 3, I consider effects of parents’ educational level which are
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derived from the relationship (2). I show that differences between conditional

probabilities are well suited to describe that effects are context-dependent. As

a possible alternative, I consider odds ratios. I argue that both definitions of

effects can be interpreted as representing structural relationships which do not

depend on marginal distributions of explanatory variables.

In Section 4, I consider effects of birth cohorts and discuss proposals for

distinguishing between indirect effects, which are mediated through parents’

education, and direct (residual) effects. Due to the interaction of birth cohorts

and parents’ education, only counterfactual partitions of effects of birth cohorts

into indirect and direct components are possible. I describe different versions

and present estimates of one of these partitions.

In the final discussion, I first summarize the consideration of different defini-

tions of effects. I then stress that effects derived from counterfactual partitions

are not ordinary effects which compare outcomes between individuals which

differ in values of explanatory variables. This then creates the problem of how

to interpret the counterfactually defined components, which depends on the

application. I suggest that in the present application, a counterfactual parti-

tion can provide an informative quantification of the contribution of changes

of parents’ education to changes in the distribution of schooling outcomes. Us-

ing this interpretation, I show that an increasing part of the tendency towards

higher schooling outcomes in Germany was due to changes in the distribution

of parents’ education.

2 Conditional probabilities of schooling outcomes

2.1 Data from the NEPS project

I use data from the German National Educational Panel Study (NEPS), Start-

ing Cohort Adults (Version SC6:5.1.0).1 I consider persons born between 1944

and 1986 (born in Germany or at most six years old when migrating to Ger-

many), who began schooling in an elementary school (Grundschule). The out-

1From 2008 to 2013, NEPS data was collected as part of the Framework Program for the

Promotion of Empirical Educational Research funded by the German Federal Ministry of

Education and Research (BMBF). As of 2014, NEPS is carried out by the Leibniz Institute

for Educational Trajectories (LIfBi) at the University of Bamberg in cooperation with a

nationwide network. For general information, see Blossfeld et al. (2011).
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come variable, Y, recording the level of schooling when leaving the school sys-

tem, is derived from the variable Ts11209 in the NEPS spell data file spSchool.

I distinguish the following values (categories of the variable Ts11209 in square

brackets):

Y =



































1 without a degree (ohne Abschluss) [-20, -21] or

low degree (Grund- or Hauptschule) [1, 2]

2 intermediate degree (mittlere Reife) [3])

3 upper degree (Hoch- or Fachhochschulreife) [4, 5]

4 residual category [6, 7]

Since there are very few cases with Y = 4 (less than 2.5%), I subsequently only

consider persons with outcomes 1, 2, or 3.

For representing birth cohorts, I use a variable, C = birthyear − 1900,

varying between 44 and 86. The variable X , recording the educational level of

the parents, is based on CASMIN categories.2 I distinguish four groups:

X =



































1 inadequately completed [1a] or general elementary school [1b]

2 basic vocational qualification [1c]

3 intermediate degree [2b, 2a], or general maturity cert. [2c gen]

4 lower or higher tertiary education [3a, 3b], or maturity cert.

with vocational training [2c voc]

There are 11468 cases with known values of all three variables (Y, C, and X).

2.2 Estimation of conditional probabilities

Conditional probabilities of schooling outcomes, Pr(Y = j |C = c,X = x), can

be estimated by the corresponding observed proportions. Figure 1 shows how

these proportions depend on values of C and X .

Instead of nonparametrically smoothing observed proportions, one could

use different kinds of parametric and semi-parametric regression models for

estimating the conditional probabilities. As an example, I use a multinomial

logit model and interpret it as an alternative way of smoothing the observed

proportions.

2The variables for the mother and the father are T731301 g2 and T731351 g2, respectively.

If values are different, I use the higher level.
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Figure 1 Observed proportions corresponding to Pr(Y =j |C=c,X=x), smoothed

with running means of length 7.

From inspection of Figure 1 it is clear that one cannot treat X as just one

quantitative variable, and one needs to specify interactions between C and X .

I therefore use dummy variables Xl = I[X = l], with values xl, and consider

X1 as a reference. In order to improve the fit, I also include the square of C

(divided by 100). The resulting specification is

Pr(Y=j |C=c,X = x) ≈ (3)

exp(αj + c γj + c2 γ′

j +
∑

4

l=2
xl βlj +

∑

4

l=2
c xl δlj)

∑3

k=1
exp(αk + c γk + c2 γ′

k +
∑4

l=2
xl βlk +

∑4

l=2
c xl δlk)

Table 1 shows the estimated parameters (based on the constraint that the pa-
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Table 1 Estimated parameters; standard errors in brackets.

Model 3 Model 4

Y = 2 Y = 3 Y = 3

α2 −6.768 (0.895) α3 −9.756 (0.948) α −7.118 (0.806)

γ2 0.170 (0.027) γ3 0.242 (0.027) γ 0.152 (0.022)

γ′

2 −0.110 (0.020) γ′

3 −0.159 (0.020) γ′ −0.097 (0.016)

β22 0.759 (0.473) β23 0.583 (0.562) β2 0.509 (0.524)

β32 2.529 (0.568) β33 3.546 (0.627) β3 2.585 (0.549)

β42 3.123 (0.623) β43 3.859 (0.654) β4 2.513 (0.551)

δ22 −0.002 (0.008) δ23 0.006 (0.009) δ2 0.003 (0.008)

δ32 −0.017 (0.009) δ33 −0.018 (0.010) δ3 −0.015 (0.009)

δ42 −0.026 (0.010) δ43 −0.008 (0.010) δ4 0.001 (0.009)

rameters for j = 1 are zero). Figure 2 compares the estimated probabilities

with the observed proportions. Obviously, the model entails a heavy smooth-

ing of the observed proportions. I assume that this is acceptable when being

concerned with trends regarding the outcomes Y = 1 and Y = 3.

Model (3) is one example of a broad variety of parametric models of con-

ditional probabilities (e.g., Long, 1997; Wooldridge, 2002). For the present

application, a general notation is

Pr(Y =j |C=c,X=x) ≈ h(c, x; θj)

where h(c, x; θ) denotes a mathematical function with arguments c and x, which

depends on a parameter vector θj . There are three requirements.

a) It should be possible to find a parameter vector, θ̂j , such that h(c, x; θ̂j)

is a sensible representation (with regard to the model’s purpose) of the

observations in terms of conditional probabilities.

b) Values of the function h(c, x; θ̂j) should lie between zero and one. This is

required for all possible values of C andX for which the model is intended

to provide conditional probabilities. In the present application it suffices

that the requirement is met for all observed values of C and X .

c)
∑

jh(c, x; θ̂j) ≈ 1. When using a multinomial logit model, the sum of

estimated probabilities exactly equals 1. An approximate equality suffices
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Figure 2 Observed proportions corresponding to Pr(Y = j |C = c,X = x), taken

from Figure 1, and estimates calculated with Model (3).

when the estimated probabilities are considered as approximations. This

view also allows one to use models which focus on particular outcomes.

For example, if the focus is on a single outcome, say Y = j, one can use a

binary logit model for a corresponding dummy variable, Yj = I[Y = j]. With

a specification analogous to (3), the model is

Pr(Yj=1 |C=c,X = x) ≈ (4)

L
(

αj + c γj + c2 γ′

j +
4

∑

l=2

xl βlj +
4

∑

l=2

c xl δlj
)

where L(u) = exp(u)/(1 + exp(u)) is the inverse of the logit link function.
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Figure 3 Comparison of probabilities Pr(Y3 = 1 |C = c, X = x), estimated with

Model (3) (solid) and Model (4) (dashed).

Table 1 shows the parameter estimates for Y3.

Of course, Model (4) is not mathematically equivalent to Model (3). As

illustrated in Figure 3, one nevertheless gets very much the same estimates of

conditional probabilities. The same is true when the focus is on the outcome

Y = 1. Therefore, as long as the focus is on a single outcome, and one is

using a parametric model only for smoothing the observed proportions, one

can alternatively use the multinomial or the binary logit model as a framework

for linking covariates to outcome probabilities. In both cases, the model’s

flexibility is due to the specification of the linear predictor.

3 Effects of parents’ educational level

3.1 Comparing conditional probabilities

What is the effect of X on Y ? A general leading idea is that the distribution

of Y depends on values of X .3 In order to define an effect one therefore needs

a reference to at least two values of X , say x′ and x′′, and the effect describes

‘the difference’ between the corresponding probabilities of Y = j (separately for

each j). This can be done in different ways. An often used simple and easily

3Thinking of a probabilistic dependency in this general sense does not require to assume

also a ‘causal relation’ in any specific sense. Questions of possible causal interpretations will

not be considered in this paper.
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understandable definition of ‘the difference’ is

Pr(Y = j |C = c,X = x′′)− Pr(Y = j |C = c,X = x′) (5)

which shows how a difference between values of X is connected with a corre-

sponding numerical difference in probabilities of the outcome. So these effects

are defined on a probability scale. They are visible as the differences between

the curves in Figure 2.

This approach to understanding, and defining, effects has two important

implications. First, in general, there is a different effect for each pair of values

selected for the comparison. In the present example, this is directly seen in

Figure 2.

Second, effects of a variable almost always depend on a context given by

values of other variables. Subsequently, I use this as a definition of ‘interaction’:

Two variables interact if the effect of one variable depends on values of the other

variable (and vice versa). In our example, X and C interact, that is, effects of

X depend on values of C.

The definition (5) must be distinguished from the notion of a ‘marginal

effect’ which presupposes a parametric model and the possibility to consider

derivatives. Using the notation h(c, x; θ̂j), the marginal effect of X would be

∂h(c, x; θ̂j)/∂x. In general, except for a linear model, the marginal effect does

not show how a difference between two values of X relates to a difference in

outcome probabilities (Petersen, 1985; Long, 1997).

3.2 Odds ratios

Instead of differences between probabilities, one could use odds ratios (or their

logarithms). Corresponding to (5), the odds ratio is

Pr(Y = j |C=c,X=x′′)

Pr(Y 6= j |C=c,X=x′′)

/

Pr(Y = j |C=c,X=x′)

Pr(Y 6= j |C=c,X=x′)
(6)

Like differences between conditional probabilities, also odds ratios are derived

from conditional probabilities. They cannot, however, be derived from each

other. Both entail a reduction of the information given by two separate condi-

tional probabilities.

There also is a difference when using the definition of ‘interaction’ given

above which presupposes a notion of effects. In the present application, whether
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the odds ratio (6) depends on values of C also depends on the model used to

estimate the conditional probabilities. For example, when using Model (4), the

log odds ratio is (βx′′j −βx′j)+ c (δx′′j − δx′j). Without the explicitly specified

interaction terms, the dependence on values of C would vanish.

3.3 Effects and marginal distributions

It has been argued that odds ratios are particularly well suited for representing

effects because they ‘do not depend on marginal distributions’ (e.g., Mare,

1981; Marshall and Swift, 1999). As shown by Hellevik (2007), the claim is not

immediately clear.

(a) I begin with the marginal distribution of the explanatory variable, X .

In fact, all measures of effects which are derived from the conditional proba-

bilities, Pr(Y = j |C= c,X=x), do not depend on the distribution of X . The

conditioning on values of X entails the separation of a structural relationship

from the distribution of X :

Distr. of X → Pr(Y = j |C=c,X=x) → distr. of Y

The conditional distribution is considered as the structure which links the two

marginal distributions. Taking this view, also differences between conditional

probabilities do not depend on the marginal distribution of X .

(b) All measures of effects which are defined in terms of conditional prob-

abilities do not depend on the distribution of X , but only the odds ratio also

does not depend on the distribution of Y . How to understand the latter kind

of ‘independence’? A purely formal explanation can be given by referring to a

crosstabulation of cases, for example:

Y3 = 0 Y3 = 1

x′ a b

x′′ c d

All measures which only depend on conditional probabilities do not change

if one multiplies the rows by arbitrary constants. The odds ratio, that is,

(d/c)/(b/a), also does not change if one multiplies the columns by arbitrary

constants. The suggested symmetry hides, however, that the relation between

X and Y (as defined by the theoretical framework) is not symmetric. The
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requirement that a measure of effects should not depend on the distribution

of X can be satisfied by conditioning on values of X without a reference to

Y . On the other hand, conditioning on values of Y is not compatible with the

idea that the distribution of Y is the result of a given distribution of X and a

structural relationship (see the diagram above).

Taking this idea seriously, possible marginal distributions of Y are deter-

mined by the marginal distribution of X and the conditional probabilities. In

the example, assuming that x′ and x′′ are the only categories of X :

Pr(Y3= 1) =
b

a+ b
Pr(X=x′) +

d

c+ d
Pr(X=x′′)

Consequently, if b/(a + b) ≤ d/(c + d), the range of possible distributions is

given by

b/(a+ b) ≤ Pr(Y3= 1) ≤ d/(c+ d)

This shows that the idea that a measure of effects should be compatible with

all conceivable distributions of outcomes, independent of restrictions due to the

presupposed structure, is not warranted. On the other hand, the property that

the measure does not depend on outcome distributions which are compatible

with the structure, is automatically satisfied if the measure does not depend

on the distribution of X .

4 Effects of birth cohorts

Analogous to effects of parents’ education, X , one can investigate effects of

birth cohorts, C. Given our theoretical framework, there is no further context

and one can simply compare probabilities of schooling outcomes between birth

cohorts. On the other hand, since the distribution of X depends on C, one

can now consider X as a variable which mediates effects of birth cohorts. In

fact, as can be seen in Figure 4, the distribution of parents’ educational levels

heavily changed across birth cohorts in our observation period.

In this section, I use this example to discuss proposals to distinguish between

direct and indirect effects. The example is well suited because of the interaction

of X and C which entails that one cannot define direct and indirect effects in

an ordinary sense. I begin with a brief description of effects of birth cohorts,

and then discuss proposals for decompositions of these effects into direct and
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Figure 4 Dashed: observed proportions Pr(X = x |C = c), smoothed with running

means of length 7. Solid: estimates calculated with a multinomial logit model.

indirect components which are based on various counterfactual assumptions.

Finally, I show estimation results of one of these decompositions.

4.1 Total effects of birth cohorts

I consider effects of birth cohorts defined by

Pr(Yj=1 |C=c′′)− Pr(Yj=1 |C=c′) (7)

for j = 1 and j = 3. For example, if c′ = c and c′′ = c + 1 these effects

compare adjacent birth cohorts. For estimating the conditional probabilities, I

use binary logit models

Pr(Yj=1 |C=c) ≈ L(α∗

j + c γ∗

j + c2 γ∗
′

j ) (8)

(as before, values of C2 are divided by 100). The estimated parameters are:

j α∗

j γ∗

j γ∗
′

j

1 4.410 (0.656) −0.132 (0.021) 0.069 (0.016)

3 −4.064 (0.610) 0.083 (0.019) −0.035 (0.014)

Figure 5 compares the estimated probabilities with corresponding observed pro-

portions. The comparison illustrates again how the parametric model provides

a smoothing of the observations.

Accepting this smoothing, the estimated probabilities can immediately be

used to calculate the effects of birth cohorts defined in (7). Figure 6 shows
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Figure 5 Solid lines: probabilities Pr(Yj = 1 |C = c) estimated with Model (8).

Dashed lines: corresponding observed proportions smoothed with running means of

length 7.
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Figure 6 Effects of C on the probability of Y = 1 and Y = 3, as defined in (7) with

c′ = c and c′′ = c+ 1; derived from Model (8).

these effects for adjacent birth cohorts. They decreased slightly for Y = 3 and

substantially for Y = 1.

4.2 Direct and indirect effects

The direct effect of birth cohorts is conditional on values of the mediating

variable, X . One can start from the definition

Pr(Yj= 1 |C = c′′, X = x) − Pr(Yj= 1 |C = c′, X = x)

If C and X interact, as it is the case in our application, this effect is not

independent of values of X . Consequently, a unique direct effect does not exist
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(see also Kaufman et al., 2004). Note that the argument does not depend

on assuming a particular nonlinear model; the same consequence would result

when using a linear regression model with an interaction term.

It might seem possible to consider a mean direct effect with respect to a

distribution of X :
∑

x

[

Pr(Yj= 1 |C = c′′, X = x)− Pr(Yj= 1 |C = c′, X = x)
]

Pr(X=x)

One has to take into account, however, that the actual distribution of X de-

pends on values of C; and due to the interaction between X and C, this defi-

nition of a mean direct effect depends on the chosen distribution of X .

Several choices are possible. One could use Pr(X = x |C = c′) which leads

to what has been called a ‘natural’ mean direct effect by Pearl (2001). Alter-

natively, one could use the distribution Pr(X=x |C= c′′), or, as proposed by

Kuha and Goldthorpe (2010), a mean of the two distributions.

Assuming a temporal ordering, c′ < c′′, allowing one to think of a change in

the value of C, it seems plausible to fix the distribution at the beginning, C=c′.

In the present application, however, it seems preferable to use the distribution

at C = c′′ because this allows a more straightforward interpretation of the

indirect effect which is of primary interest. In fact, only the indirect effect

contributes to the understanding of how an effect of C is generated. The mean

direct effect (in whatever definition) only represents a residual; and in order to

better understand this residual one would have to think of further mediating

variables.

The choice of Pr(X=x |C=c′′) leads to the following partition of the total

effect of C.

Pr(Yj=1 |C=c′′)− Pr(Yj=1 |C=c′) = (9)
∑

x

[

Pr(Yj=1 |C=c′′, X=x)− Pr(Yj=1 |C=c′, X=x)
]

Pr(X=x |C=c′′)+
∑

x

[

Pr(X=x |C=c′′)− Pr(X=x |C=c′)
]

Pr(Yj=1 |C=c′, X=x)

The first term on the right-hand side defines a mean direct effect which can

be attributed to the difference between c′ and c′′, assuming counterfactually a

constant distribution of X . The second term on the right-hand side defines an

indirect effect which shows the contribution of the change in the distribution

of X , assuming counterfactually that the dependence of Yj = 1 on C and X

had not changed.
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Note that the partition (9) does not presuppose a particular parametric

model. In contrast, for example, the proposal made by Breen, Karlson and

Holm (2013) relates to a linear regression model for a latent variable behind

Yj . Moreover, their proposal presupposes that there is no interaction between

C and X , and further assumes a linear regression model for the dependence

of X on C. Both assumptions are not met in the present application, and I

therefore do not consider this proposal as a possible alternative.

4.3 Estimation of decompositions

Estimation of the partition (9), or alternative versions, requires estimates of

the conditional probabilities involved. Practical approaches depend, in partic-

ular, on the representation of conditional distributions of X . In the present

application, X is a categorical variable with only four categories; so one can

use the multinomial logit model illustrated in Figure 4.4 In addition, I use

Model (4) for estimating probabilities of Yj= 1 conditional on C and X .

For the illustration, I consider the total effect as defined in (7) with c′ = c

and c′′ = c+1. Results are shown in Figure 7 for Y = 1 and Y = 3. The labels

D and I of the curves denote, respectively, the first and the second term on the

right-hand side of (9).

The dashed curves show the sum of the two terms and represent an ap-

proximation to the total effect of the birth cohorts. Of course, one cannot

expect that these curves equal the total effects shown in Figure 5 which are

derived from Model (8). However, notwithstanding the limited accuracy of the

estimated partitions, they suggest some conclusions.

With regard to Y = 3, the partition suggests that the rising probability

of this schooling outcome (as indicated in Figure 4) was increasingly a result

of a change in the distribution of parents’ educational levels. With regard to

Y = 1, one has to consider that the effect of birth cohorts on this schooling

outcome was negative, approaching zero at the end of the observation period.

Taking this into account, also this partition shows that a change in parents’

educational levels increasingly contributed to the effect of birth cohorts.

4In other applications, it could be preferable to use a parametric continuous distribu-

tion. See, for example, Erikson et al. (2005) who used counterfactual decompositions for

defining and estimating primary and secondary effects of the family background. For further

discussion see also Buis (2010).
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Figure 7 Estimation of the partition (9) for Y = 3 (upper plot) and Y = 1 (lower

plot). The labels D and I denote, respectively, the first and the second term on the

right-hand side of (9). The dashed curves show the sum of D and I.

5 Discussion

I have considered a simple model in which schooling outcomes probabilistically

depend on birth cohorts and parents’ educational level. In this framework, I

have compared two definitions of effects of parents’ education which can be

derived from conditional probabilities of schooling outcomes without requiring

the reference to a parametric model: simple differences between conditional

probabilities and odds ratios.

For comparing the two definitions of effects, I have considered them as (par-

tial) characterizations of a structure defined by the conditional distributions

which relate explanatory and outcome variables. It is seen, then, that both

definitions provide characterizations which do not depend on the marginal dis-
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tributions of parents’ education. A given odds ratio is also compatible with

all conceivable distributions of the outcome variable. However, given that a

measure of effects should characterize the structure relating explanatory and

outcome variables, it suffices that the measure is compatible with all outcome

distributions which can be generated by the structure;5 and this property is

common to all measures of effects which are derived from the conditional prob-

ability distributions.

Using simple differences between conditional probabilities as a measure of

effects is also useful when being interested in direct and indirect effects of

an explanatory variable. In the present paper, I have considered effects of

birth cohorts which represent relevant conditions for the schooling outcomes

of children. As a consequence of the interaction of birth cohorts and parents’

education, only counterfactual partitions of effects of birth cohorts into direct

and indirect components are possible. This then creates the further problem

of how to interpret the counterfactually defined components.

The components are not ordinary effects which compare outcomes between

individuals which differ in values of explanatory variables. Consider, for exam-

ple, the direct effect as defined by the partition (9) which can be written

Pr(Yj=1 |C=c′′)−
∑

x
Pr(Yj=1 |C=c′, X=x) Pr(X=x |C=c′′)

While the first term is an empirically observable quantity, the second term

describes a fictitious construct.

Interpretations of counterfactual partitions depend on the application. In

the present application, one can make use of the fact that there is a temporal or-

dering of birth cohorts: c′ < c′′. So one can think of a change in the conditional

distribution of parents’ education, Pr(X = x |C = c′) −→ Pr(X = x |C = c′′),

and consider the question of how this change contributed to a corresponding

change in the distribution of schooling outcomes. The indirect effect as de-

fined by the partition (9) can then be interpreted as providing an answer to

this question based on assuming that the structural relationships between the

variables had not changed.

To illustrate, I consider the development of Pr(Y3 =1 |C = c) across birth

cohorts from 1960 to 1986. As shown by the solid line in Figure 8, there was

5Other considerations might become relevant when being interested in measures of in-

equality, but see Marks (2004) for a critique.
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Figure 8 Solid line: Pr(Y3 =1 |C = c). Dashed line: the cumulated indirect effect

defined in (10).

a substantial increase. For comparison, the dashed line shows a cumulated

indirect effect defined by

c
∑

k=61

∑

x

[

Pr(X=x |C=k)− Pr(X=x |C=k − 1)
]

× (10)

Pr(Y3=1 |C=k − 1, X=x) + Pr(Y3=1 |C=60)

Note that this definition uses a concatenation of ‘temporally local’ indirect

effects. It is not counterfactually assumed that structural relationships between

the variables involved remained constant since the birth cohort 1960, but only

between adjacent birth cohorts. The comparison in Figure 8 can therefore

be interpreted as demonstrating how an increasing part of the changes in the

probability of the schooling outcome Y = 3 can be attributed to changes in the

distribution of parents’ education between adjacent birth cohorts.
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