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Abstract We discuss multilevel models focusing on individuals belonging to institu-

tional units. It is assumed that the individual members of the institutional units cannot

be identified by referring to positions. Modeling therefore requires analytical models

relating to generic individuals. In this framework, we compare models using contextual

variables and random coefficient multilevel models. We argue that random coefficient

models do not offer substantial advantages when the goal is to explain individual out-

comes.

1 Introduction

Multilevel models exist in different forms and are used for different applications. In

this paper, we are interested in models for human individuals that take into account

that individual outcomes are influenced by institutional units the individuals belong

to. So there are two levels, individuals and institutional units. We consider mainly two

modeling approaches: individual-focused models including contextual variables (derived

from the institutional units), and random-coefficient multilevel (RCML) models.

The conceptualization of RCML models is often based on the assumption that the

individual units associated with a higher-level unit can be identified through positions.

This is reasonable, for example, when dealing with repeated measurements that can

be identified by time points (serial numbers). The assumption is crucial because it is

required for thinking of a joint distribution of the outcome variables of individuals

belonging to the same higher-level unit. We therefore stress that in the applications we

have in mind this assumption cannot be made.

Our approach is based on the notion of analytical models aiming to predict and,

via interpretation, explain individual outcomes for generic individuals (meaning in-

dividuals defined by values of variables). Such models can easily include contextual

variables and will then be called contextual multilevel models. The article argues that

RCML models do not offer substantial advantages when the goal is to explain indi-

vidual outcomes. Actually, much of the discussion of RCML models in the literature

concerns the modeling of institutional units.1 This is outside the scope of the present

article. Our argumentation concerns the conceptual set-up of multilevel models for in-

dividual outcomes. Except for some brief remarks dealing with supposed implications

of “dependencies among observations,” questions concerning the estimation of model

parameters will not be discussed.

1 For example, most of the research questions referred to by Raudenbush and Bryk (2002)
to illustrate their approach to RCML models concern statistically constructed properties of
institutional units (e.g. “school effectiveness”).

2 Descriptive and analytical models

We distinguish between descriptive and analytical models. Descriptive models serve

to describe a given set of data or a population. Such models describe (aspects of)

a statistical distribution that is defined for a sample or a population.2 For example,

given data containing information about household incomes, one can fit a lognormal

distribution to describe the income distribution. This would be a descriptive model

describing the income distribution in the sample. Instead, one can refer to a population

of households and set up a model that uses a lognormal distribution for describing the

income distribution in the population. Sampled data might then be used to estimate

this descriptive model for the population.

In contrast to descriptive models, analytical models do not serve to describe data

(or a population) but to formulate theoretical hypotheses. Very often the hypothesis

concerns dependency relations between variables. For example, the question motivating

the research might be how the educational success of children depends on conditions.

This question cannot be answered by a descriptive model but requires an analytical

model that formulates a hypothesis about a dependency relation. Moreover, in most

applications, the hypothesis does not concern a particular child (or group of children)

but a generic child, that is, any child that can be imagined to exemplify the theoretical

process.

Analytical models are often formulated as regression models. A simple linear model

could be written as

y = α + xβ + e (1)

Understood as an analytical model, the equation formulates a hypothesis about the

dependency of values of a variable y on values of a variable x. To account for the fact

that, based on values of x, values of y can be predicted only probabilistically, the model

includes a random variable e. Being part of an analytical model, this random variable

represents the uncertainty in the prediction of y when using this model. Of course, one

can assume E(e) = 0, and this allows one to consider (1) as a hypothesis about the

dependency of expected values of y on values of x: E(y|x) = α + xβ.

Regression models can be, and often are, used for descriptive purposes. For example,

having sampled values of the variables x and y for n individuals, say (x∗

i , y∗i ) for

i = 1, . . . , n,3 one can set up a regression model

y∗i = α + x∗

i β + ei (2)

This would be a descriptive model that describes an aspect of the joint distribution of

the variables found in the data. Being part of a descriptive model, ei is not a stochastic

variable but represents a residual from fitting the model. In fact, values of ei can only

be defined by using some method of estimating the parameters of the model; only then,

having determined estimates α̂ and β̂, one can define: e∗i := y∗i − α̂ − x∗

i β̂.

2 The term ‘population’ is here used to denote a finite set of units which actually exist or
have existed in the past. This understanding is required, in particular, in order to think of
data as being a sample that is (randomly) drawn from a population.

3 To distinguish values from variables, they are referred to by starred letters.



3 Varieties of multilevel models

Following the remarks in Section 2, we distinguish between descriptive and analytical

multilevel models. We propose to understand analytical multilevel models as models

formulating hypotheses about dependency relations that involve two or more different

kinds of units.

For the present discussion, we distinguish four kinds of units: Individuals; in this

paper these are always human individuals. Institutional units; for example: households,

firms, schools. Structured units; these are groups (sets) of two or more individuals whose

members can be identified by positions. For example, a couple consisting of a man and

a woman. Statistical units; these are collections (sets) of individuals delimited by a

common property. In contrast to structured units, members of a statistical unit cannot

be distinguished by structurally defined positions (only by additional variables). As an

example one can think of occupational groups, considered as sets of people having the

same occupation.

The distinction between institutional and statistical units is important because,

referring to an institutional unit, one can often think of a group of individuals being in

some sense associated with the institutional unit. For example, the group of members

of a household, or the group of employees of a firm. If considered as units of analysis,

these groups of individuals are statistical units and must be distinguished from the

institutional units referred to in their definition.

Based on the above definitions of kinds of units, we distinguish the following kinds

of models:

a) Multilevel models for individuals. These are models having a dependent variable

that refers to an individual and take into account that the process that generates

values of that variable is influenced by the individual’s being a member of, or in

some way associated with, an institutional unit.

b) Models for institutional units. These are models having a dependent variable that

refers to an institutional unit and take into account that the process that generates

values of that variable is influenced by individuals (being in some way associated

with the institutional unit). For example, one can think of a model that tries to

explain the mean value (or some other aspect of the distribution) of wages paid by

firms.

c) Models for structured units. These are models having a multidimensional dependent

variable, say (y1, . . . , yn), where the components relate to the individual members

of a structured unit. For example, when the unit is a couple, one can define a

variable (y1, y2) where y1 relates to the man and y2 relates to the women. (Allowing

the notion of structured units to refer to any kind of objects, one can also think

of models for repeated measurements where time points can be used to identify

individual measurements.)

d) Models for statistical units. Since the individual members of a statistical unit cannot

be identified, dependent variables cannot refer to identifiable individuals. Instead,

dependent and explanatory variables refer to statistical distributions defined for

the statistical unit; models can therefore properly be called population-level mod-

els.4 As examples one can think of diffusion models concerning the spread of some

property in a population of individuals.

4 A framework for the conceptualization of such models is discussed in Rohwer (2010).

The present paper focuses on analytical multilevel models for individuals. The models

that will be discussed concern a dependent variable that is defined for a generic indi-

vidual which belongs in some way to an institutional unit. References to institutional

units can be made in one of two ways: a model can refer to a generic institutional unit

or to a fixed population of institutional units.

4 Variance partitions and explanations

Discussions of multilevel models often start from a hierarchical data set. For example,

a hierarchical data set containing values of two variables, y and x, for i = 1, . . . , n

individuals could be given as follows:

(y∗i , x∗

i , l∗i ) (3)

In this notation, l∗i provides the label of the institutional unit the individual i belongs

to (say, l∗i ∈ {1, . . . , m}). We assume that y is the variable of interest, and x is a

(possibly multidimensional) explanatory variable. In a formal sense, also the labels

l∗i can be considered as values of a variable, say l. There is, however, an important

difference between x and l: in contrast to values of x, values of l cannot contribute to

an explanation of values of y.

Think of an individual i having the value y∗i . Why? Referring to the value x∗

i

could, possibly, contribute to an answer; but the label, l∗i , of an institutional unit (say, a

school) the individual belongs to has no explanatory content. Of course, something that

characterizes the institutional unit (e.g., class size) might contribute to the explanation

of y∗i . This information, however, does not derive from the label, but from knowing

the value of an explanatory variable (that could be identical for several institutional

units).

While labels cannot contribute to explanations, they can be used to partition the

variance of a variable of interest, say V(y), into two components: a mean value of

variances that are specific for each institutional unit (label), and the variance of the

mean values. Such variance partitions are often made the starting point for introducing

multilevel models. In fact, several authors suggest that the main task of multilevel

analyses is to contribute to an explanation of “variability” (in a variable of interest)

through methods of variance partition (e.g., Snijders and Bosker 1999, p. 1; Healy 2001;

Browne et al. 2005; Stanat and Lüdtke 2008, p. 325; Heck and Thomas 2009, pp. 11, 51).

This approach could be helpful when the goal is prediction. For example, knowing the

conditional mean values M(y|l = j), the label l∗i could be used for the prediction of i’s

value of y. However, variance partitions w.r.t. institutional units cannot contribute to

explanations.

Being interested in explanations requires an approach that is conceptually different

from partitions of variance. One has to start from an analytical model that refers to

a generic individual. The meaning of “variability,” when referring to the dependent

variable of an analytical model, cannot be defined by referring to a sample (or popu-

lation) of individuals. Considering the dependent variable of an analytical model as a

random variable, its variance derives from the “error term,” that is, a random variable

representing the uncertainty of predicting values of the dependent variable.



5 Causal conditions and selection effects

Having defined the dependent variable to be considered in an analytical model (to

be used for explanations), the next step is to think of processes that can generate

values of the variable. This is the starting point for the consideration of conditions

on which the processes might depend. The basic idea of multilevel models is that the

process generating an individual’s value of a dependent variable also depends in some

way on the institutional unit to which the individual belongs. There are mainly two

complementary possibilities:

a) One can think of features of the institutional unit that could be causally relevant

conditions for processes generating values of the dependent variable. For example,

one could assume that processes generating an individual’s abilities in reading de-

pend on features of the school in which the learning takes place, e.g., properties of

the curriculum, qualification of the teachers, class size.

b) One can often assume that an individual is influenced by some or all other persons

belonging to the same institutional unit. In the just mentioned example, one could

assume that the individual’s learning also depends on his or her interactions with

other persons in the school.

Variables representing both kinds of circumstances will be called contextual variables if

they are used to refer to conditions for a process that generates an individual’s value of

a dependent variable. In this understanding, contextual variables characterize individ-

uals situated in a context. What makes these variables specific is that their definition

(that is, the definition of possible values and their meanings) requires reference to an

institutional unit.

Processes generating an individual’s value of a variable must be distinguished from

selection processes. For example, the educational level of a child’s parents may be

assumed to be one of the conditions for the process through which the child acquires

its reading capabilities. Now imagine that the school selects children according to

the educational level of their parents. Obviously, the selection process is conceptually

different from the process through which the child learns reading. On the other hand,

it might well be possible to consider the selection process as a substantial process that

generates some feature of the institutional unit (the school) which, in turn, constitutes

a causal condition for the child’s learning process.5

6 Models with contextual variables

A linear version of an analytical multilevel model that employs contextual variables

can be written as follows:

y = α + x β + z γ + x z δ + e (4)

z is a contextual variable, x records characteristics of the individual that do not require

reference to an institutional unit (both are possibly multidimensional variables); in

addition, there is a random variable e having expectation E(e) = 0.

5 The consideration of selection effects becomes of critical importance when setting up mod-
els for institutional units. This is outside the scope of the present article.

Notice that there is no formal distinction between contextual and other explanatory

variables. The formulation in (4) is completely symmetrical with respect to x and

z. This is not surprising, of course, because this modeling approach uses contextual

variables, like any other variables, to characterize conditions for a process that generates

an individual outcome. These models will be called contextual multilevel models.

Understanding (4) as an analytical model means that it is intended to predict values

of the dependent variable for a generic individual. Accordingly, the random term is

understood as representing the uncertainty in making such predictions. Actually, the

prediction is made by using the expectation of y and possibly adding some assessment

of the uncertainty. The model that is actually used for predictions may be written as

E(y|x, z) = α + x β + z γ + x z δ (5)

showing how it predicts the expectation of y depending on values of x and z.

As formulated in (4), the model assumes that the random variable e representing

the uncertainty is independent of the explanatory variables x and z. Note that this is

a feature of the model, not of a (hierarchical) data set; in particular, this feature has

nothing to do with properties of a sampling scheme that might be used to generate

data for the estimation of model parameters.

It is quite possible to set up a model where the uncertainty of prediction depends on

variables. A simple approach assumes a parametric density function for the dependent

variable. For example, one could use a normal density function φ(y;σ), where y is the

mean and σ is the standard deviation. If y is made dependent on covariates, e.g. in the

linear form assumed in (5), but σ is treated as a single parameter, the model would

again imply that the variance of the uncertainty is independent of covariates. On the

other hand, it is quite possible to make also σ dependent on variables. As a result one

would get a model where the variance of the distribution representing the uncertainty

is no longer independent of explanatory variables. Instead of OLS, one could then use

the maximum likelihood method to find estimates of the model parameters.

7 Models with labels of institutional units

Analytical models with contextual variables concern a generic individual, that is, an

individual which is only characterized by values of variables. For example, a child of

age eight that visits a school where it is learning reading. Moreover, also the institu-

tional unit is referenced in a generic way. The model only takes into account values of

contextual variables which do not identify particular institutional units.

A different approach to multilevel modeling starts from assuming a population of

institutional units. For example, a collection of identifiable schools, or a collection of

countries (e.g., the countries of the European Union). In order to refer to a collection

of institutional units, we use the notation Ω = {ω1, . . . , ωm}, m being the number of

units.

This presupposition allows one to define (at least conceptually) a separate model

for each institutional unit:

y = αj + x βj + ej (j = 1, . . . , m) (6)

Note that these models refer to identifiable institutional units but are, nonetheless,

analytical models. Given the label j of an institutional unit, the model concerns a



generic individual supposed to belong to that unit. By using dummy variables (say

dj = 1 if an individual belongs to ωj , and dj = 0 otherwise), one can also formulate a

single model, often called a fixed-effects multilevel model . For example,

y = Σj djαj + x Σjdj βj + Σjdjej (7)

would be equivalent to the full set of m separate models; by adding constraints one

could define more restricted models.

A fixed-effects multilevel model can be understood as an analytical model that

uses labels of institutional units as additional information for predicting values of a

dependent variable defined for a generic individual. Alternatively, the model can be

understood as a descriptive model aiming at the description of a population of institu-

tional units without explicitly referring to a population of individuals. The description

concerns properties of the institutional units defined by the regression models in (6)

and therefore depends on the specification of these models. As mentioned, these are an-

alytical models, they do not describe populations (or samples) of individuals belonging

to the institutional units.

An obvious drawback of this modeling approach is that it does not allow including

contextual variables which are defined with respect to the institutional units in Ω. So

the question arises how to interpret differences between the m models. This mainly

depends on whether the labels of the institutional units are informative or not. In

some applications, it could be sensible to use informative labels; for example, when

comparing countries. However, in many applications the number of institutional units

is large and labels are not informative (think, e.g., of households, schools, and firms).

Differences between the institutional units are then difficult to interpret. Since the

labels are not informative, they cannot suggest ideas about variables which could have

contributed to generating the differences. It is not even possible to conclude that the

differences are due to unobserved contextual variables; at least some part may well be

due to variables omitted from the model (6) that is used for the comparisons.

In short, fixed-effects multilevel models cannot be used to explain differences be-

tween institutional units in terms of variables characterizing the units; and conse-

quently, they cannot contribute to explaining differences between individuals belong-

ing to different institutional units in terms of (contextual) variables. These models are

therefore seldom useful for analytical purposes.

8 Random coefficient multilevel models

In contrast to the modeling approach discussed in the previous section, random coef-

ficient multilevel models do not use labels of institutional units as values of variables.

Setting up this kind of multilevel model proceeds in three steps. The first step specifies

a model for a generic individual. Using previous notations, this level-1 model could be

written as

y = α0 + x β0 + e0 (8)

Assuming then that the processes generating values of y take place in the context of

an institutional unit, the second step consists in specifying a level-2 model that makes

the parameters of (8) dependent on properties that characterize the institutional unit.

In our example, this model consists of two parts corresponding to the two parameters

of (8) and could be specified as

α0 = α + z γ + eα and β0 = β + z δ + eβ (9)

where z is a variable characterizing an institutional unit, and it is assumed that E(eα) =

E(eβ) = 0. The third step consists of combining (8) and (9), resulting in the model

y = α + x β + z γ + x z δ + (eα + x eβ + e0) (10)

This is called a random coefficient multilevel (RCML) model . Different from models

discussed in the previous section, labels of institutional units do not occur. In fact,

except for the formulation of the stochastic part, this model has the same structure as

(4).

There is, however, also a conceptual difference. This becomes visible when asking

how to understand the random variables, eα and eβ, in the level-2 model. Why not

simply assume α0 = α+z γ and β0 = β+z δ that would make (10) completely identical

to (4)?

Our understanding of these random variables is based on the following interpreta-

tion of the modeling approach:6 It is intended to predict the value of y for a generic

individual. It is known (or assumed) that the process generating that value depends

on features of the institutional unit the individual belongs to, say ωj∗ (a member of

Ω). This allows the further assumption that there is a model corresponding to (8), say

y = αj∗ + x βj∗ + ej∗ (11)

that, if possible, should be used for the prediction. This is not possible, however,

because the parameters, αj∗ and βj∗ , assumed for the particular institutional unit the

individual belongs to are not known. Nevertheless, one can think of the level-2 model

as providing estimates of the unknown parameters αj∗ and βj∗ .

Based on this interpretation, one can understand the random variables that are

used in the formulation of the level-2 model as representing the uncertainty in the

prediction of level-1 model parameters assumed to exist for the particular institutional

unit a generic individual belongs to. This interpretation also highlights the conceptual

difference between the modeling approaches:

a) The contextual multilevel model (4) assumes that the process generating an indi-

vidual’s value of y depends on conditions which can be represented by contextual

variables, leaving it open whether and how the process might depend on further

properties of the institutional unit the individual belongs to.

b) The RCML model (10), like a model using labels, assumes that the process gen-

erating an individual’s value of y depends on the particular institutional unit the

individual belongs to,7 and it uses contextual variables, or any other variables

characterizing institutional units, to estimate model parameters assumed for that

unit.

6 This interpretation is suggested, e.g., by DiPrete and Forristal 1994, p. 336; Hox 2000, p. 16;
Heck and Thomas 2009, p. 78.

7 For example, Raudenbush and Willms (1995, p. 308) define a ‘school effect’ as “the extent
to which attending a particular school modifies a student’s outcome.” The contextual model
would ask, instead, how a student’s outcome depends on variables characterizing a school.



Note that the proposed interpretation of the random variables in the level-2 model is

not in terms of sampling from a population of institutional units. Thinking in terms

of sampling is sometimes proposed in the literature (e.g., Goldstein 2003, p. 15; Healy

2001), but would not be compatible with using RCML models as analytical models

relating to generic individuals.8 Neither would it make sense, then, to start from a

randomly drawn institutional unit, nor would it be reasonable to start from a generic

individual which is then placed into a randomly drawn institutional unit. An interpre-

tation in terms of sampling would also be in contradiction to applications where model

estimation is based on information about all of a small number of institutional units.9

9 Comparing the modeling approaches

Leaving aside the conceptual difference, the contextual multilevel model (4) and the

RCML model (10) are very similar. In fact, except for different formulations of the

stochastic parts, they are formally identical. An important common feature is that

both models do not employ labels of institutional units. This implies that all substantial

interpretations must be based on explicitly defined explanatory variables.

It is sometimes said that the RCML model allows formulating the hypothesis that

the parameters of an individual-level model like (8) may vary between institutional

units. However, the same assumption is implied in the contextual multilevel model (4).

In fact, referring to an institutional unit characterized by a value z∗, both models imply

the same individual-level model:

y = (α + z∗γ) + x (β + z∗δ) + e0 (12)

Starting from (4), e0 is conceptually identical with e. On the other hand, following the

RCML approach, one first uses (9) to predict α0 = α + z∗γ and β0 = β + z∗δ, and

then inserts these values into (8).

An argument often given to suggest RCML models is that these models can be used

to show how relationships between individual-level variables depend on the institutional

context (e.g., Blien, Wiedenbeck, and Arminger 1994, p. 270; Goldstein 2003, p. 15; Rau-

denbush and Bryk 2002, p. 8). Mason, Wong, and Entwisle (1984, pp. 74-75) gave the

following formulation:

Our fundamental assumption is that the micro values of the response variable

in some way depend on context and that the effects of the micro determinants

may vary systematically as a function of context.

Referring to the RCML model (10), the interest concerns how the relationship between

the conditional expectation E(y|x, z) and x depends on z. Again, both the RCML

model and the contextual multilevel model (4) give the same answer:

∂E(y|x, z)/∂x = β + zδ (13)

8 Thinking in terms of sampling from a population of institutional units could be justified
with being interested in the distribution of parameters of level-1 models in that population.
However, RCML models presuppose parametric forms of the distributions of the level-2 ran-
dom variables, and consequently cannot be used to learn something about the form of the
distribution of parameters in the population of institutional units.

9 Such applications are widespread in comparative political research; see, e.g., Dallinger
2008; Pichler and Wallace 2009.

The fact that both models give the same answer is a consequence of referring to insti-

tutional units not by labels, but only by explanatory variables. This implies that we

do not distinguish between institutional units having identical values of the variable z.

10 Level-1 and level-2 variables

One often finds the suggestion that RCML models can be used to assess the relative

importance of factors attributable to individuals and factors attributable to institu-

tional units (e.g., Teachman and Crowder 2002; Heck and Thomas 2009, p. 14). The

basic idea is that these models allow interpreting level-1 variables (defined by being

included in the level-1 model) as representing factors attributable to an individual and

level-2 variables (defined by being included in the level-2 model) as representing factors

attributable to an institutional unit.

In our view, there are several reasons why this distinction between variables should

not be used for substantial conclusions. The first point to note is that the distinction

between level-1 and level-2 variables only reflects the stepwise procedure of setting up

the model without having a substantial meaning. In fact, in the combined model (10),

there is no longer any distinction between level-1 and level-2 variables.

Furthermore, there is no correspondence with the distinction between contextual

variables and variables that can be defined without reference to an institutional unit.

Contextual variables could be used in the level-1 model; on the other hand, it is not

required that level-2 variables can be interpreted as contextual variables. Following the

interpretation of RCML models proposed in Section 8, one can use any variables that

might help to estimate parameters postulated for the institutional unit an individual

belongs to. It is not required that the variable is in any sense a causal condition for a

process that generates values of the dependent variable.

A further point concerns the random variables included in the level-2 model. By

definition, these are level-2 variables and (therefore) often interpreted as representing

unobserved influences attributable to an institutional unit (e.g., Kreft and de Leeuw

1998, p. 43; Snijders and Bosker 1999, p. 47). Correspondingly, the random variable in-

cluded in the level-1 model is interpreted as representing influences attributable to

the individual. Based on these interpretations, it is proposed that the variances of the

random variables can be used to assess the relative importance of unobserved level-1

and level-2 variables (e.g., DiPrete and Forristal 1994, p. 338; Rice et al. 1998; Dallinger

2008; Heck and Thomas 2009, pp. 83, 88-9; Kim, Solomon and Zurlo 2009, p. 270).

An obvious objection derives from the fact that the level-2 model is based on having

previously defined a level-1 model. All parameters of the level-2 model, including the

variances of the random variables, depend on the specification of the level-1 model.

Adding further level-1 variables will change these parameters and, in particular, can

well lead to a decrease in the variances of the level-2 random variables. This shows

that, even if accepting the meaningfulness of the distinction between level-1 and level-

2 variables, no reliable conclusions can be drawn from the variance components in the

stochastic part of the model.

The most important point, in our view, is that statements concerning the contri-

bution of different kinds of variables should be based on explicitly defined variables

(in contrast to interpreting variance components in terms of “unobserved variables”).

This can well be done with models incorporating contextual variables. Such models also



show that it is not, in general, possible to think of separable influences to be associated

with different kinds of variables.

To illustrate, we use model (4) (using instead the RCML model (10), one would

be led to the same conclusions). Assume two individuals having, respectively, values

x∗

1 and x∗

2 of the variable x, and values z∗1 and z∗2 of the variable z. The model then

predicts the following difference in the expected values of the dependent variable:

E(y|x∗

1, z∗1) − E(y|x∗

2, z∗2) = (14)

(x∗

1 − x∗

2) β + (z∗1 − z∗2) γ + (x∗

1z∗1 − x∗

2z∗2) δ

Due to the interaction effect, it is not possible to think of this difference as resulting

from two independent sources (one attributable to the individuals and another one

attributable to the institutional units). Even when comparing two individuals belonging

to the same institutional unit (z∗1 = z∗2 = z∗), this would not be possible. One would

get the equation

E(y|x∗

1, z∗) − E(y|x∗

2, z∗) = (x∗

1 − x∗

2) (β + z∗ δ) (15)

showing how the difference between the expectations of the individual scores still de-

pends on the institutional context.

11 How to formulate models?

We have argued that one should clearly distinguish between descriptive and analytical

models. Unfortunately, confusion easily results from the widespread habit of writing

multilevel models in terms of variables referring to a sample of individuals; for example,

yij = α + xijβ + eij (i = 1, . . . , nj ; j = 1, . . . , m) (16)

where i and j refer, respectively, to individuals and to institutional units. The notation

could be useful for descriptive models, that is, when xij and yij are meant to represent

data, implying that also eij represents a fixed quantity (which must be defined by an

estimation procedure for the parameters α and β). However, confusion is likely to occur

when the notation is intended to set up a model that assumes eij , and consequently

yij , to represent random variables. The notation then seems to allow thinking about

a joint distribution of the variables eij , making it possible to formulate assumptions

about correlations among its components. However, it is in no sense clear how to

understand this joint distribution.

In contrast to an analytical model expressing a hypothesis about a generic in-

dividual, the formulation (16) refers, for each label j, to a plurality of individuals

(i = 1, . . . , nj). In some applications, these individuals can be considered as members

of a structured unit, and this would then allow thinking of corresponding variables hav-

ing a joint distribution (in fact, this would lead to an analytical model for structured

units). However, in most applications the institutional units referred to in multilevel

models cannot be considered as structured units. This implies that the index i cannot

be interpreted as referring to variables defined by an analytical model.

One is therefore led to view the formulation (16) as referring to a sample of indi-

viduals. This understanding might suggest to think of a sampling scheme that could

be used for generating samples providing values of (xij , yij). However, this approach

will not lead to an interpretation of the variables eij in terms of sampling. Even if the

reference to a sampling scheme would allow interpreting (xij , yij) as random variables

w.r.t. the sampling scheme,10 this interpretation would not imply a definition of the

random variables eij .

In fact, the definition of these variables requires two things: (a) the specification

of a model for the prediction of values of yij based on values of xij , and (b) deciding

about an estimation method for this model that can be used to find values of the

eij variables. This shows that the random variables eij get their meaning, not from

a sampling scheme, but from an analytical model that aims to predict values of a

dependent variable from values of explanatory variables. They are used to capture the

uncertainty in making the predictions.

We are led to the conclusion that, when using analytical models for generic indi-

viduals (in contrast to models for structured units), there is no sound foundation for

thinking in terms of variables having subscripts referring to individuals. Furthermore,

using subscripts referring to institutional units could be sensible, but implies treating

these subscripts as labels of identifiable units. In any case, there is no valid notion of

a joint distribution of the eij variables.

12 Dependencies among observations?

Authors proposing RCML models often argue with “dependencies among observations”

of individuals belonging to the same institutional unit. For example, Kreft and de Leeuw

(1998, p. 9) say:

Observations that are close in time and/or space are likely to be more similar

than observations far apart in time and/or space. Therefore, students in the

same school are more alike than students in different schools, due to shared

experiences, shared environment, etc. The sharing of the same context is a

likely cause of dependency among observations.

Many similar statements can be found in the literature (e.g., de Leeuw 2002, p. xx;

Blien, Wiedenbeck and Arminger 1994, pp. 268-9; Diez-Roux 1998, p. 220; Pickett and

Pearl 2001, p. 117; Raudenbush and Bryk 2002, p. 100; Hox 2002, p. 5; Gorard 2003;

Kim, Solomon and Zurlo 2009, p. 266; Heck and Thomas 2009, pp. 12, 76). Unfortu-

nately, the expression ‘dependency among observations’ has no well-defined meaning.

One context for attempting an understanding is sampling theory. A clustered sam-

pling scheme will lead to “dependencies among observations” in the sense that units

belonging to the same cluster have higher second-order inclusion probabilities (com-

pared with units belonging to different clusters). Being interested in the estimation

of population parameters, the calculation of standard errors should take into account

these dependencies (as reflected in the inclusion probabilities to be derived from the

sampling scheme).

However, this understanding of “dependencies of observations” does not apply to

the estimation of the parameters of an analytical multilevel model. These are not

population parameters, but quantities postulated by setting up a model. Correspond-

ingly, the random variables in these models are not defined w.r.t. a sampling scheme,

10 Actually, since samples are not structured units, the subscript i does not make sense. Fur-
thermore, using the subscript j would require the presupposition of a population of identifiable

institutional units.



but reflect the uncertainty in using the model for predictions. In other words, ana-

lytical models relate, not to data-generating processes (literally understood), but to

substantial processes that generate facts (possibly observed and then taken as data by

a data-generating process).

Observations for estimating the parameters of an analytical model might come

from a clustered sampling scheme, but this would be irrelevant for the definition and

estimation of standard errors of the parameter estimates. For example, parameters of

the contextual model (4) can be estimated with OLS regardless of the sampling scheme

used to generate observations. Alternatively, one can start from assuming a parametric

distribution for the dependent variable and then use maximum likelihood estimation.

As already mentioned, this approach provides the opportunity to model heteroscedas-

tic error terms. In any case, neither OLS nor maximum likelihood estimation will lead

to “wrong” standard errors. It should be stressed that, when referring to analytical

models, standard errors cannot be defined by referring to a sampling distribution (de-

rived from a sampling scheme). A reasonable alternative could be to think in terms of

“precision” that can be obtained from the given observations. However, leaving aside

technical details, this line of reasoning makes standard errors always conditional on

the data used to estimate model parameters.

In fact, proponents of RCML models most often do not argue with sampling

schemes but with hierarchical structures. Reasoning in terms of (dependencies among)

observations is then no longer appropriate. Instead, one has to think about how in-

dividuals might depend on relationships with other individuals belonging to the same

institutional unit. Explicit modeling of such relationships would require the definition

of a structured unit (allowing one to represent relationships between individuals by

variables). When developing analytical models for a generic individual, the only option

is to use contextual variables describing how the generic individual depends on other

individuals and their properties.

13 Conclusion

We conclude that analytical multilevel models focusing on generic individuals can be

set up as contextual models. These are regression models that use contextual variables

to represent conditions deriving from the individual’s belonging to an institutional unit.

Assuming that the individuals belonging to an institutional unit cannot be identified

by referring to positions, their interdependencies cannot be modeled in terms of a joint

distribution. The obscure talk of “dependencies among observations” cannot (therefore)

be given a clear meaning. Instead, one has to use contextual variables to capture an

individual’s dependence on other individuals and their properties.

Compared with contextual models, RCML models do not offer substantial advan-

tages when the goal is to explain individual outcomes. The distinction between level-1

and level-2 variables suggested by RCML models should not be used for substantial

conclusions. In particular, there is no reliable meaningful interpretation for the variance

components associated with the error variables.
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