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In social research one is often interested in investigating how a binary

outcome variable depends on conditions. A widely used tool is the logit

model which connects the probability distribution of a binary outcome

variable via a nonlinear function with values of explanatory variables. An

ongoing debate concerns the comparison of explanatory variables across

nested models. The focus often is on model parameters (and log odd ratios

which are directly connected with such parameters). The present paper

argues that this focus can be easily misleading when comparing models and

instead takes effects, defined as differences of conditional expectations, as

the quantities of main interest.

The first section introduces the notation. The second section briefly

criticizes the idea that parameters in reduced models should be viewed

as ‘biased estimates’ of corresponding parameters in more comprehensive

models. The third section discusses how to compare effects across models.

1 Defining Effect Sizes

1.1 A single explanatory variable

The most simple model connects just two variables and can be graphically

depicted as X −→→Y . The double arrow heads are intended to indicate

a stochastic relationship. As an example, one can think that the model

concerns the dependence of children’s success in school (Y = 1 if success,

Y = 0 otherwise) on parents’ educational level represented by X (e.g. 0

low, 1 high). The model assumes a probabilistic relationship, that is, the

probability distribution of Y is assumed to depend on values of X . Since

Y is binary, one can simply use the function

x −→ Pr(Y =1 |X=x) = E(Y |X=x) (1)

This function shows how the expectation of Y depends on values of X . In

the present paper, the interest concerns effects, that is, effects of changes

(differences) of values of X on the distribution of Y . I use the notation

∆s(Y ;X [x′, x′′]) := E(Y |X=x′′)− E(Y |X=x′) (2)
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and refer to this as the stochastic effect of a change in the variable X from

x′ to x′′. Notice that, in general, the relationship is not linear, implying

that the effect not only depends on the amount of change, (x′′ − x′), but

also on x′. Except for the special case when X is binary, effects cannot be

represented by single numbers.

I now consider a logit model as a parametric representation of the

functional relationship (1). It is based on using a logistic link function

F (v) :=
exp(v)

1 + exp(v)
(3)

to approximate (1), resulting in the model

E(Y |X=x) ≈ F (α+ xβx) (4)

(Using here an equality sign instead of ≈ would presuppose that the model

is correctly specified. However, in particular when thinking of the possi-

bility that further explanatory variables should be included, this cannot

be assumed just from the beginning.) The effect defined in (2) is then

approximated by

∆a(Y ;X [x′, x′′]) := F (α+ x′′βx)− F (α+ x′βx) (5)

where the ‘a’ is intended to indicate ‘approximation’.

1.2 Adding another explanatory variable

I now consider the addition of another explanatory variable, say Z. To

continue with the example, one can imagine that the child’s success (Y )

not only depends on the parents’ educational level (X), but also on the

school type (Z). Graphically depicted, the model then is (X,Z)−→→Y ,

and the corresponding functional relationship is

(x, z) −→ Pr(Y =1 |X=x, Z=z) = E(Y |X=x, Z=z) (6)

In contrast to the simple model (1), effects of X can now be defined only

conditional on values of Z:

∆s(Y ;X [x′, x′′];Z=z) := (7)

E(Y |X=x′′, Z=z)− E(Y |X=x′, Z=z)
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Table 1 Fictitious data for the illustration.

x z y cases

0 0 0 600

0 0 1 600

0 1 0 240

0 1 1 560

1 0 0 40

1 0 1 160

1 1 0 80

1 1 1 720

Again, one can use a logit model as a parametric approximation to (6).

Including an interaction effect, the model is

E(Y |X=x, Z=z) ≈ F (α∗ + xβ∗

x + zβ∗

z + xzβ∗

xz) (8)

(Of course, since this model differs from (4), also the parameters must be

distinguished.) The parameterized effect then is

∆a(Y ;X [x′, x′′];Z=z) := (9)

F (α∗ + x′′β∗

x + zβ∗

z + x′′zβ∗

xz)− F (α∗ + x′β∗

x + zβ∗

z + x′zβ∗

xz)

To illustrate, I use the data shown in table 1. Y represents the child’s

success (Y = 1), X represents the parents’ educational level (0 low, 1

high), and Z represents the school type (0 or 1). Nonparametric estimates

can be derived directly from the observed frequencies as shown in the

following table:

x z E(Y |X=x,Z=z)

0 0 0.5

0 1 0.7

1 0 0.8

1 1 0.9

(10)

(Using the logit model (8) would result in identical estimates. Leaving out
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the interaction effect would lead to slightly different values.) One then

finds the effects:

∆s(Y ;X [0, 1];Z=0) = 0.8− 0.5 = 0.3 (11)

∆s(Y ;X [0, 1];Z=1) = 0.9− 0.7 = 0.2

showing how the effect of a difference in parents’ educational level depends

on the school type.

2 Parameters in Reduced Models

The parameters βx and β∗

x
cannot immediately be compared and must be

considered as belonging to different models. In order to stress this point,

I briefly criticize the idea that parameters in reduced models should be

viewed as ‘biased estimates’ of corresponding parameters in more compre-

hensive models. To illustrate the argument, I use an example taken from

Mood (2010: 71). The example assumes a correctly specified logit model

E(Y |X=x, Z=z) = F (xβx + zβz) (12)

Values of X and Z are taken from two independent standard normal dis-

tributions. Written with a latent variable, the model is

Yl := xβx + zβz + L (13)

where L is a random variable with a standard logistic distribution, defined

by Pr(L ≤ l) = F (l), implying that Yl ≥ 0 ⇐⇒ Y = 1 (based on the

symmetry of L).1 Mood uses this model with βx = 1 and three different

values for βz. I begin with assuming that also βz = 1.

One can then consider a model which omits Z. Taken as a standard

logit model, it can be written in terms of a latent variable as

Y r

l
:= xβr

x
+ L (14)

Estimating this model with simulated data, Mood finds βr
x
= 0.84, which

is obviously less than βx = 1, and concludes that the estimate is ‘clearly
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biased towards zero’ (p. 71).2 However, this statement presupposes that

(14) has the task to estimate βx as defined by (12), and this is at least

debatable.

Viewing (14) as a reduced version of (12), it provides estimates of

probabilities which have a clear and sensible meaning: they approximate

probabilities which are averages w.r.t. the (a presupposed) distribution of

the omitted variable. In the example, F (xβr
x) approximates

EZ(Pr(Y = 1 |X = x, Z)) :=

∫

F (xβx + zβz)φ(z) dz (15)

where φ(z) denotes the standard normal density function. This shows that

βr
x
is the correct parameter to be used when being interested in approxi-

mating the probabilities defined in (15). Instead intending to estimate βx

would not be sensible. In fact, knowing βx without also knowing βz would

be almost useless because F (xβx) provides a correct estimate only for the

special case where z = 0.

Note that the proposed interpretation of the reduced model (14) holds

independently of the size of βz . For example, assuming βz = 2, Mood finds

βr
x = 0.61, even smaller than 0.84, but F (xβr

x) is still an (actually very

good) approximation to the average w.r.t. the omitted variable as defined

in (15).

3 Comparing Effects Across Models

I now consider the question how to compare the effects of X across the

two models, (1) and (6).

3.1 Consideration of marginal effects

Obviously, an immediate comparison is not possible because in model (6)

effects also depend on values of Z. One therefore needs to define marginal

effects based on a reduced version of (6). This requires to think of Z as

a variable that has an associated distribution. Taking into account that

the distribution of Z could depend on values of X , one can start from the
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equation

E(Y |X=x) =
∑

z
E(Y |X=x, Z=z) Pr(Z=z |X=x) (16)

(Here I assume that Z is a discrete variable as it is the case in the school

example; if Z is continuous, as it is the case in Mood’s example, one would

use an integral instead of the sum.) The effect defined in (2) can then be

expressed as

∆s(Y ;X [x′, x′′]) =
∑

z
E(Y |X=x′′, Z=z) Pr(Z=z |X=x′′) (17)

−
∑

z
E(Y |X=x′, Z=z) Pr(Z=z |X=x′)

A simpler formulation is possible if Z is independent of X . The marginal

effect is then an average of the conditional effects:

∆s(Y ;X [x′, x′′]) =
∑

z
∆s(Y ;X [x′, x′′], Z=z) Pr(Z=z) (18)

Note, however, that even in this case the effect of X depends on the dis-

tribution of Z. To illustrate, I use Mood’s example where Z has a normal

distribution independent of X . Corresponding to (18) one finds the ap-

proximation

∆s(Y ;X [x′, x′′]) ≈

∫

(F (x′′βx + zβz)− F (x′βx + zβz))φ(z) dz

showing how effects of X also depend on the distribution of Z. For ex-

ample, assuming Z ∼ N (0, 1), one finds ∆s(Y ;X [0, 1]) ≈ 0.7 − 0.5 = 0.2,

but the effect will increase when the variance of Z becomes smaller and,

conversely, will decrease when the variance becomes larger.

3.2 Correlated explanatory variables

In social research, explanatory variables are most often correlated, and the

simple relationship (18) does not hold. A first problem then concerns how

to think of correlations between observed explanatory variables. A further

problem that will be deferred to a later section concerns possibly relevant

omitted variables which, presumably, are correlated with already included

explanatory variables.
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How to take into account correlations between observed explanatory

variables depends on the purpose of the model to be estimated. To facil-

itate the discussion, I now explicitly distinguish between exogenous and

endogenous variables of a model. Endogenous variables are stochastic

variables having conditional distributions which depend on values of other

variables of a model; such variables will be marked by a single dot. In

contrast, exogenous variables do not have a distribution and only serve to

formulate conditions; they will be marked by two dots.3

One purpose of a model could be to describe the relationship between

a dependent and several explanatory variables as found in a given data

set (and assumed to exist in a correspondingly defined population). Given

this purpose, one can ignore correlations between explanatory variables

and, assuming two such variables, refer to a model as follows:

(19)

Ẏ

Z̈

Ẍ --

�����*

����*

The model only concerns the dependency of the probability distribution

of Ẏ on values of the two explanatory variables and does not entail any-

thing about relationships between these variables. In other words, the

explanatory variables are treated as exogenous variables without associ-

ated distributions; and this entails that the model cannot be used to think

about correlations between these variables. Of course, the model can be

estimated also with data exhibiting correlations between the explanatory

variables. Think for example of the data in table 1 where the statistical

variables corresponding to Ẍ and Z̈ are correlated.

Another purpose of a model could be to investigate effects of variables

as defined in the first section. For example, one might be interested in

the question how the expectation of Ẏ (the child’s success) depends on a

change, or difference, in the variable Ẍ (the parents’ educational level).

Obviously, the model (19) cannot be used to answer this question because

the effect also depends on values of Z̈. The observation of correlations

between explanatory variables then leads to an important question: Can
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values of Z̈ be fixed when referring to the effect of a change in the value

of Ẍ?

Of course, given a function like (6), one can easily think of changes

in values of Ẍ, and consequently of effects of Ẍ, while holding Z̈ = z

fixed. However, in a more relevant understanding the question does not

concern possibilities to manipulate formulas, but the behavior of the social

processes which actually generate values of the variables represented in a

model (see Rohwer 2010: 82ff). In this understanding, the question moti-

vates to consider more comprehensive models which include assumptions

about relationships between explanatory variables.

There are several different possibilities. Here I briefly consider two.

The first one can be depicted as follows:

(20)
Ẏ

Ż

Ẍ --

??�����*

����*

Ẍ is still an exogenous variable, but Z̈ has now changed into an endogenous

stochastic variable, Ż. In addition to the function (6), there is now another

function

x −→ Pr(Ż=z | Ẍ=x) (21)

showing how the distribution of Ż depends on values of Ẍ. In our example,

based on the data in table 1, one finds Pr(Ż = 1 | Ẍ = 0) = 0.4 and

Pr(Ż = 1 | Ẍ = 1) = 0.8, showing how the child’s school type depends on

the parents’ educational level.

Given this model, a change in Ẍ entails a change in the distribution of

Ż. So it is not possible to fix Ż = z when considering an effect of Ẍ, and

this entails that effects of Ẍ and Ż cannot be separated.4 It follows that

one can only define a total effect of a change in Ẍ, and this total effect

equals the effect (17) which is derived from a reduced model resulting from

omitting Ż; in the example: ∆s(Ẏ ; Ẍ[0, 1]) ≈ 0.88− 0.53 = 0.3. In other

words, assuming the model (20), marginalization w.r.t. Ż is required in
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Table 2 Modification of the data in table 1.

x z y cases

0 0 0 257

0 0 1 257

0 1 0 360

0 1 1 840

1 0 0 17

1 0 1 69

1 1 0 120

1 1 1 1080

order to define the effect of interest.

The situation is less clear when considering a model in which the ex-

planatory variable of interest is endogenous, for example:

(22)
Ẏ

Z̈

Ẋ --

66
�����*

����*

While the model can well be used to define an effect of Z̈, there is no

straightforward answer to the question how to define an effect of a change

in Ẋ . One could fix Z̈ = z and nevertheless think of different values of Ẋ

to be used for the calculation of an effect; but such effects are conditional

on Z̈ = z and already available in the model (19). On the other hand,

without a distribution for Z̈, one cannot derive a marginal model. Think-

ing instead of a variable Ż that can be assumed to have a distribution, the

marginal effect of Ẋ depends on the actual choice. For example, deriving

the distribution of Ż from the data in table 1, one finds the marginal effect

0.3. Using instead the data in table 2 (which entail the same functional re-

lationships as specified in (22)), one finds 0.25. Given this model, it seems

best not to attempt to attribute to Ẋ a definite (context-independent)

effect.
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3.3 Continuing with Mood’s example

For further illustration of correlated explanatory variables I use a modi-

fication of Mood’s example in which values of Ẍ and Z̈ are taken from a

bivariate normal distribution with correlation ρ 6= 0. One can again con-

sider the reduced model (14). For example, assuming ρ = 0.5, one finds

βr
x = 1.32, now larger than βx = 1 (this also shows that omitting a variable

not always leads to an ‘attenuated parameter’). As I have argued above,

this is not a ‘biased estimate’ of βx, but must be viewed as a parameter

of the reduced model (14). In this understanding, βr
x
can be used to cal-

culate a sensible approximation to the marginal expectation (16). In the

example, E(Ẏ |Ẍ = 0) ≈ F (0) = 0.5, and E(Ẏ |Ẍ = 1) ≈ F (1.32) = 0.79.

These values could be used to calculate the effect ∆s(Ẏ ; Ẍ[0, 1]) ≈

0.79−0.5 = 0.29, obviously larger than the value 0.2 that was calculated for

Mood’s original model with uncorrelated explanatory variables. In order

to understand the difference, one needs an extended model that allows

one to interpret the correlation between the two explanatory variables. I

consider model (20) which is based on the assumption that the distribution

of Ż depends on values of Ẍ. In the example, the conditional density of Ż,

given Ẍ = x, is a normal density φ(z;µ, σ) with µ = xρ and σ =
√

1− ρ2,

entailing that Ẍ and Ż are connected by a linear regression function.

This allows an easy interpretation of the effect. For example, if the

value of Ẍ changes from 0 to 1, this entails a change in the mean value of

Ż from 0 to ρ, and, if ρ > 0, the effect becomes larger compared with a

situation where ρ = 0. In any case, assuming that Ż depends on Ẍ allows

one to attribute the total effect to the change in Ẍ.

3.4 Comparing variables across models

Neither parameters nor effects can directly be compared across models.

It is well possible, however, to compare the role played by explanatory

variables. For example, one can compare the role played by Ẍ across

the models (4) and (8). One can begin with a look at the estimated

parameters. Using the data in table 1, one finds β̂x = 1.67 and β̂∗

x = 1.39.
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Table 3 Modification of the data in table 1.

x z y cases

0 0 0 400

0 0 1 600

0 1 0 100

0 1 1 400

1 0 0 200

1 0 1 300

1 1 0 200

1 1 1 800

This does not show, however, that Ẍ is ‘less important’ when one ‘controls

for’ values of Z̈. The total effect of Ẍ is essentially identical in both

models (differences only result from the parameterization of the models).

Of course, the enlarged model provides an opportunity to think of this

total effect in a more refined way.

Even if, by including a further variable, a parameter becomes zero

one cannot conclude that the corresponding variable has no effect. To

illustrate, I use the data in table 3. Using these data to estimate (4) and

(8), one finds β̂x = 0.32 and β̂∗

x = 0. This shows that the effect of Ẍ,

conditional on values of Z̈, is zero. There nevertheless is a relevant total

effect of Ẍ , namely ∆s(Ẏ ; Ẍ[0, 1]) ≈ 0.73− 0.67 = 0.06.

How to interpret this effect depends on assumptions about the rela-

tionship between Ẍ and Z̈. In our example, assuming that the choice of

a school type depends on the parents’ educational level, one would use

model (20). The total effect of Ẍ can then be explained by the difference

in the probabilities Pr(Ż=1|Ẍ=0) = 1/3 and Pr(Ż=1|Ẍ=1) = 2/3.

3.5 Unobserved Heterogeneity

So far, I have assumed observed explanatory variables. Further questions

concern ‘unobserved heterogeneity’. I take this expression to mean that
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there are further unobserved explanatory variables that should be included

in a model. So the question arises how the model would change if these

additional variables would have been included. A reliable answer is obvi-

ously not possible, but a few remarks can be derived from the foregoing

discussion.

As before I only consider logit models and begin with assuming that

the interest concerns conditional expectations,

E(Ẏ |Ẍ = x) ≈ F (α+ xβx) (23)

When hypothetically adding a further explanatory variable, say Z̈, one

gets a more comprehensive model. However, in order to think of (23) as a

reduced version of that model, one needs to think of Z̈ as a variable Ż that

can be assumed to have a distribution (given, e.g., by values of Z̈ if such

values could be observed). Equation (16) then shows that E(Ẏ |Ẍ = x) can

be viewed as a mean value w.r.t. the distribution of Ż; and consequently

F (α+ xβx) can be viewed as an approximation to this mean value. As an

illustration remember Mood’s example. Not having observed Z̈, one can

estimate only the reduced model (14), but this model correctly provides

an approximation to the expectation defined in (15). As shown by (16),

this remains true when Ż is correlated with Ẍ .

The situation is more complicated when the interest concerns effects as

defined in (2). First assume that the hypothetically included unobserved

variable Ż is independent of the variable Ẍ . As shown by (18), the effect

derived from the reduced model can then be viewed as a mean of effects

which additionally condition on value of Ż. Of course, the not observed

effects ∆s(Ẏ ; Ẍ[x′, x′′], Ż = z) can have quite different, even positive and

negative, values. For example, one can easily modify the data in table 1

to get conditional expectations as follows:

x z E(Ẏ | Ẍ=x, Z̈=z)

0 0 0.7

0 1 0.8

1 0 0.6

1 1 0.9
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entailing effects ∆s(Ẏ ; Ẍ[0, 1]; Z̈ = 0) = −0.1 and ∆s(Ẏ ; Ẍ [0, 1]; Z̈ = 1) =

0.1. The observed effect is then positive if Pr(Ż = 1) > 0.5 and negative

otherwise.

When the omitted variable is correlated with observed explanatory

variables a critical question concerns the sources of the correlation. To

conceive of the observed effect of Ẍ as a total effect requires the presup-

position of a model in which the omitted variables functionally depends

on Ẍ. Otherwise, as I have argued above, no easy interpretation of the

observed effect seems possible.
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Notes

1It is often said that the variance of the latent variable Yl is ‘not identi-

fied’ (e.g., Allison 1999, Cramer 2007). This is true in the following sense:

When starting from a regression model Yl = xβx+zβz+ǫ with an arbitrary

residual variable ǫ, and observations (values of Y ) only provide informa-

tion about the sign of Yl, the variance of this variable cannot be estimated.

The statement is misleading, however, when the latent variable is derived

from a logit model. If Yl is defined by (13), a variance of Yl does exist only

conditional on values of the explanatory variables, and is already known

from the model’s definition: Var(Yl|X=x, Z=z) = Var(L) = π2/3.

2For similar views see Allison (1999), Cramer (2007), Wooldridge

(2002: 470).

3For a discussion of functional models based on this notation see Rohwer

(2010).

4It is not even possible to clearly separate a direct and an indirect effect,

see Rohwer (2010: 68f).
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