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1 Introduction

I refer to a competence test, Tm, consisting of m binary items. The items

are represented by variables, X1, . . . , Xm, having values 1 (if there is a

correct answer) or 0 (otherwise). Values of these variables for the members

of a population (or sample) P are given by vectors xi = (xi1, . . . , xim), the

sum score is denoted si :=
∑

j xij ; i identifies members of P .

A standard approach to the estimation of individual abilities w.r.t.

Tm uses the Rasch model. This model postulates item parameters δ =

(δ1, . . . , δm), and for each person i a parameter θi, which together deter-

mine probabilities

πR
ij := Pr(Xj = 1 | θi, δj) := L(θi − δj) (1)

where L(x) := exp(x)/(1 + exp(x)), for person i’s correctly answering to

item j. A problem with this approach concerns the interpretation of these

probabilities. How to understand, for example, that a person can correctly

solve a mathematical task with a probability 0.2, or 0.4, or 0.6?

In this paper I consider an alternative approach which defines response

probabilities πij by a reference to a distinction between ‘knowing’ and ‘not

knowing’ (and possibly guessing) the correct answer to an item. By in-

troducing interval-valued response probabilities, this approach also allows

one to express the idea that a person’s ability to correctly solving items

is, to some degree, a vague notion.

In Section 2 I introduce the approach for tests containing items which

cannot be solved by guessing. In Section 3 I discuss multiple-choice (MC)

items, and in Section 4 I compare the approach with the Rasch model.

2 Ability measures representing ‘knowledge’

2.1 Abilities and probabilities. I start from assuming that the interest

concerns the degree to which a person can correctly solve the items of a

test. The following approach is based on presupposing fixed values

cij =

{

1 if person i is able to solve item j

0 otherwise
(2)
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However, the ordinary meaning of ‘a person is able to solve an item’ is to

some extent vague and does not entail that the person can do so regardless

of the circumstances. I therefore translate cij = 1 into ‘person i can solve

item j with a high probability’, formally:

πij = Pr(Xj = 1 | cij = 1) ≥ 1− α (3)

where α specifies the degree of indeterminacy, e.g., α = 0.1.

On the other hand, the specification of a person’s not being able to

correctly solve an item depends on the kind of item. If the item cannot be

solved by guessing, then

πij = Pr(Xj = 1 | cij = 0) = 0 (4)

If it is a multiple-choice (MC) item with aj alternatives, different as-

sumptions about how a person can guess a correct answer are possible.

I distinguish between random guessing and informed guessing. If random

guessing, then

πij = Pr(Xj = 1 | cij = 0) = 1/aj (5)

Informed guessing is understood as random guessing based on a reduced

number of alternatives (due to previously setting apart alternatives be-

lieved to be wrong). The guessing probability can then be assumed to be

in the interval

πij = Pr(Xj = 1 | cij = 0) ∈ [ 1/aj, 1/2 ] (6)

To allow for a uniform notation,1 I use πij ∈ Iij with

Iij := [ 1−α, 1 ] (7)

if person i is able to solve item j; and otherwise

Iij :=



















[ 0, 0 ] if a correct answer cannot be guessed

[ 1/aj, 1/aj ] MC item, random guessing

[ 1/aj, 1/2 ] MC item, informed guessing

(8)

1[ a, b ] where a ≤ b is used to denote the interval of all real numbers between a and b

including the endpoints.
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2.2 A summary measure of abilities. In order to characterize a per-

son’s abilities w.r.t. the test Tm, one can use

sci :=
∑

j
cij (9)

that is, the number of items the person can correctly solve. The task then

is to estimate sci from an observation si. This requires to consider sci as

the value of a random variable, say Sc
i , allowing one to use Bayes’ rule:

Pr(Sc
i =sc |Si=si) =

Pr(Si=si |S
c
i =sc) Pr(Sc

i =sc)
∑m

s=0 Pr(Si=si |Sc
i =s) Pr(Sc

i =s)
(10)

for sc = 0, . . . ,m. With prior probabilities Pr(Sc
i = sc) = 1/(m+ 1), the

expression simplifies to

Pr(Sc
i = sc |Si=si) =

Pr(Si=si |S
c
i = sc)

∑m

s=0 Pr(Si=si |Sc
i = s)

(11)

Consideration of MC items will be postponed to Section 3. Here I consider

constructed response items which cannot be solved by guessing. Note that

this entails si ≤ sc. Let p ∈ [ 1−α, 1 ]. Then

Pr(Si = s |Sc
i = sc; p) =

(

sc

s

)

ps (1−p)s
c
−s (12)

and

Pr(Sc
i = sc |Si=si; p) =

(

sc

si

)

psi (1−p)s
c
−si

m
∑

s=si

(

s

si

)

psi (1−p)s−si

(13)

The expectation is

E(Sc
i |Si=si; p) =

m
∑

s=si

s

(

s

si

)

psi (1−p)s−si

m
∑

s=si

(

s

si

)

psi (1−p)s−si

(14)
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For p ∈ [ 1−α, 1 ], this is a monotonically decreasing function of p, and

therefore2

E(Sc
i |Si=si) = (15)

⋃

p∈[1−α,1]

E(Sc
i |Si=si; p) =

[

si ,

m
∑

s=si

s

(

s

si

)

(1−α)si αs−si

m
∑

s=si

(

s

si

)

(1−α)si αs−si

]

For example, if m = 11 and α = 0.1, one finds the following intervals:

si E(Sc
i |Si = si) si E(Sc

i |Si = si)

0 [ 0.0, 0.11 ] 6 [ 6.0, 6.77 ]

1 [ 1.0, 1.22 ] 7 [ 7.0, 7.87 ]

2 [ 2.0, 2.33 ] 8 [ 8.0, 8.91 ]

3 [ 3.0, 3.44 ] 9 [ 9.0, 9.82 ]

4 [ 4.0, 4.56 ] 10 [ 10.0, 10.52 ]

5 [ 5.0, 5.67 ] 11 [ 11.0, 11.00 ]

(16)

These intervals reflect both an estimation error and the indeterminacy due

to the definition of the abilities to solve items.

2.3 Illustration with artificial data. To illustrate, I consider a test

with m = 11 non-MC items. The number of persons who can solve sc

items is set to 100 (| 6.5− | 5.5− sc | |), sc = 1, . . . , 10, altogether n = 4000

cases. Then, given sci , it is assumed that cij = 1 for j ≤ sci and cij = 0

otherwise. Data are generated as follows: If cij = 1, πij is drawn from a

uniform distribution in the interval [ 1−α, 1 ]; if cij = 0, πij is set to 0.

Then, using random numbers rij which are uniformly distributed in [ 0, 1 ],

xij = 1 if rij ≤ πij , and xij = 0 otherwise. Finally, one can calculate

si =
∑

j xij and the intervals defined in (15).

In Figure 1, the solid line shows the cumulative distribution function

(CDF) of the presupposed values sci . Also shown is the interval-valued

CDF of the estimated expectations.3

2The expression (12) will be taken to be 1 if p = 1 and s = sc.

3Given intervals [ ai, bi ] for i = 1, . . . , n, the interval-valued CDF is defined as the
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0
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1

Fig. 1 CDF of the values sci (solid line) and an interval-valued CDF of the

estimated expectations based on 11 non-MC items.

Since the expectations E(Sc
i |Si=si) are intended to provide informa-

tion about the theoretically postulated values sci , one can consider mea-

surement errors

max {|sci − E(Sc
i |Si=si)|} (17)

that is, the maximal difference between sci and a value in the estimated

interval. For example, if a person has sci = 5 and the observed sum score

is si = 4, the estimated expectation is [ 4.0, 4.56 ] and the measurement

error is 1. A CDF of these measurement errors is shown in Figure 2. Note

that one can make use of the condition si ≤ sci when interpreting the

measurement errors.

2.4 Expectations of sum scores. As an alternative, or complement,

to the measure sci , one can refer to mean values (expectations) of sum

scores in hypothetical replications of the test. Two somewhat different

understandings of such replications are possible.

(a) In the first understanding there are fixed probabilities πij ∈ Iij which

do not change over the replications. Then, for each possible choice of these

function F (x) = [ ax, bx ] where ax :=
∑

i I[ bi ≤ x ]/n and bx :=
∑

i I[ ai ≤ x ]/n.

I[. . .] denotes the indicator function.
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Fig. 2 CDF of the measurement errors defined in (17).

probabilities, there is a well-defined random variable, Si, representing the

sum scores, and this variable has a generalized binomial distribution

Pr(Si = s) =
∑

x∈Ds

m
∏

j=1

π
xj

ij (1− πij)
1−xj (18)

where Ds denotes the set of response patterns x = (x1, . . . , xm) with
∑

j xj = s. So one can refer to the expectation of Si,

E(Si) =

m
∑

j=1

πij (19)

and use this as a summary measure of a person’s ability for solving the

items of the test Tm.

(b) In the second understanding, the probabilities πij can change over

replications. While one cannot immediately refer to expectations, one can

well think that the interest concerns the mean value of the sum scores in

a large number, say K, of hypothetical replications of the test. Let

S
(k)
i :=

∑

j
X

(k)
ij (20)

denote person i’s sum score in the kth replication. For each item j, X
(k)
ij

has a binomial distribution with π
(k)
ij ∈ Iij . So one can assume that the

8

number of correct responses to item j is contained in the interval K times

Iij with a very high probability. Consequently,

EK(Si) :=
1

K

∑

k
S
(k)
i =

∑

j

1

K

∑

k
X

(k)
ij ∈a Ii :=

∑

j
Iij (21)

where ∈a means ‘contained in (with a very high probability, depending on

K)’. For example, if K = 1000, the probability is almost zero that EK(Si)

is not in the interval Ii.
4

In order to represent the idea that a person’s ability is to some ex-

tent a vague notion, the second understanding seems preferable. In any

case, if a test only contains non-MC items, the postulated interval for the

expectation of sum scores is sci [ 1−α, 1 ]. This suggests to use the estimates

E(Sc
i |Si=si) [ 1−α, 1 ] (22)

For example, if m = 11 and the observed sum score is si = 4, the estimated

expectation of Sc
i is [ 4.0, 4.56 ] and, with α = 0.1, the estimated interval

for the expectation of the sum score is

[ 4.0, 4.56 ] [ 0.9, 1 ] = [ 3.6, 4.56 ] (23)

3 Tests with multiple-choice items

In this section I consider the approach introduced in the previous section

for tests consisting of MC items.

3.1 Estimation of the summary measure. I first consider random

guessing. To ease the application of the estimation approach described in

4Consider the following experiment where m = 20, α = 0.1 and K = 1000. Let sci be

given. If cij = 1, randomly draw π
(k)
ij from [ 1−α, 1 ] based on a uniform distribution.

Then draw a random number r
(k)
ij uniformly distributed in [ 0, 1 ] and set x

(k)
ij = 1 if

r
(k)
ij ≤ π

(k)
ij , and zero otherwise. Set s

(k)
i =

∑

jx
(k)
ij and check whether

∑

k
s
(k)
i /K ∈ Ii

Even when replicating this experiment 1000 times for each possible value of sci , I did

not find one case where this condition was not true.
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Subsection 2.2, I assume that the guessing probability is the same for all

MC items, say γ = 1/aj. The condition si ≤ sci no longer holds. However,

without loss of generality one can assume that person i is able to solve

items j = 1, . . . , sci . Then, in order to find the probability of Si = s

conditional on Sc
i = sc, one can consider all response patterns with a sum

score s = sa + sb where sa (that is, the number of items the person can

solve) is contained in the set

Ds,sc := {sa | max{0, sc + s−m} ≤ sa ≤ min{s, sc} } (24)

Let p ∈ [ 1−α, 1 ]. Then

Pr(Si = s |Sc
i = sc; p) = (25)

∑

sa∈Ds,sc

(

sc

sa

)

psa (1−p)s
c
−sa

(

m−sc

s−sa

)

γs−sa (1−γ)m−sc−s+sa

So one can apply formula (11) and derive the expectation

E(Sc
i |Si=si; p) =

m
∑

s=0

sPr(Si = si |S
c
i =s; p)

m
∑

s=0

Pr(Si = si |S
c
i =s; p)

(26)

For p ∈ [ 1−α, 1 ], this is a monotone function of p, and one can find

interval-valued expectations

E(Sc
i |Si=si) =

⋃

p∈[1−α,1]

E(Sc
i |Si=si; p) (27)

For example, if m = 11, γ = 0.25 and α = 0.1, one finds the following

intervals:

si E(Sc
i |Si = si) si E(Sc

i |Si = si)

0 [ 0.00, 0.15 ] 6 [ 4.08, 4.86 ]

1 [ 0.27, 0.46 ] 7 [ 5.35, 6.30 ]

2 [ 0.65, 0.90 ] 8 [ 6.67, 7.73 ]

3 [ 1.19, 1.53 ] 9 [ 8.00, 8.99 ]

4 [ 1.95, 2.40 ] 10 [ 9.33, 9.96 ]

5 [ 2.92, 3.52 ] 11 [ 10.62, 10.67 ]

(28)

10

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

observed si

E(Sc
i |Si = si)

MC items

non-MC items

Fig. 3 Illustration of the intervals shown in (16) for non-MC items and in (28)

for MC items.

As illustrated in Figure 3, these intervals are quite different from the esti-

mates based on non-MC items in (16).

3.2 Illustration with artificial data. To illustrate, I create artificial

data as described in Subsection 2.3; the only difference is that the 11 items

are know assumed to have an MC format with four alternatives (γ = 0.25).

As shown in Figure 4, the presupposed distribution of the sci values (the

same as in Figure 1) can well be estimated. However, the measurement

errors, as defined in (17), are much greater when using MC items. This is

illustrated in Figure 5.

3.3 Expectations of sum scores. As discussed in Subsection 2.4, one

can also consider intervals for the expectation of sum scores, now defined

by

sci [ 1−α, 1 ] + (m− sci) [ γ, γ ] (29)

Obviously, expectations of sum scores no longer reflect the ability measured

by the number of items a person is able to solve (sci ).

Corresponding to (29), in order to estimate an interval for expectations
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Fig. 4 CDF of the values sci (solid line) and an interval-valued CDF of the

estimated expectations based on 11 MC items.

0 1 2 3
0

0.5

1

Fig. 5 CDF of the measurement errors defined in (17) for MC items (solid)

and non-MC items (dashed, already shown in Figure 2).

of sum scores, one can use

E(Sc
i |Si=si) [ 1−α, 1 ] + γ ([m,m ]− E(Sc

i |Si=si) ) (30)

For example, if a person has sci = 5 and the observed sum score is si = 6,

the estimated expectation is [ 4.08, 4.86 ], and with α = 0.1, the estimated

interval for the expectation of the sum score is

[ 4.08, 4.86 ] [ 0.9, 1 ]+ 0.25 ([ 11, 11 ]− [ 4.08, 4.86 ]) = [ 5.21, 6.59 ]

12

3.4 Informed guessing. I now consider informed guessing. Response

probabilities can then take any value in the interval [ γ, 1/2 ]. Instead of

(25), one has to use

Pr(Si = s |Sc
i = sc; p, q) = (31)

∑

sa∈Ds,sc

(

sc

sa

)

psa (1−p)s
c
−sa

(

m− sc

s− sa

)

qs−sa (1− q)m−sc−s+sa

where p ∈ [ 1−α, 1 ] and q ∈ [ γ, 1/2 ]. An interval-valued expectation is

then defined by

E(Sc
i |Si=si) =

⋃

p ∈ [1−α, 1]

q ∈ [γ, 1/2]

E(Sc
i |Si=si; p, q) (32)

For example, if m = 11, γ = 0.25 and α = 0.1, one finds the following

intervals:

si E(Sc
i |Si = si) si E(Sc

i |Si = si)

0 [ 0.00, 0.25 ] 6 [ 2.21, 4.86 ]

1 [ 0.15, 0.46 ] 7 [ 3.20, 6.30 ]

2 [ 0.35, 0.90 ] 8 [ 4.52, 7.73 ]

3 [ 0.62, 1.53 ] 9 [ 6.16, 8.99 ]

4 [ 0.99, 2.40 ] 10 [ 8.03, 9.96 ]

5 [ 1.50, 3.52 ] 11 [ 9.76, 10.67 ]

(33)

Compared with (28), the intervals are much broader, reflecting the greater

indeterminacy.

4 Comparison with the Rasch model

In this section I compare the approach introduced in the two previous

sections with the Rasch model. To illustrate the discussion, I use data

on math competencies from the first wave of cohort 3 (5th grade) of the

NEPS.5 The test consists of 23 binary items and one item having a partial

5This paper uses data from the National Educational Panel Study (NEPS): Starting

Cohort 3–5th Grade, doi:10.5157/NEPS:SC3:2.0.0. From 2008 to 2013, NEPS data
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credit format (see Duchhardt and Gerdes, 2012); 11 of the binary items

require a short construction, 12 have a multiple-choice format. I use the

following items for 5194 persons who have at least one valid answer.

j non-MC MC

1 Mag5q291 c Mag5d041 c

2 Mag5q292 c Mag5v271 c

3 Mag5q231 c Mag5r171 c

4 Mag5q301 c Mag5d051 c

5 Mag5q221 c Mag5d052 c

6 Mag5q14s c Mag5q121 c

7 Mag5q131 c Mag5r101 c

8 Mag5d02s c Mag5r201 c

9 Mag5d023 c Mag5r251 c

10 Mag5v024 c Mag5v071 c

11 Mag5v321 c Mag5r191 c

(34)

All MC items have four alternatives so that the guessing probability is

γ = 0.25.

One has to decide how to evaluate missing answers. While missing

answers to non-MC items can sensibly be evaluated as wrong answers,

this seems not appropriate for MC items which in any case could have

been answered simply by guessing. I therefore use a random generator to

substitute missing answers by correct answers with probability 1/4 and

wrong answers with probability 3/4.6

were collected as part of the Framework Programme for the Promotion of Empirical

Educational Research funded by the German Federal Ministry of Education and Re-

search (BMBF). As of 2014, the NEPS survey is carried out by the Leibniz Institute for

Educational Trajectories (LIfBi) at the University of Bamberg in cooperation with a

nationwide network. For a general description see Blossfeld, Roßbach and von Maurice

(eds., 2011).

6This procedure is intended to eliminate, as far as it is possible, differences in the

guessing behavior of the test takers. As remarked by Lord (1964), this procedure

increases measurement errors in the sense of statistical variance. The procedure seems

nevertheless appropriate when the goal is to assess abilities in the sense of knowledge,

in contrast to modeling the behavior of the test takers in the given circumstances.

14

4.1 Item-specific response probabilities. The most relevant differ-

ence between the two approaches concerns the item-specific probabilities

of correct answers, πij . The notions of these probabilities introduced in

Subsection 2.1 can be interpreted as representing a person’s ability to pro-

vide a correct answer to an item. In general, however, this interpretation

is not sensible for the probabilities πR
ij postulated by the Rasch model. ML

estimation of the Rasch model entails the equation

m
∑

j=1

L(θ̂i − δ̂j) = si (35)

All persons who belong to a score group Ps (that is, all persons with the

sum score s) get the same value of θ̂, say θ̂s.
7 Consequently, all members

of a score group also get the same probabilities

π̂R
sj = L(θ̂s − δ̂j) (37)

For the 11 non-MC items, based on item parameters estimated with a con-

ditional maximum likelihood (CML) method, using the constraint
∑

j δj =

7For s = 0 and s = m, the equation has no solution. One could use instead weighted

maximum likelihood estimates (WLEs) proposed by Warm (1989). This proposal con-

cerns the second step, after the item parameters have been calculated. For the estima-

tion of person parameters Warm proposes to use the weighted likelihood function

Lw :=
n
∏

i=1

m
∏

j=1

exp(θwi − δ̂j)
xij

1 + exp(θwi − δ̂j)
w(ci)

where the weights are defined by

w(ci) :=
(

m
∑

j=1

exp(θwi − δ̂j)

(1 + exp(θwi − δ̂j))2

)1/2

Maximizing this likelihood entails the equation

m
∑

j=1

eij −

∑m
j=1 eij (1− eij) (1− 2 eij)

2
∑m

j=1 eij (1− eij)
=

m
∑

j=1

xij (36)

where

eij :=
exp(θwi − δ̂j)

1 + exp(θwi − δ̂j)

WLEs θ̂wi are found by solving (36) instead of (35).
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Table 1

s θ̂ws θ̂s π̂R
s,1 π̂R

s,2 π̂R
s,3 π̂R

s,4 π̂R
s,5 π̂R

s,6 π̂R
s,7 π̂R

s,8 π̂R
s,9 π̂R

s,10 π̂R
s,11

0 -3.57

1 -2.31 -2.65 0.11 0.09 0.02 0.03 0.23 0.07 0.15 0.20 0.06 0.04 0.01

2 -1.63 -1.78 0.23 0.19 0.05 0.06 0.41 0.14 0.29 0.37 0.13 0.08 0.03

3 -1.10 -1.18 0.35 0.30 0.09 0.10 0.56 0.24 0.42 0.52 0.22 0.14 0.06

4 -0.64 -0.68 0.47 0.41 0.14 0.16 0.68 0.34 0.55 0.64 0.31 0.21 0.10

5 -0.22 -0.23 0.59 0.53 0.20 0.23 0.77 0.44 0.66 0.74 0.42 0.29 0.14

6 0.20 0.22 0.69 0.64 0.28 0.31 0.84 0.55 0.75 0.81 0.53 0.39 0.21

7 0.63 0.67 0.78 0.73 0.38 0.42 0.89 0.66 0.83 0.87 0.64 0.51 0.29

8 1.09 1.18 0.85 0.82 0.51 0.54 0.93 0.76 0.89 0.92 0.74 0.63 0.40

9 1.63 1.78 0.91 0.89 0.65 0.69 0.96 0.86 0.93 0.95 0.84 0.76 0.55

10 2.32 2.66 0.96 0.95 0.82 0.84 0.98 0.93 0.97 0.98 0.93 0.88 0.75

11 3.59

δ̂j -0.58 -0.34 1.15 1.00 -1.42 0.00 -0.88 -1.26 0.11 0.65 1.57

0, these probabilities are shown in the columns labelled j = 1, . . . , 11 of

Table 1. The table also shows the estimated item parameters, δ̂j, and the

estimates θ̂s and θ̂ws .

How are these probabilities to be interpreted? There are two reasons

why π̂R
ij should not be interpreted as person i’s probability of a correct

answer to item j. First, these estimates only depend on the person’s sum

score, si, and do not take into account how the person has answered to

item j. Second, in most cases it would be difficult to understand the value

of π̂R
ij as representing a person’s probability of solving a particular item.

Consider, for example, a person in the score group s = 4. For item j = 7,

the estimated probability is 0.55, but what could it mean that this person

can solve item 7 with this probability?

The fact that the probabilities π̂R
sj are identical for all members of the

score group Ps suggests to interpret these estimates as reflecting the mean

behavior of the members of the group; formally:

for all i ∈ Ps : π̂R
ij = π̂R

sj =
1

ns

∑

i∈Ps

π̂R
ij ≈ qsj :=

1

ns

∑

i∈Ps

xij (38)

where ns is the number of persons in Ps. This suggests to interpret π̂R
ij
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Fig. 6 Comparison of π̂R
sj and qsj for j = 7 and s = 1, . . . , 10.

as an estimate of the proportion of persons in the score group to which i

belongs who can correctly solve item j; and this is conceptually different

from person i’s probability of correctly solving that item.

The idea that (38) should be approximately valid is often considered as

a starting point for goodness-of-fit tests of the Rasch model. For example,

one can graphically compare π̂R
sj and qsj . This is illustrated in Figure 6 for

j = 7 and s = 1, . . . , 10. However, such considerations do not relate to the

response probabilities of individual persons which cannot be investigated

with data from only a single test.

4.2 Processes generating responses. The approach introduced in Sec-

tion 2 starts from presupposing parameters, cij , representing item-specific

abilities. In contrast, the Rasch model presupposes parameters represent-

ing the difficulty of items and a single further parameter for each person.

This allows defining the response probabilities πR
ij which describe the sup-

posed process generating responses.

However, as I have argued in the previous subsection, estimates of πR
ij

should not be interpreted as describing how individual persons generate

responses. In this subsection, I use an example in order to show that the
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fit of a Rasch model can be compatible with the approach introduced in

Section 2 and therefore is not a sufficient argument for interpreting πR
ij as

the response probability of person i.

I consider an example withm = 9 items and n = 4000 persons. In order

to create a distribution of cij values, I start from values dj = 0.1 j. For

each person i and item j, cij = 1 if rij ≥ dj , where rij is a random number

uniformly distributed in [ 0, 1 ]. The values cij are then used to calculate

item difficulties d∗j := 1
n

∑n

i=1 I[cij = 0] which represent the abilities

of the persons in the population considered. Using values transformed

to a logit scale, δ∗j := log(d∗j/(1 − d∗j )), one can consider the function

h∗(θ) :=
∑

jL(θ−δ∗j ). Then, for each value sc = 0, 1, . . . ,m, one can define

a corresponding value θ∗(sc) := h∗−1(sc). The following table shows the

result.

j d∗j δ∗j sc θ∗(sc)

1 0.11 −2.13 1 −2.64
2 0.20 −1.36 2 −1.65
3 0.29 −0.89 3 −0.92
4 0.40 −0.39 4 −0.29
5 0.50 0.01 5 0.32
6 0.61 0.44 6 0.95
7 0.71 0.90 7 1.68
8 0.79 1.35 8 2.68
9 0.90 2.21

(39)

Based on these values, Figure 7 shows the ICCs (item characteristic curves)

L(θ − δ∗j ), and Figure 8 shows the TCC (test characteristic curve) h∗(θ).

I now use the values cij to generate responses xij in the following way

(α = 0.1): If cij = 1, πij is drawn from a uniform distribution in the

interval [ 1−α, 1 ]; otherwise, if cij = 0, πij is set to 0. Then, using random

numbers rij which are uniformly distributed in [ 0, 1 ], xij = 1 if rij ≤ πij ,

and xij = 0 otherwise. Finally, the data xij are used to fit a Rasch model

(CML estimation).

Figure 9 shows the estimated ICCs and proportions of correct answers

in the score groups. Obviously, the Rasch model provides a good fit,
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Fig. 7 The functions L(θ − δ∗j ) and values of θ∗(sc), based on Table (39).
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Fig. 8 The function h∗(θ) and values of θ∗(sc), based on Table (39).

although the responses are generated according to

Pr(Xj = 1 | cij)

{

∈ [ 1− α, 1 ] if cij = 1

= 0 if cij = 0
(40)
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Fig. 9 Estimated ICCs (δ̂j) and observed proportions P(Xj = 1 |S = s) for

s = 1, . . . , 8 and j = 1, . . . , 9.

One can conclude that the fit of a Rasch model is not a sufficient basis for

arguments about the processes which lead from persons’ abilities to their

responses to the items of a test (also see Garćıa-Pérez, 1999).

4.3 Variability of ability estimates. What can be said about the vari-

ability of ability estimates across successive tests? With data from only

a single test an evidence-based answer is not possible. Instead, one has

to refer to hypothetical replications which presuppose a particular model,

including the assumptions about the processes generating the individual

responses (see Subsection 4.2) which cannot be tested with data from a

single test.

I begin with the Rasch model. Person i’s ability as postulated by the

Rasch model is θi. Given item parameters δj (which are defined by the
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reference to a particular population), postulating a value θi is equivalent

with postulating probabilities πR
ij as defined in (1). So one can consider

a variable SR
i , representing sum scores in hypothetical replications, whose

distribution is defined by (18) where πij is substituted by πR
ij . The expec-

tation is

E(SR
i ) =

m
∑

j=1

πR
ij = h(θi) (41)

where

h(θ) :=
m
∑

j=1

L(θ − δj) (42)

is the test characteristic curve (TCC). This shows that, if the item pa-

rameters are viewed as fixed by the reference to a population, θi and

E(SR
i ) = h(θi) are equivalent representations of a person’s competence. In

the following, I first consider estimates of E(SR
i ); variances of estimates of

θi will be considered in the next Subsection.

As shown by (35), ML estimates of E(SR
i ) are given by si. Thus, the

variance of these estimates is simply V(SR
i ). An estimate of this variance

can be derived from estimated response probabilities:

V̂(SR
i ) =

m
∑

j=1

π̂R
ij (1− π̂R

ij) (43)

To illustrate, I use the 11 non-MC items of the math test. The dashed

line in Figure 10 shows the function si −→ V̂(SR
i ).8 Obviously, the vari-

ability of the ability estimates is highest in the middle region of the ability

spectrum.

I now consider the approach introduced in Section 2. If values of Sc
i

were known, one could refer to interval-valued variances. Depending on

the kind of items, the intervals are

V(Si |S
c
i = sci ) = sci [ 0, α (1− α) ] (44)

8Given item parameters resulting from CML estimation, this function is calculated by

the following steps: si −→ θ̂i −→ π̂ij −→ V̂(SR
i ).
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Fig. 10 Based on the 11 non-MC items of the math test, the dashed line

shows the function si −→ V̂(SR
i ) for si = 1, . . . , 10. The grey-shaded area

shows how the intervals V(Si |S
c
i = sci ), defined in (44), depend on sci = 0, . . . , 11.

for non-MC items, and

V(Si |S
c
i = sci ) = sci [ 0, α (1− α) ] + (m− sci ) (γ (1− γ)) (45)

for MC items. In Figure 10, the grey-shaded area illustrates how the in-

tervals for non-MC items depend on sci = 0, . . . , 11. Due to the definition

of response probabilities representing knowledge, these variances are, in

general, much smaller than those entailed by the Rasch model. Since the

lower limits of the ability estimates E(Sc
i |Si = si) equal si, also the vari-

ability of these estimates is relatively small (see also the argument about

measurement errors in Subsection 2.3). On the other hand, as immedi-

ately seen by (45), MC items heavily increase the variances of sum scores,

and consequently the variances of the derived ability estimates (see Sub-

section 3.1).

4.4 Transformation to a logit scale. As shown by (41), θi can be

considered as a transformation of the expectation of SR
i to a logit scale.

The standard approach to assess the variability of estimates of θi uses

the framework of ML estimation. When using CML estimation, one can
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proceed in two steps. In a first step, one estimates item parameters δ̂j .

Then, with these parameters fixed, one can consider for each person i a

likelihood

Li(θi) =

m
∏

j=1

exp(θi − δ̂j)
xij

1 + exp(θi − δ̂j)
(46)

It seems possible, then, to calculate an estimate of the variance of the MLE

θ̂i by

V̂(θ̂i) =
(

−
∂2 log(Li(θi))

∂ θ2i

)−1

θi=θ̂i

=
1

∑

j π̂
R
ij (1− π̂R

ij)
(47)

However, the usual interpretation which requires asymptotic considera-

tions is not applicable because the number of random variables Xij is

fixed by the test Tm.

As an alternative, one can make use of the fact that, given item pa-

rameters δ̂j , there is a deterministic relationship θ̂i = ĥ−1(si) with ĥ(θ) :=
∑

j L(θ − δ̂j).
9 So one can derive an estimate of the variance of θ̂i from

an estimate of the variance of SR
i . The delta method provides a simple

approximation. If θ̂i = g(SR
i ), then

V(θ̂i) ≈ V(SR
i )

[

g′(E(SR
i ))]2 (48)

where g′ denotes the derivative of g. Using g(s) = ĥ−1(θ), one finds

g′(s) =
(

ĥ′(θ)
)−1

=
(

∑

j
L(θ − δ̂j) [1− L(θ − δ̂j)]

)−1
(49)

Since E(SR
i ) is estimated by si, g(E(S

R
i )) = g(si) = ĥ−1(θ̂i), and therefore

g′(s) =
(

∑

j
π̂R
ij (1− π̂R

ij)
)−1

(50)

Finally, inserting this into (48) and using (43), one finds

V̂(θ̂i) ≈
(

∑

j
π̂R
ij (1− π̂R

ij)
)−1

(51)

which equals the ML estimate of the variance of θ̂i.

9As before, I refer to ML estimates of θi. Similar considerations are possible when

referring to weighted ML estimates as proposed by Warm (1989).
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Fig. 11 Based on the 11 non-MC items of the math test, for si = 1, . . . , 10

and θ̂i = ĥ−1(si), the solid line shows the estimated variance V̂(θ̂i) and the

dashed line shows the estimated variance of the corresponding sum score variable.

To illustrate I use again the 11 non-MC items of the math test. The

solid line in Figure 11 shows how the estimated variance V̂(θ̂i) depends

on θ̂i = ĥ−1(si), for si = 1, . . . , 10. The dashed line shows the estimated

variance of the corresponding sum score variable SR
i . Obviously, compared

with V̂(SR
i ), the dependence of V̂(θ̂i) is reversed. However, this is simply

a consequence of the logit transformation which is used for defining θi.

4.5 The Rasch model and MC items. A measure of competence

should inform about a person’s ability to correctly solve items, and this

is different from being able to guess correct answers. Therefore, when a

test contains MC items, one needs an approach to distinguishing ‘know-

ing’ and ‘guessing’. Since the approach introduced in Section 2 starts from

quantities cij defined by a reference to ‘knowing’, the summary measure

sci can well be interpreted as a measure of a person’s ‘knowing’. As shown

in Subsection 3.3, when a test contains MC items, there clearly is a differ-

ence between this measure of competence and a reference to expectations

of sum scores. In contrast, the Rasch model does not distinguish between
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Fig. 12 An ICC centered at 0.16, and proportions of persons who have cor-

rectly answered the non-MC item j = 9 (solid) and the MC item j = 11 (dashed).

non-MC and MC items. This has several consequences.

(a) Ability measures estimated with a Rasch model must be interpreted as

reflecting abilities to provide correct answers irrespective of whether these

answers result from ‘knowing’ or from ‘guessing’.10

(b) In regions of low capabilities, item characteristic curves (ICC) will

often provide only a poor fit. To illustrate, I estimate a Rasch model with

all 22 items of the math test (again CML,
∑

j δ̂j = 0). Estimation results

indicate that the non-MC item j = 11 and the MC item j = 12 have

almost the same difficulty (estimated item parameters are 0.13 and 0.19,

respectively). Figure 12 shows an ICC centered at 0.16, and proportions

of persons who have correctly answered to these items in the score groups

s = 1, . . . , 21. The solid lines relate to the non-MC item, the dashed lines

relate to the MC item.

(c) A further consequence concerns the interpretation of the estimated

10It does not follow that the Rasch model is not compatible with guessing as it is

sometimes claimed (e.g., Andrich and Marais, 2014). It simply means that the assessed

competence is a mixture of knowing and guessing.
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Rasch probabilities π̂R
ij . As argued above, these relate to score groups

(SG), not to individual persons. These score groups result from the actual

outcomes of the test. If the test contains MC items, membership in a score

group also depends on whether a person was lucky or not in guessing a

correct answer (and by the random guessing that was used to substitute

missing answers). So there is a further problem for the interpretation

of the estimated Rasch probabilities π̂R
ij . These estimates not only do not

characterize individual persons, they also do not relate to groups of persons

defined by similar abilities.

(d) It is questionable whether non-MC and MC items fit a common Rasch

model. One can check this with a test proposed by Martin-Löf (Verhelst,

2001; Bartolucci, 2007). For the math test, one has to estimate three

Rasch models, one for the m1 = 11 non-MC items, one for the m2 = 11

MC items, and one common model for the set of m = m1+m2 = 22 items.

CML estimation provides the following log-likelihoods:

11 non-MC items log(L1) = −20648.7

11 MC items log(L2) = −21293.6

joint model log(L0) = −49468.1

The test statistic is

−2 log
( L0

∏m

s=0(ns/n)
ns

L1L2

∏m1

r=0

∏m2

s=0(nrs/n)
nrs

)

(52)

where ns is the number of persons with a sum score s in the joint test, nrs

is the number of persons with sum score r in the first test and sum score

s in the second test (shown in Table 2), and n = 5194 is the total number

of persons. If the joint model fits both sets of items, the test statistic

(52) asymptotically follows a χ2 distribution with m1 m2 − 1 degrees of

freedom.11 In our example, the test statistics has the value 303.1, and

11The null hypothesis is that a Rasch model fits the data. Since this model can be

estimated with CML, the likelihood is

n
∏

i=1

Pr(X1 = xi1, . . . ,Xm = xim |S = si)
n
∏

i=1

Pr(S = si)
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Table 2 Number of persons with r correct non-MC items and s correct MC

items.

s= 0 1 2 3 4 5 6 7 8 9 10 11

r= 0 2 16 20 22 17 7 4 2 0 0 0 0

1 4 13 36 46 45 25 17 4 2 0 0 0

2 2 27 31 74 63 49 33 15 5 0 0 0

3 3 13 42 83 69 64 52 30 10 6 1 0

4 2 14 30 71 90 92 91 56 27 10 1 0

5 0 6 26 54 99 112 125 88 63 19 4 2

6 0 4 18 41 82 120 124 134 87 49 9 3

7 0 3 6 25 53 106 133 175 121 85 24 6

8 0 0 5 16 26 69 105 110 165 111 45 10

9 0 0 1 2 13 48 69 118 135 123 61 23

10 0 0 0 3 2 11 29 55 77 86 56 34

11 0 0 0 0 1 2 7 13 20 31 44 24

with 120 degrees of freedom this is highly improbable. So one should

conclude that a Rasch model does not fit both sets of items.

4.6 Using a modified Rasch model? Can a distinction between ‘know-

ing’ and ‘guessing’ also be made with the Rasch model? In the following, I

consider a proposal made by Keats (1974) and White (1976), also discussed

by Weitzman (1996). The proposal consists of two parts.

a) Knowing the correct answer to an item is defined as ‘one can give

the correct answer with probability 1’; and not knowing the correct

answer is assumed to entail guessing which is defined as giving the

correct answer with probability γj := 1/aj (aj being the number of

The first product is equal to the conditional likelihood L0; the second product can be

estimated by
∏m

s=0(ns/n)ns , so there are 2m − 1 degrees of freedom. The likelihood

for the alternative hypothesis is

n
∏

i=1

Pr(X1 = xi1, . . . ,Xm = xim |S1 = si1, S2 = si2)
m
∏

i=1

Pr(S1 = si1, S2 = si2)

The first product is equal to the product of the conditional likelihoods L1 L2; the second

product can be estimated by
∏m1

r=0

∏m2

s=0(nrs/n)nrs , so there are m1 m2 + 2m − 2

degrees of freedom.
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alternatives). Obviously, this equals the proposal made in Subsec-

tion 2.1 with α = 0, and I therefore use again the variables Cij to

represent ‘knowledge’.

b) It is assumed that one can sensibly think of the probability that a

person knows the correct answer to an item, and it is proposed that

this probability can be modeled by a Rasch model:

Pr(Cij = 1) = L(θi − δj) (53)

The proposal entails:

Pr(Xj = 1 | θi, δj) = (54)

Pr(Xj = 1 | Cij = 1)Pr(Cij = 1 | θi, δj) +

Pr(Xj = 1 | Cij = 0)Pr(Cij = 0 | θi, δj) =

L(θi − δj) + γj (1 − L(θi − δj)) =
exp(θi − δj) + γj
1 + exp(θi − δj)

If one further assumes local independence, one arrives at a ‘generalized’

Rasch model that allows one to estimate θi and δj , and consequently the

probabilities Pr(Cij = 1 | θi, δj).

To illustrate this approach I use the 11 MC items of the math test. For

this application, the likelihood function of the model is

L(θi, δj) =
n
∏

i=1

m
∏

j=1

(exp(θi − δj) + γ)xij (1− γ)1−xij

1 + exp(θi − δj)
(55)

where γ = 0.25. Conditional ML estimation is no longer possible; I there-

fore use a marginal likelihood as proposed by Bock and Aitkin (1981). In

parallel to (55), a marginal likelihood function can be written as

L∗(δj) =

n
∏

i=1

∫

u

m
∏

j=1

(exp(u− δj) + γ)xij (1− γ)1−xij

1 + exp(u− δj)
f(u) du (56)

where f(u) is a presupposed density function of the quantities θi in a given

population. To ease calculations, I specify f(u) as a standard normal

density function.
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Fig. 13 Comparison of item parameters of 11 MC items of the math test and

item difficulties dj .

Item parameters are estimated with the constraint
∑

j δ̂j = 0. Fig-

ure 13 shows how the relationship between item parameters and item dif-

ficulties, defined by

dj :=
1

n

n
∑

i=1

I[xij = 0] (57)

has changed between a Rasch model with γ = 0 and the modified model

with γ = 0.25.

In order to find estimates of the parameters θi, one can start from the

likelihood function (55). Maximization of this function entails the first-

order condition

s∗i :=
∑

j
xij

exp(θi − δj)

exp(θi − δj) + γ
=

∑

j

exp(θi − δj)

1 + exp(θi − δj)
(58)

This is similar to (35), but instead of the observed sum score si one now

uses the score s∗i which is downscaled by the guessing probability γ.

Employing this equation, using estimates of δj resulting from the MML

approach (56), one can try to find solutions θ̂i. However, as a consequence

of the downscaling, also for persons with a sum score 0 < s < 11 there
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is not always a solution. The following table shows the number of cases

where the equation cannot be solved.

observed number cases with observed number cases with
sum score of cases no solution sum score of cases no solution

0 13 13 6 789 5

1 96 38 7 800 2

2 215 46 8 712 0

3 437 33 9 520 0

4 560 20 10 245 0

5 705 10 11 102 102

For 269 of the 5194 persons one cannot find a value of θ̂i.
12,13

For the remaining 4925 persons, due to the additional parameter γ, the

modified model will provide a better overall fit. However, the fit of the

modified ICCs will not always be better. To illustrate, I consider MC item

j = 2. Figure 14 shows the ICC from the Rasch model with γ = 0. The ver-

tical lines indicate the proportion of correct answers to this item for score

groups s = 1, . . . , 10. Figure 15 shows the ICC for the same item from the

modified model with γ = 0.25. There is no longer a one-to-one correspon-

dence between score groups and values of θ̂i. I therefore partitioned the

abscissa into 14 intervals (cut points are: −4.25,−3.75, . . . , 1.25, 1.75), and

then calculated the proportion of correct answers in each of these intervals.

Looking at these figures, one can well imagine models with more flex-

ible ICCs providing a better fit.14 However, the main reason for intro-

12Instead of the parameters θi, researchers starting from estimating item parameters

with a marginal likelihood function often use so-called EAP values (mean values of the

distribution f(u) conditional on a person’s observed test results), see e.g. Kubinger and

Draxler (2007). For a critical discussion see Rohwer (2015).

13When estimating the modified model for all 22 math items, it turns out that at least

one correct answer to a non-MC item is sufficient for there being a solution of (58) for

persons with a sum score 0 < s < 22.

14This could be achieved with a 3PL model, or a reduced version of the 3PL proposed

by Kubinger and Draxler (2007), or a generalized version proposed by Andrich et al.

(2012). For a discussion of problems of estimation and interpretation of the 3PL model

see Maris (2002), Han (2012), Garćıa-Pérez (1999), San Martin et al. (2015).

30

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

Fig. 14 ICC for MC item j = 2 from the model with γ = 0. The vertical

lines indicate the proportion of correct answers to this item for score groups

s = 1, . . . , 10.
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Fig. 15 ICC for MC item j = 2 from the model with γ = 0.25. The vertical

lines indicate the proportion of correct answers to this item in 14 intervals on

the abscissa.

ducing the modified model was not to achieve a better fit, but to provide

measures of competence which in a sense correct for guessing. Does the

model achieve this goal? In order to interpret the parameters θi, one

has to understand the probabilities Pr(Cij = 1 | θi, δj). These probabil-

ities cannot be understood as relating to individual persons. Consider

the following example where Pr(Cij = 1 | θ = 0.41, δj = 0) = 0.6 so that

Pr(Xj=1 | θ=0.41, δj=0)=0.70.
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This cannot be true for any particular person because the model presup-

poses that

Pr(Xj = 1) =

{

1 if cij = 1

γ otherwise
(59)

How to deal with this incoherence?

(a) In order to avoid the problem one can drop the assumption (53) and

consider values of Cij as parameters whose sum, sci =
∑

j cij , is to be

estimated. Probabilities for values of Cij are then understood in an epis-

temic sense, expressing our only partial knowledge about a person’s abil-

ity. In this way, as was done in Section 2, one can understand probabilistic

statements about values of ΣjCij as quantifying an epistemic expectation

about the number of items a person can correctly solve. This approach

also allows one to avoid the implausible assumption α = 0.

(b) A second way out of the problem tries to reconcile (53) with consider-

ing values of Cij as parameters which cannot change during hypothetical

replications of the test. The basic idea is to assume that the population,

P , consists of subpopulations Pθ so that θi = θ for all members i ∈ Pθ.

One can then think of a process generating responses in the following way:

(1) In an initial step, values of Cij are generated according to (53).

(2) Given values of Cij , values of Xj are generated according to (59).

In this set-up, Pr(Xj = 1 | θi, δj) relates to the subpopulation to which

person i belongs. For example, Pr(Xj = 1 | θi, δj) = 0.7 means that ap-

proximately 70% of the members of Pθi correctly answer to item j. In the
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same way, one has to interpret Pr(Cij = 1 | θi, δj) as relating to Pθi . For

example, Pr(Cij = 1 | θi, δj) = 0.6 means that approximately 60% of the

members of Pθi are able (have the knowledge) to correctly answer to item

j. Consequently, the variable S̃c
i :=

∑

j Cij is the same for all members of

Pθi and has a generalized binomial distribution with expectation

E(S̃c
i | θi, δ) =

∑

j
Pr(Cij = 1 | θi, δj) (60)

This expectation must not be confused with the expectation E(Sc
i |Si = si)

considered in Sections 2 and 3 which is an epistemic expectation for a par-

ticular parameter sci postulated for a particular person i. In contrast, the

expectation (60) concerns a random variable S̃c
i whose values are assumed

to be generated by a random process modeled by (53).
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