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Abstract. The article discusses how to think of the causal effect of a treat-

ment X , realized at age t, on an outcome variable Y , whose values only

exist if an individual survives at least until t+δ. As a framework, the arti-

cle uses stochastic potential outcomes defined for generic individuals which

are defined by values of variables, without using an identifying name. The

article conceives of ‘the cause’ of Y as a generating process that begins

with the treatment but temporally extends until, possibly, the variable Y

takes a particular value. In contrast to Rubin’s proposal to condition on a

‘principal stratum’ of ‘potential survivors’, the article argues that effects

defined conditional on actual surviving can well be given a causal inter-

pretation.
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1 Introduction

I refer to a population of individuals, U . The variable X denotes a treat-

ment, realized at age t, which can take two possible values (0 or 1). Z is a

vector of pre-treatment variables characterizing the individuals in U . The

interest concerns effects of X on a variable Y , taking values at t+ δ in the

domain Y. However, a value of Y only comes into being if an individual

survives at least until t+ δ. This is recorded by a binary variable D, with

D = 1 if the individual died between t and t + δ, and otherwise D = 0.

I consider the question of how to conceptualize a causal effect of X on Y

that takes into account that values of Y only exist conditional on D = 0.

Since D = 0 is a necessary condition for values of Y to exist, it is not a

mediator variable in the usual sense, which presupposes that Y is defined

for all possible values of the mediator variable. So it would be misleading
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to refer to a diagram

(Z,X) −→ Y
ց

D
ր (1)

because, if D = 0, there cannot be an arrow leading from (Z,X) to Y .

The distinction between a direct and an indirect effect of X is therefore of

no use in the present application.

In order to cope with this difficulty I propose to think of outcomes as

processes which consist in generating a value of D and, if D = 0, also a

value of Y . This will be further discussed in Section 2. In Section 3 I

introduce a notion of ‘potential outcomes’ which considers such outcomes

as values of random variables. In Section 4 I consider the question of how

to understand effects of X on Y conditional on D = 0. I criticize Rubin’s

proposal that one should condition on variables intended to represent ‘po-

tential surviving’, instead of D. In order to suggest a causal interpretation,

I consider (Z,X,D) as a process which, possibly, generates values of Y . I

then discuss how to understand a corresponding causal claim. The paper

ends with a brief conclusion.

2 Outcomes as processes

I propose to think of effects of X by referring to processes which are

initiated by this variable’s taking a particular value. These processes take

place in a context given by a value of Z and consist in two steps: the

variable D takes a particular value, and then, if this is zero, also the

variable Y takes a particular value.

In order to represent these processes, I use an extended version of Y ,

denoted by Y ∗, which can take values in Y∗ := Y ∪ {∗}. Restricted to Y,

Y ∗ = Y ; in addition, Y ∗ = ∗ means that a value of Y does not exist. For

each individual i ∈ U , the observed outcome can be described as a process

(di, y
∗

i
), where di and y∗

i
are i’s values of D and Y ∗, respectively.

One can now start from a joint distribution of D and Y ∗, conditional

on values of X and Z. Respecting the temporal ordering, this joint distri-
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bution can be expressed as

Pr(D=d, Y ∗=y∗ |X=x, Z=z) = (2)

Pr(D=d |X=x, Z=z) Pr(Y ∗=y∗ |D=d,X=x, Z=z)

Since Pr(Y ∗ = ∗ |D= d,X = x, Z = z) = d is known in advance, the joint

distribution can be derived from knowing

Pr(D=0 |X=x, Z=z) (3)

and

Pr(Y =y |D=0, X=x, Z=z) := Pr(Y ∗=y |D=0, X=x, Z=z) (4)

Note that this is a definition of a conditional distribution for Y .

3 Potential outcomes

In order to discuss causal interpretations it has been proposed to refer,

for each individual i ∈ U , to ‘potential outcomes’ resulting from X=0 or

X = 1, respectively (e.g. Rubin 2000; 2006). Here I follow this proposal

but conceive of potential outcomes as random variables.

The most often used notion of potential outcomes is deterministic and,

for the present application, can be described by the diagram

I −→ (D,Y ∗)

X
ր (5)

where I is a variable whose values are identifiers of the individuals in U .

It is assumed that the relationship is deterministic entailing the existence

of a function

(di, y
∗

i
) = h(i, xi) (6)

Note that an explicit reference to Z is not required because I = i deter-

ministically entails Z = zi.

In this paper I use a stochastic notion of potential outcomes. Instead

of a reference to identifiable individuals, the basic reference is to generic
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individuals which are defined by values of variables, without using an iden-

tifying name. (5) is replaced by

Z −→ (D,Y ∗)

X
ր (7)

and the relationship is described by a conditional probability distribution

as already given in (2). Following this approach, potential outcomes can

be defined as random variables. For example, one can define a random

variable for potential surviving, Dz(x), whose distribution is defined by

Pr(Dz(x) = d) := Pr(D=d |X=x, Z=z) (8)

Note the distinction between potential outcomes, which are random vari-

ables, and possible outcomes, which are values of such random variables.

Each potential outcome can be described by a probability distribution for

a set of possible outcomes. However, since potential outcomes are dis-

tinguished by values of variables, one cannot define joint distributions of

potential outcomes. For example, since X cannot simultaneously take the

values 0 and 1, there is no joint distribution of Dz(0) and Dz(1).

I now follow the idea to think of causal effects as quantities informing

about aspects of a comparison between two potential outcomes for ‘the

same individual’ (e.g. Rubin, 2005). In a deterministic approach, one

would have to compare potential outcomes for an identifiable individual,

which is impossible. Following the stochastic approach, one has to compare

potential outcomes for generic individuals defined by values of Z, and

this is possible. In the present application, the comparison concerns the

potential outcomes

(D,Y ∗)z(0) and (D,Y ∗)z(1)

which result from the two possible treatments. A complete characteriza-

tion would require to describe the corresponding probability distributions

separately. For simplification, one can separately refer to the two terms

on the right-hand side of (2). In order to characterize a difference between

the two versions of the first term one could use the quantity

∆D(z) := Pr(D=0 |X=1, Z=z)− Pr(D=0 |X=0, Z=z) (9)
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describing the effect of X on the probability of surviving. With respect

to the second term on the right-hand side of (2) one can use (4), and a

further simplification is then possible by only considering expectations of

Y . Some information is then given by

∆Y (z) := (10)

E(Y |D=0, X=1, Z=z)− E(Y |D=0, X=0, Z=z)

Of course, even both quantities together only provide partial information

about the whole effect that shows up in the dependence of the joint dis-

tribution of D and Y ∗ on X , given the context Z = z.

4 Interpreting effects on Y

While the meaning of ∆D(z) is easily understood, it is not obvious how to

understand ∆Y (z). In this section I first consider an argument, made in

particular by Rubin (2000; 2006), that ∆Y (z) should not be understood as

a causal effect. I then propose a causal interpretation.

Principal stratification

Rubin’s main critique is that, if one conditions on D = 0, one does not

compare potential outcomes for a common set of individuals (Rubin, 2006).

The argument is based on assuming the existence of variables D̃x, for

x=0, 1, having values

d̃x
i
:=

{

0 if individual i would survive at least until t+ δ if xi = x

1 otherwise

Rubin claims that to think of a causal effect of X on Y is only sensible

for individuals belonging to a ‘principal stratum’ defined by Uc := {i ∈

U | d̃0
i
= d̃1

i
= 0}, that is, individuals who would survive, and therefore

have values of Y , regardless of their treatment. He then suggests that a

causal effect should be defined by

∆Y

c (z) :=E(Y | D̃0=D̃1=0, X=1, Z=z)− (11)

E(Y | D̃0=D̃1=0, X=0, Z=z)

that is, restricted to the ‘principal stratum’ Uc.
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There are two difficulties. First, values of D̃x cannot be observed, and

one would need questionable assumptions for the identification of mem-

bership in Uc (e.g., Zhang and Rubin, 2003; Egleston et al., 2007; Lee

et al., 2010; Ding et al., 2011). Therefore, quantities defined conditional

on these variables do not have clear empirical applications. Second, these

variables presuppose that an individual’s survival status at t+ δ is deter-

mined already at time t when the treatment is generated. In fact, since

Rubin requires that a random assignment of treatments makes X and D̃x

independent (conditional on values of Z), one has to assume that an in-

dividual’s survival status at t + δ is determined already before the time

when the treatment, on which survival depends, is generated. Assuming

the existence of these variables is therefore not compatible with the view

that values of D result from a contingent process following the treatment.

(For additional critique, and further references, see Dawid and Didelez,

2012.)

Following the stochastic conception of potential outcomes introduced

in Section 3, variables like D̃x cannot be defined. One would have to use

stochastic potential outcomes, Dz(x), whose distributions are defined by

(8). The expressionDz(x) = d is to be used for referring to a possible state

of affairs whose realization can be assigned a probability. On the other

hand, values of variables to be used as conditions in a conditional prob-

ability statement must be understood as (hypothetically) realized facts.

Using Dz(x) = 0 as a condition has therefore no clear meaning. It might

be interpreted as meaning that there is a positive probability for surviv-

ing; but then the condition will be true for all members of U (presupposing

treatments that will not deterministically entail death).

Causes as generating processes

I now return to the question of how to understand ∆Y (z). Interpretations

require a reference to the process generating values of Y . This process

begins with the generation of a value of X , in a context given by a value of

Z, and includes all further events which possibly happen afterwards until

t + δ and are causally relevant for the coming into existence of values of

Y . The simple set-up considered here takes into account just one of these
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events, namely surviving. So one can use the diagram

(Z,X,D) −→ Y ∗ (12)

The cause of Y ∗ is conceptualized as a generating process. Potential out-

comes will be denoted by Y ∗

z
(x, d), having distributions

Pr(Y ∗

z (x, d) = y) := Pr(Y ∗=y |D=d,X=x, Z=z) (13)

There are now four potential outcomes for each generic individual, depend-

ing on x and d.

∆Y (z) can be understood as characterizing a comparison of two of

these potential outcomes, namely Y ∗

z (0, 0) and Y ∗

z (1, 0). So it agrees to

the demand that a causal effect should be defined by a reference to two

potential outcomes for the same generic individual.

Further demands are less clear. Adherents to a potential outcomes ap-

proach often require that variables representing presumed causes should be

independent of the potential outcomes (e.g. Rubin, 2008). Our presumed

cause is the generating process (Z,X,D), and since

Pr(Y ∗

z
(x, d) = y,X=x′, D=d′, Z=z)

equals Pr(Y ∗

z (x, d) = y) if x = x′ and d = d′, and is zero (or undefined)

otherwise, this requirement of independence is trivially fulfilled (or sense-

less) and therefore of no value when potential outcomes are conceptualized

as random variables. (Even in the case of deterministically conceptual-

ized potential outcomes, the meaning of the independence requirement is

obscure. Greenland, Robins and Pearl (1999, p. 42) have suggested the

following interpretation (where yi0, . . . , yiK is their notation for potential

outcomes): “[T]he analyst must be prepared to treat yi0, . . . , yiK as pa-

rameters unaffected by treatment assignment. Treatment assignment only

determines which of these K + 1 parameters we observe [that is, the real-

ization of Yi (Rubin, 1974, 1978, 1991)]; the other K parameters remain

latent traits of individual i.” It seems not possible to reconcile this in-

terpretation with the ordinary understanding that treatments are events

contributing to the generation of new facts.)

Another idea is that the variable representing the treatment should be
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independent of all other variables which are causally relevant for the out-

come. This requirement is, however, ambiguous when the treatment is con-

sidered as an integral part of a generating process. One could require that

the variable representing the treatment is independent of all pre-treatment

variables, but one cannot demand this for variables which temporally fol-

low the treatment in the generating process. In the present application,

since X is assumed to be causally relevant for D, these variables cannot be

independent (regardless of whether values of X are randomly assigned). It

seems obvious, however, that this is not required for justifying the claim

that the generating process, (Z,X,D), is causally relevant for Y ∗.

Almost always there are at least some components of Z which are

causally relevant also for D. It follows that the generating subprocess,

(X,D), cannot be independent of Z, even if values of X are randomly as-

signed. However, since Z is explicitly considered as an essential part of the

complete generating process, (Z,X,D), this dependence is no hindrance

to a causal interpretation of the complete process, or of the subprocess

conditional on values of Z.

Unobserved covariates

There is, however, a further difficulty. The cited requirement refers to ‘all

other variables’ which are causally relevant for the outcome, and one most

often has to assume that some of these variables are not observed and

therefore not part of Z. So let V denote a vector of further unobserved

pre-treatment variables assumed to be causally relevant for D and Y ∗. As

in (10), one can condition on values of Z and V resulting in conditional

effects ∆Y (z, v). These effects cannot be estimated, but one can think of

a mean effect

∆̄Y (z) :=
∑

v
∆Y (z, v) Pr(V = v) (14)

where Pr(V = v) denotes an unknown distribution, realized before t. Note

that this mean effect depends on the presupposed distribution of V if

∆Y (z, v) depends on v.

In general, ∆̄Y (z) 6= ∆Y (z). This is an immediate consequence of the

fact that V is assumed to be causally relevant for D and therefore cannot

be independent of (Z,X,D). Note that this cannot be avoided by a random
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assignment of treatments since even then V and D will still be dependent.

So the question arises how to interpret the quantity ∆Y (z) which can be

estimated.

One possibility is to consider ∆Y (z) as a biased estimate of ∆̄Y (z). At

first sight, this seems to follow from the requirement that ‘average causal

effects’ should be conceptualized as averages of ‘individual causal effects’

(e.g. Rubin, 2005; Little and Rubin, 2000). This requirement is ambiguous,

however, because it depends on a reference to ‘individuals’.

In our framework, ‘individuals’ must be considered as generic individ-

uals. Having introduced the variables Z and V , generic individuals can

be distinguished according to values of these variables. An average of ‘in-

dividual effects’ is then given, for example, by ∆̄Y (z). However, if V is

not observed, it is not possible to use values of V to distinguish between

individuals. Instead, generic individuals can only be defined by a reference

to Z, and all individuals with Z = z are considered as exchangeably rep-

resenting the generic individual z. Consequently, one can interpret ∆Y (z)

either as a generic effect or, equivalently, as an average of individual effects

which are identical for all individuals with Z = z.

The argument is not meant to say that one can simply ignore un-

observed causally relevant covariates; it is meant to suggest a somewhat

different view of the problem. Note again that randomization of X does

not make ∆Y (z) an unbiased estimate of ∆̄Y (z). In fact, if V is assumed to

represent all variables which, in addition to Z, could be causally relevant

for D and Y , there is no way to estimate ∆̄Y (z), and this quantity is to be

considered as a pure theoretical fiction. Characterizing ∆Y (z) as a biased

estimate of ∆̄Y (z) is therefore not a useful critique. Instead, one should

look for identifiable particular covariates which could be made observable

and then included in order to establish more detailed causal insights.

5 Conclusion

I have considered how to think of the causal effect of a treatment X ,

realized at age t, on an outcome variable Y , whose values only exist if

an individual survives at least until t + δ. As a framework, I have used

stochastic potential outcomes defined for generic individuals which are
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defined by values of variables, without using an identifying name. I have

discussed two complementary approaches. The first approach is based on

conceiving of a treatment, X = x, as the starting point of a process which

first generates surviving, or death, and, if surviving, also a value of Y . This

allows one to define measures of effect which characterize a comparison of

such processes.

As a complementary approach, I have conceived of ‘the cause’ of Y as a

generating process that begins with the treatment but temporally extends

until, possibly, the variable Y takes a particular value. In contrast to Ru-

bin’s proposal to condition on a ‘principal stratum’ of ‘potential survivors’,

I have argued that effects defined conditional on actual surviving can well

be given a causal interpretation.

As part of the argument, I have discussed how to think of unobserved

covariates which are, presumably, causally relevant both for surviving and

Y . I have argued that, although marginal effects can then be distinguished

from averages of conditional effects, also marginal effects can be considered

as causal effects for generic individuals defined on the basis of observable

variables.

Note that the reference to generic, instead of identifiable, individuals is

a consequence of a probabilistic approach to causal effects. Since a treat-

ment can be applied at most once to each particular individual, it would

not make sense to use probability distributions of outcomes conditional

on I = i (instead of values of proper variables). This is no hindrance

to probabilistically predict causal effects for a particular individual, say

i∗. However, such predictions must be based on knowing i∗’s value of the

variables on which the causal effect depends. In the present application,

knowing the individual’s value of Z, say zi∗ , one could use ∆D(zi∗) and

∆Y (zi∗). In order to criticize such predictions one would not only need to

know more nuanced causal effects, as e.g. ∆D(z, v) and ∆Y (z, v); but also

i∗’s values of Z and V .
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