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Summary. The paper considers a version of the question of how to define

treatment and control groups in a dynamic setting where treatments can

occur at any time (but only once). The version considered presupposes that

treatments as well as outcomes can be conceptualized as events occurring in

temporal locations of a discrete time axis. It is proposed to think of effects

as being dependent on both the time when and the time since the treatment

occurred. The paper develops corresponding definitions of treatment and

control groups, and proposes a notion of ‘comprehensive treatment effect’

that takes into account how treatment and control groups are generated.

Based on this notion, the paper discusses causal interpretations which do

not presuppose a potential outcomes framework.

Keywords: Treatment group; control group; effect shape; comprehensive

treatment effect; causal interpretation

1 Introduction

Thinking about effects of some specified factor often proceeds by compar-

ing a treatment and a control group. The treatment group consists of units

exposed to the factor, the control group consists of units not exposed to the

factor. The comparison concerns the distributions of an outcome variable

in the two groups. A quantity derived from the two distributions, often

the difference between their mean values, is then taken as a measure of the

effect.
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While the basic idea is straightforward, difficulties can arise in a dy-

namic setting. These difficulties concern the definition of a control group.

Assume that the treatment is defined by experiencing a specific kind of

event. So one can define a treatment group as a set of units who experi-

enced the treatment in a specified temporal location, say tc. But how to

define a control group? Some authors have proposed that a control group

should consist of all units who did not experience the treatment until, and

including, tc + δ. But how to choose δ? Sianesi (2004) has proposed to

choose δ = 0 if one is interested in the contrast between experiencing the

treatment ‘now’ and ‘waiting’ (see also Fitzenberger et al., 2013; Fredriks-

son & Johansson, 2008). In contrast, Kohler et al. (2012) have used a

relatively large value of δ, and Brand & Xie (2007) proposed a ‘composite

of counterfactuals’ based on a reference to several values of δ.

In this paper, I start from hazard functions which allow defining effects

in a temporally local way and therefore avoid fixing δ at some particular

value. This approach conforms to thinking of ‘causation’ as a relationship

between an event, or a temporally locatable state, and probabilities of

subsequent ‘outcomes’ whose specification depends on the interest of a

researcher.

In Section 2 I define time-dependent effect shapes which compare haz-

ard functions for treated and not treated units in a temporally local way,

and I contrast this approach with Sianesi’s proposal. In Section 3 I consider

‘temporally extended effects’ which concern event probabilities in an ex-

tended time interval after the treatment, and I show that such effects can

suggest wrong interpretations due to competing risks. In Section 4 I discuss

how effects defined by a comparison of treated and not treated units can be

given a causal interpretation without presupposing a potential outcomes

framework. This means that I avoid postulating the existence of variables

representing counterfactual quantities, and I do not presuppose joint prob-

ability distributions for such variables. Instead, I only use definitions based

on observable variables. I propose a notion of ‘comprehensive treatment

effect’ which does not require an actual or fictitious random assignment of

treatments and can therefore be used, in particular, to understand effects

of self-selected treatments. Section 5 concludes.
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2 Temporally local effects

I consider a situation which basically has the following structure:

E0
✲ E1

Ec

��✒

There is a specified event, E0, whose occurrence creates the situation σ0

in which E1 events, which may be of different type, can occur. While this

situation endures (= until the occurrence of an E1 event), an event Ec,

subsequently called ‘the treatment’, might occur, and we are interested in

the effects of this event on the probabilities of E1 events.

As an example, one can think of consensual unions. The event E0 = 1

is defined as the beginning of a consensual union. The outcome event

describes how the union ends: in a marriage (E1 = 1), in a separation

(E1 = 2) or through the death of one of the partners (E1 = 3). The

question is how the probability of a marriage depends on the occurrence

of a pregnancy (Ec = 1).1

In order to refer to events, I presuppose a discrete time axis, T :=

{0, 1, 2, . . .}, measuring time since the occurrence of E0 (so the calendar

time of the occurrence of E0 is not used in subsequent considerations).

Elements of T will be called ‘temporal locations’ (e.g. days, months or

years). E1 events will be represented by a duration variable (T1, E1) where

E1 ∈ {1, . . . ,m1} specifies the type of the event and T1 ∈ T records the

temporal location in which the event occurs. For Ec it suffices to use a du-

ration variable, Tc, recording the temporal location in which the treatment

occurs (Tc = ∞ if a treatment never occurs).

I assume that the interest focusses on the occurrence of an eventE1 = j.

As will be shown in sections 3 and 4, it is nevertheless important to take

into account competing risks as assumed by the domain of E1. One can

begin with a hazard function

r1j (tc, d) := Pr(T1= tc + d,E1=j |T1 ≥ tc + d, Tc= tc) (1)

This is the probability of E1=j occurring at tc + d, conditional on having

experienced the treatment at tc and still being in the situation σ0 at tc+d.

1For an empirical illustration see Blossfeld et al., 1999.
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There is then the question of how to define a sensible comparison. I follow

the idea to begin with a comparison that depends both on tc and d, and

require that the treatment did not occur until tc+d.2 The hazard function

to be used for the comparison can be written as

r0j (tc, d) := Pr(T1= tc + d,E1=j |T1 ≥ tc + d, Tc > tc + d) (2)

The condition entails that the treatment did not occur until, and including,

tc+ d, but does not exclude that this event might occur later. (In order to

ease a comparison with r1j (tc, d), I use the notation r0j (tc, d) although this

hazard function depends only on tc + d.)

Effects of the treatment which depend both on the treatment time, tc,

and on the time since the occurrence of the treatment, d, can be defined

by

∆j(tc, d) := r1j (tc, d)− r0j (tc, d) (3)

These are temporally local effects relating to temporal locations tc+d (for

d = 0, 1, 2, . . .). A sequence of such effects, that is, ∆j(tc, d) considered as

a function of d, will be called an effect shape (of the treatment w.r.t. the

development of the hazard of E1=j).

Treatment and control groups

A reference to temporally local effects requires that treatment and control

groups must be defined in a time-dependent way. With respect to (3), one

can define a treatment group R1(tc, d) as a set of units who experienced

the treatment at tc and are still in the situation σ0 at tc+ d, and a control

group R0(tc, d) as a set of units who are still in σ0 at tc + d and did not

experience the treatment until, and including, tc + d. With corresponding

event sets Es
j (tc, d) consisting of all members of Rs(tc, d) who experienced

the event E1=j at tc + d (s = 0, 1), one can use #Es
j (tc, d)

/

#Rs(tc, d) to

estimate (1) and (2), respectively. (# is used for the number of elements

in a set.)

2This is similar to what has been called a ‘timing of events approach’ in labor market

research, see, e.g., Abbring & van den Berg (2003), Fredriksson & Johansson (2008),

Lalive et al., (2008), Crépon et al., (2009), Vikström (2014). My discussion departs from

this approach by not starting from a presupposition of counterfactual entities.
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Table 1 Fictitious data for numerical illustration.

unit Tc T1 unit Tc T1

1 ∞ 2 11 2 2
2 ∞ 3 12 2 3
3 ∞ 4 13 2 4
4 ∞ 5 14 2 5
5 ∞ 5 15 3 5
6 ∞ 6 16 3 7
7 ∞ 6 17 3 8
8 ∞ 7 18 4 7
9 ∞ 8 19 4 8
10 ∞ 9 20 5 9

To illustrate, I use the fictitious data in Table 1. There are 20 units.

Units 1 – 10 do not experience the treatment, units 11 – 20 experience this

event in temporal locations given in column Tc. In this simplified example,

there are no competing risks and no censored observations, all units even-

tually experience the outcome event E1=1 as indicated in column T1. For

Tc=2, one can immediately derive:

d R1(2, d) E1
1 (2, d) r11(2, d) R0(2, d) E0

1 (2, d) r01(2, d)

0 11− 14 11 1/4 1− 10, 15− 20 1 1/16
1 12− 14 12 1/3 2− 10, 18− 20 2 1/12
2 13, 14 13 1/2 3− 10, 20 3 1/9
3 14 14 1 4− 10 4, 5 2/7
4 ∅ ∅ ? 6− 10 6, 7 2/5

If d ≥ 4, the risk set R1(2, d) is empty and the effect ∆1(2, d) cannot be

estimated.

The hazard function for comparison

The hazard function r0j (tc, d), which is used for the comparison, relates to a

control group,R0(tc, d), consisting of all units which did not experience the

treatment until, and including, tc+d. In other words, units in R0(tc, 0) are

excluded as soon as they experience the treatment.3 Using such a dynamic

3Several researchers have used this idea before, see e.g. Crépon et al. (2009), Hernán

et al. (2008), Gran et al. (2010), Vikström (2014).
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control group can be justified with two postulates:

Postulate 1: The control group for the temporal location tc+d should not

contain units who received a treatment before tc + d.

Postulate 2: There should be no conditioning on the future. This requires

that the control group for the temporal location tc + d must not

exclude units receiving a treatment later than tc + d.

The postulates entail that, for each temporal location tc+d, the definition

of r0j (tc, d) is completely based on information, available not later than

tc+ d, about the units which do not have experienced the treatment until,

and including, tc+d. No assumptions are made about the behavior of units

in R0(tc, d) and their possible treatments in temporal locations later than

tc + d.

Postulate 2 simply means that a researcher (observer), in order to de-

fine and estimate treatment effects at tc+d, does not use any knowledge (if

available) about treatments which occurred later than tc+d. One therefore

does not need any assumptions about the joint distribution of T1 and Tc

for T1 > tc + d (not even assume its existence). The postulate does not

entail that units of the process under consideration cannot anticipate treat-

ments or, if they can, this will not influence their current behavior. This

is important because in many applications, in particular when treatments

are completely or partially self-selected by human individuals, making this

assumption would contradict the process under investigation. This will be

further considered in the discussion of models to be used for the definition

and interpretation of effects.

A contrast between ‘now’ and ‘waiting’?

Sianesi motivated her approach by referring to a choice between receiving a

treatment ‘now’ and ‘waiting’ (Sianesi, 2004, 2008; see also Fitzenberger et

al., 2013; Fredriksson & Johansson, 2008). A hazard function representing

‘waiting’ might be defined by

r∗j (tc, d) := Pr(T1= tc + d,E1=j |T1 ≥ tc + d, Tc > tc) (4)
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Here it is only required that there is no treatment until, and including, tc

(not until tc + d as required in the definition of r0j (tc, d)). The contrast of

interest is then defined as ∆∗

j (tc, d) := r1j (tc, d) − r∗j (tc, d). This quantity

depends on the distribution of treatments between tc and tc+d. Therefore,

while a possibly interesting quantity, it seems not possible to interpret

∆∗

j (tc, d) as representing a causal effect of the treatment occurring at tc.

This is reasonable because ‘waiting’ simply leaves it open what will happen

subsequently. It only has a definite meaning for ‘now’ (d = 0), and then

∆∗

j (tc, 0) = ∆j(tc, 0). On the other hand, if d > 0, ∆∗

j (tc, d) and ∆j(tc, d)

differ. In order to compare both definitions, one needs a hazard function

for the occurrence of treatments in the control group, say

h(tc, k) := Pr(Tc= tc + k |T1 ≥ tc+k, Tc ≥ tc+k) (5)

For example, in the temporal location tc + 1, the relationship is

∆∗

j (tc, 1) = ∆j(tc, 1) − h(tc, 1)∆j(tc+1, 0) (6)

Assume r1j (tc, 1) = r1j (tc + 1, 0) = 0.2; r0j (tc, 1) = 0.1, and h(tc, 1) = 0.05.

Then ∆j(tc, 1) = 0.1, but ∆∗

j (tc, 1) = 0.1 − 0.05 · 0.1 = 0.095. This

illustrates how Sianesi’s contrast not only depends on treatments occur-

ring later than tc, but also reflects treatment effects defined for different

temporal locations.

3 Temporally extended effects

Effect shapes make effects dependent on both the time of treatment oc-

currence and the duration since the treatment occurrence. One also might

be interested in effects which concern the probability of an outcome event

(E1=j) in a time interval after the occurrence of the treatment.

Event probabilities for treated units

Given a treatment at tc, one has to consider p1j(tc, δ) := the probability of

the occurrence of E1=j in the time interval [tc, tc+ δ]. Since the situation

σ0 could end by events different from E1=j, this probability cannot simply

be derived from knowing the hazard function r1j (tc, d) defined in (1). One
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also needs the survivor function (beginning at tc) for still being in σ0 until

tc + d, given that a treatment occurred at tc:

G1(tc, d) :=

d−1
∏

k=0

(1− r1(tc, k)) (7)

where r1(tc, k) :=
∑

j>0
r1j (tc, k) and G1(tc, 0) := 1. So one can write

p1j(tc, δ) =

δ
∑

d=0

r1j (tc, d)G
1(tc, d) (8)

Correspondingly, one can define a treatment group R1(tc, 0) as a set of

units who experienced the treatment at tc. With an event set E1
j (tc, 0 :δ),

consisting of all members of R1(tc, 0) who experienced the event E1=j in

[tc, tc+δ] while still being in σ0, one can use #E1
j (tc, 0 : δ)

/

#R1(tc, 0) to

estimate (8). This can be illustrated with the data in Table 1. Assuming

tc=2 and δ = 2, one finds

d r11(2, d) G1(2, d)

0 1/4 4/4
1 1/3 3/4
2 1/2 2/4

Summing up, the probability defined in (8) is 3/4. The same value results

from the treatment group R1(2, 0) = {11, 12, 13, 14} and the event set

E1(2, 0 : 2)={11, 12, 13}.

Event probabilities for the comparison

There is no obvious way to define the probability of the occurrence ofE1=j

in the time interval [tc, tc + δ] for not treated units. I use a definition that

is consistent with the definition of effects in terms of hazard functions (see

also Lalive et al. 2008, Crépon et al. 2009). One can begin with a survivor

function paralleling (7):

G0(tc, d) =

d−1
∏

k=0

(1− r0(tc, k)) (9)

where r0(tc, k) :=
∑

j>0
r0j (tc, k) and G0(tc, 0) := 1. G0(tc, d) can be in-

terpreted as the time-dependent probability of staying in the situation σ0
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without experiencing a treatment. The probability for comparison can then

be defined as

p0j(tc, δ) :=

δ
∑

d=0

r0j (tc, d)G
0(tc, d) (10)

and the temporally extended effect can be defined as

∆e
j(tc, δ) := p1j(tc, δ)− p0j(tc, δ) (11)

To illustrate with the data in Table 1, and assuming again tc = 2 and

δ = 2, one finds:

d r01(2, d) G0(2, d)

0 1/16 1.000
1 1/12 0.938
2 1/9 0.859

Summing up, the probability defined in (10) is 0.236, and the temporally

extended effect is ∆e
1(2, 2)=0.750− 0.236 = 0.514.

Note that one cannot define just one control group for estimating (10).

In particular, one cannot use a set of units who did not experience the

treatment until, and including, tc. In our example, this would be the set

{1−10, 15−20}, and the corresponding event set would be {1, 2, 3}, result-

ing in 3/16. Likewise, one cannot use a set of units who did not experience

the treatment until, and including, tc + δ. In our example, this would be

the set {1 − 10, 20}, and the corresponding event set would be {1, 2, 3},

resulting in 3/11.

Interpretation of extended effects

Thinking of causation as a temporally local relationship, ∆e
j(tc, δ) should

be considered as resulting from a process, extending from tc to tc + δ,

generating E1=j events. This can be made explicit by writing ∆e
j(tc, δ) =

∑δ

d=0
∆p

j (tc, d), where

∆p
j (tc, d) := r1j (tc, d)G

1(tc, d)− r0j (tc, d)G
0(tc, d)

This shows that the extended effect is not a simple summary of the tempo-

rally local effects which are defined by a reference to the hazard functions
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rsj (tc, d), but also depends on surviving in the situation σ0. This is relevant

for interpreting the extended effect because surviving in σ0 also depends on

other events as specified in the domain of E1. One cannot easily interpret

an extended treatment effect with respect to a specified event, E1=j, with-

out taking into account how the treatment influences competing events.

To illustrate, assume ∆j(tc, d) = 0 for all d. As shown by

∆e
j(tc, δ) =

δ
∑

d=0

∆j(tc, d)G
1(tc, d) +

[

G1(tc, d)−G0(tc, d)
]

r0j (tc, d)

there can well be an extended effect for E1=j due to different probabilities

of surviving for treated and not treated units. A temporally extended effect

is therefore not a sufficient evidence for there being a treatment effect for

a specified outcome event.

A further argument in favor of considering effect shapes, in addition

to temporally extended effects, concerns that the extended effect can hide

important changes in the underlying effect shape. For example, if an ex-

tended effect is zero, this could hide an effect shape which is first positive

and then negative.4

4 Causal interpretations

Treatments are here conceptualized as events which influence a process

that might lead to an event, E1 = j, at some future date. To think of a

causal effect of a treatment therefore requires a conceptualization of the

process leading to outcomes. I consider outcome events whose occurrence,

at least to some extent, depends on the behavior of the units under consid-

eration. I therefore presuppose that these are behavioral units (most often

human individuals), subsequently be called ‘primary agents’. As examples

of outcome events one can think of ‘becoming married’, ‘finding a job’, ‘vis-

iting a dentist’, ‘becoming involved in a traffic accident’. Obviously, there

are different scopes of influencing the occurrence of an outcome event. In

any case, the fact that a primary agent can influence the outcome must be

taken into account when interpreting the causal effect of a treatment. In

4An example dealing with the effect of a women’s pregnancy (Ec) on marriage (E1)

in consensual unions was discussed by Blossfeld et al. (1999).
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many applications, in particular in social research, at least a part of the

causal effect of a treatment must be viewed as being mediated through an

agent’s behavior.

I start from the definition of treatment effects proposed in Section 2

which is based on a comparison of a treatment and a control group. A

causal understanding of these effects must take into account how treat-

ments, and thereby a treatment and a control group, come into being.

A basic distinction can be made between self-selected and heteronomous

treatments. A self-selected treatment comes into being by the primary

agent to which the treatment applies. In contrast, I distinguish between

three kinds of heteronomous treatments: (a) The treatment is generated

by an experimenter who is able to treat a primary agent as an experi-

mental object; (b) the process leading to a treatment originates from an

institution (defined in a broad way, including, e.g., medical offices and la-

bor market agencies); (c) the treatment is not generated by a human agent

or institution. In many cases, depending on the kind of treatment and in-

stitutional regulations, the primary agent can build expectations about a

future treatment and often has some scope for influencing the occurrence

of the treatment.

I refer to treatments which might occur in the temporal location tc (as

in the previous sections, all considerations are conditional on starting from

a fixed tc). The process generating such treatments concerns the members

of a set, R(tc, 0), consisting of all units who, at tc, are still in the situation

σ0 and did not experience a treatment before tc. I also assume a vector of

covariates, sayX(tc), describing the units inR(tc, 0). Components ofX(tc)

can be time-constant characteristics of the units, or variables recording

events which occurred before tc.

Effects concern the occurrence of E1 events in temporal locations tc+d.

So one can distinguish between instantaneous effects (d = 0) and tempo-

rally remote effects (d > 0). I begin with considering instantaneous effects.

Intentionally generated heteronomous treatments

I first consider treatments generated by an experimenter or institution

(treatments not generated by a human agent or institution will not be
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discussed in this paper). The situation can be depicted by the following

diagram.

Model M1

E0
✲ E1

Ec

��✒
X(tc)

✘✘✘✘✘✘✿

S(tc)
�
�✒

❅
❅■

The process generating treatments starts from the variable S(tc), with

domain {0, 1}, representing the action of the experimenter or institution in

the temporal location tc. As part of the diagram, S(tc) is a ‘decision node’

as described by Dawid (2002). The action is in two steps. In a first step,

the experimenter or institution selects a unit for treatment (if S(tc) = 1)

or control (if S(tc)=0). In the model, this is represented by the selection

of a value of the variable X(tc). Then, in a second step, the treatment is

applied to a unit selected for treatment.

To simplify the discussion, I assume a deterministic relationship be-

tween S(tc)=1 and the treatment without a temporal delay. This entails

that a unit cannot avoid treatment if selected for treatment. However,

the model should be understood as presupposing a fixed group of units,

R(tc, 0), which can possibly be selected for treatment (represented by the

arrow leading from S(tc) to X(tc)). The model is silent about the gener-

ation of this group and, in particular, does not exclude that processes of

self-selection, also based on the anticipation of possible treatments, play a

relevant role in its generation.

Note that there is no arrow from X(tc) to Ec. It is a human agent (ex-

perimenter or institution) who generates the treatment, not the variable

X(tc). By selecting units for the treatment, this agent generates a treat-

ment group, R1(tc, 0), and a control group, R0(tc, 0) = R(tc, 0)\R1(tc, 0).

Furthermore, the agent generates the distributions

Pr(X(tc)=x |S(tc) = s, T1 ≥ tc) (12)

which relate, respectively, to the treatment group (if s = 1) and to the

control group (if s = 0). As a special case one can consider randomized
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treatment assignments which are defined by the independence of X(tc)

and S(tc).

Comprehensive treatment effects

Presupposing model M1, one should start from the effect of the selection

variable S(tc) on the occurrence of E1 events. As the generation of this

effect starts from the selection of units for treatment (and not just with the

occurrence of the treatment), it will be called a ‘comprehensive treatment

effect’ (CTE). One can begin with the definition

Pr(T1= tc + d,E1=j |S(tc)=1, T1 ≥ tc + d)− (13)

Pr(T1= tc + d,E1=j |S(tc)=0, T1 ≥ tc + d)

The instantaneous CTE (if d = 0) is identical with ∆j(tc, d). However, if

d > 0, the definition is ambiguous because the condition S(tc) = 0 leaves it

open whether there might be treatments in temporal locations later than

tc. Therefore, in order to allow thinking of temporally remote effects, one

needs an explicit definition of the control group in temporal locations later

than tc. Based on the two postulates discussed in Section 2, one should

add the condition Tc > tc + d to the second term in (13), which relates to

the control group:

Pr(T1= tc + d,E1=j |S(tc)=1, T1 ≥ tc + d)− (14)

Pr(T1= tc + d,E1=j |S(tc)=0, Tc > tc + d, T1 ≥ tc + d)

So defined, the CTE is equal to ∆j(tc, d) for all d ≥ 0.

The following discussion is based on this understanding, that is, ∆j(tc, d)

is interpreted as a comprehensive treatment effect which begins with the

selection of units for treatment. I first consider instantaneous, then tem-

porally remote effects.

Separating selection and treatment effects

The instantaneous CTE, ∆j(tc, 0), can be decomposed into a selection

effect and (a version of) a balanced treatment effect. I use the notations

r1j (tc, d;x) and r0j (tc, d;x), defined by adding the condition X(tc) = x on
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the right-hand side of (1) and (2), respectively. The hazard functions from

which the instantaneous CTE is derived can be written as

rsj (tc, 0) =
∑

x
rsj (tc, 0;x) Pr(X(tc)=x |S(tc)=s, T1 ≥ tc)

for s = 0, 1. Using then ∆j(tc, d;x) := r1j (tc, d;x) − r0j (tc, d;x), one can

write:

∆j(tc, 0) = (15)
∑

x

[

Pr(X(tc)=x |S(tc)=1, T1 ≥ tc)−

Pr(X(tc)=x |S(tc)=0, T1 ≥ tc)
]

r0j (tc, 0;x) +
∑

x
∆j(tc, 0;x) Pr(X(tc)=x |S(tc)=1, T1 ≥ tc)

The first term on the right-hand side can be interpreted as a selection

effect, resulting from the selection of units for treatment. The second term

on the right-hand side can be interpreted as an average treatment effect,

where the average is with respect to the distribution of covariates in the

treatment group.

Both parts play a role in a causal interpretation of the CTE that shows

how the CTE is generated. As suggested by model M1, the first part of

the decomposition can be interpreted as an indirect effect of S(tc) which

is mediated by the selection of a value of X(tc). Due to the deterministic

relationship between S(tc) = 1 and Ec = 1, the second part of the de-

composition can be interpreted as a version of a direct effect of S(tc). In

general, one has to suppose that the conditional effects, ∆j(tc, 0;x), de-

pend on x, and the definition of the direct effect therefore depends on the

distribution of the covariates which is used for averaging. This remains true

even if units are randomly selected for treatment. In observational stud-

ies there is the further problem that one cannot presuppose that one has

observed all covariates which are causally relevant for the outcome event

and whose distributions differ in the treatment and the control group. In

any case, the balanced treatment effect, that is, the direct effect of S(tc),

must be interpreted as a theoretical construct resulting from a particular

decomposition of the observed CTE.
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Self-selected treatments

Self-selected treatments arise through the behavior of the units in R(tc, 0).

One cannot refer to an agent (experimenter or institution) who, based

on consideration of X(tc) and/or by using a random generator, creates a

partition of R(tc, 0) into a treatment and a control group, and the model

M1 can therefore not be used. For each primary agent, values of X(tc) are

given, and the selection can only concern the treatment. Of course, one

should assume that these selections depend in some way on X(tc), and

this leads to the following model.

Model M2

E0
✲ E1

Ec

��✒
X(tc)

✘✘✘✘✘✘✿

S(tc)
�
�✒❅❅❘

In contrast to M1, an arrow now leads from X(tc) to S(tc). Moreover, the

meaning of the ‘decision node’, S(tc), has changed. In model M1, S(tc)

represents the behavior of an experimenter or institution. In model M2,

S(tc) represents the behavior of a primary agent, a member of R(tc, 0)

characterized by a particular value of X(tc).

Note that, in model M2, one cannot ‘hypothetically dismiss’ the arrow

from X(tc) to S(tc).
5 Removing this arrow would lead to an essentially

different model which entails the assumption that X(tc) does not play a

role in the primary agents’ selection of treatments. When concerned with

model M2 for self-selected treatments, S(tc) must be considered as an

endogenous variable; and this model is therefore incompatible with the

idea of a randomized treatment assignment.

In the following I assume again a deterministic relationship between

S(tc) = 1 and the treatment without a temporal delay. So one could also

consider a simplified version of M2 in which S(tc) is omitted and there is

a single arrow from X(tc) to Ec. However, an explicit reference to S(tc)

5This has been suggested as a requirement for definitions of a ‘causal effect’, see, e.g.,

Pearl (2009). Then, however, only model M1, not M2, could be used as a framework

for causal considerations.
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can ease the understanding.

Although M1 and M2 are quite different models, they are in an im-

portant respect comparable. Both models can be considered as describing

the generation of a treatment and a control group as an essential part of

the process leading to outcome events. In model M1, this is done by the

experimenter or institution, in model M2, this is a result of the primary

agents’ behavior. Therefore, also M2 can be used to derive conditional

distributions of X(tc) having an interpretation comparable with (12):

Pr(X(tc)=x |S(tc)=s, T1 ≥ tc) = (16)

Pr(S(tc)=s |X(tc)=x, T1 ≥ tc) Pr(X(tc)=x |T1 ≥ tc)
∑

x′ Pr(S(tc)=s |X(tc)=x′, T1 ≥ tc) Pr(X(tc)=x′ |T1 ≥ tc)

In both models, the initial distribution of X(tc), conditional on T1 ≥ tc, is

fixed at the beginning of tc. In addition, (16) only requires the reference

to a function x −→ Pr(S(tc) = s |X(tc) = x, T1 ≥ tc) describing the self-

selection of primary agents. So also model M2 allows one to think that the

conditional distributions of X(tc) result from the event variable S(tc).

It follows that the notion of a CTE which starts from S(tc) can also be

used for interpreting model M2. In temporal location tc, the effect com-

pares the probabilities of outcome events E1 = j between units having

chosen a treatment and units not having chosen a treatment. The decom-

position (15) can again be used to distinguish a selection effect and a bal-

anced treatment effect. As before, in order to interpret the balanced part

as a ‘pure’ treatment effect, X(tc) should include all relevant confound-

ing variables which influence both the self-selection of treatments and the

outcome event.

Temporally remote effects

I now consider treatment effects in temporal locations tc + d for d > 0.

I assume that these effects result from what is actually the case at the

beginning of the temporal location tc+d. The main question then concerns

how the treatment at tc has contributed to the development of the situation

at the beginning of tc + d. One idea is that a unit who experienced a

treatment at tc is thereby changed in some way, and this new feature of

the unit and/or her environment endures for temporal locations beyond
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tc. A complementary idea is that the treatment influences the occurrence

of further events after the treatment which then in turn influence the

occurrence of outcome events.

In order to represent events which may occur after the treatment I use

a time-varying covariate, Z(t), possibly consisting of several components,

which is defined for t ≥ tc and may depend on X(tc) and the treatment

status. It is assumed that all units have the same value Z(tc) = z0. I refer

to the following model where the relationship between X(tc) and Ec can

be specified as in model M1 or M2.

Model M3

E0
✲ E1

Ec

✏✏✏✏✏✶

PPPq
Z(t) X(tc)✛ ❅

❅❅■
✄
✄✗

It is assumed that values of Z(t) are realized at the beginning of temporal

locations, depending on the situation at the end of the previous location, so

that the occurrence of an E1 event in a temporal location tc + d depends

on the history of Z(t) until, and including, tc + d. This history will be

denoted by Z(tc+d).

The following discussion concerns the interpretation of ∆j(tc, d), a tem-

porally remote CTE. To begin with, I consider temporally remote effects

conditional on given values of the covariates X(tc):

∆j(tc, d;x) = r1j (tc, d;x)− r0j (tc, d;x) (17)

Both hazard functions depend on values of Z(tc + d). For units in the

treatment group one can write

r1j (tc, d;x) = (18)
∑

z
d

r1j (tc, d;x, zd) Pr(Z(tc+d)=zd |T1 ≥ tc+d, Tc= tc, X(tc)=x)

Values of Z(tc+d), for d > 0, are generated sequentially:

z0 −→ z1 −→ z2 −→ z3 −→ · · · −→ zd
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according to

Pr(Z(tc+d)=zd |T1 ≥ tc+d, Tc= tc, X(tc)=x) = (19)
d−1
∏

k=0

Pr(Z(tc+k+1)=zk+1 |T1 ≥ tc+k+1, Tc= tc,

X(tc)=x, Z(tc+k) = zk)
1− r1(tc, k;x, zk)

1− r1(tc, k;x)

The factor [1− r1(tc, k;x, zk)]/[1− r1(tc, k;x)] is required for updating the

distribution of X(tc), in temporal location tc+k, on which the distribution

of Z(tc+k+1) depends. Note that the hazard functions in this factor relate

to all kinds of E1 events:

r1(tc, k;x) := Pr(T1 = tc+k |T1 ≥ tc+k, Tc= tc, X(tc) = x) (20)

r1(tc, k;x, zk) :=

Pr(T1 = tc+k |T1 ≥ tc+k, Tc= tc, X(tc) = x, Z(tc+k) = zk)

This entails that hazard functions for the focal event E1 = j also depend

on hazard functions for competing risks. Nevertheless, since all hazard

functions and conditional probabilities on the right-hand side of (19) are

defined by model M3, r1j (tc, d;x) can be interpreted as a hazard function,

averaged w.r.t. all possible values of Z(tc+d), which only depends on the

treatment status and X(tc) = x.

For units in the control group one can write:

r0j (tc, d;x) = (21)
∑

z
d

r0j (tc, d;x, zd) Pr(Z(tc+d)=zd |T1 ≥ tc+d, Tc>tc+d,X(tc)=x)

The sequential generation of values of Z(tc+d) is shown by

Pr(Z(tc+d)=zd |T1 ≥ tc+d, Tc>tc+d,X(tc)=x) = (22)
d−1
∏

k=0

Pr(Z(tc+k+1)=zk+1 |T1 ≥ tc+k+1, Tc>tc+k,X(tc)=x,

Z(tc+k) = zk)
1− r0(tc, k;x, zk)

1− r0(tc, k;x)
ρ(tc, k + 1;x, zk+1)

In parallel to the definitions in (20), the hazard functions r0(tc, k;x) and

r0(tc, k;x, zk) are defined by changing the condition Tc = tc into Tc >

tc + k. In contrast to (19), there is the additional factor

ρ(tc, k;x, zk) :=
1− h(tc, k;x, zk)

1− h(tc, k;x)
(23)
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which depends on the hazard functions for the occurrence of treatments

in the control group, for k > 0 defined by

h(tc, k;x) := Pr(Tc = tc+k |T1 ≥ tc+k, Tc ≥ tc+k,X(tc) = x) (24)

h(tc, k;x, zk) :=

Pr(Tc = tc+k |T1 ≥ tc+k, Tc≥ tc+k,X(tc) = x, Z(tc+k) = zk)

This shows that one has to consider whether, and how, the occurrence of

treatments in the control group might affect the distribution of variables

which are causally relevant for outcome events and therefore could distort

a comparison with the treatment group. One can distinguish three cases.

First, the occurrence of treatments in the control group is independent of

all variables which are causally relevant for E1. In this case, ρ(tc, k;x, zk)

depends neither on x nor on zk, so that outcome probabilities in the treat-

ment and the control group can immediately be compared.

Second, the occurrence of treatments in the control group could depend

on values of X(tc) which are fixed at tc, but does not depend on Z(t) for

t > tc. In this case, ρ(tc, k;x, zk) = 1, and treatments in the control group

only affect the temporally remote distributions of X(tc).

Third, the occurrence of treatments in the control group depends on

both X(tc) and Z(t). In general, this should be expected when treatments

are self-selected by primary agents. In order to define an unbiased condi-

tional hazard function, one could use

r̃0j (tc, d;x) := (25)

∑

z
d

r0j (tc, d;x, zd)
Pr(Z(tc+d)=zd |T1 ≥ tc+d, Tc>tc+d,X(tc)=x)

ρ(tc, k+1;x, zk+1)

The basic idea is similar to reweighting procedures proposed for cop-

ing with time-dependent confounders which can influence both sequential

treatments and outcomes (Robins et al., 2000; Hernán et al., 2000; Hernán

et al., 2008, Gran et al., 2010). However, in the present context the inter-

est concerns effects of a single treatment at tc, and Z(t) is considered as

a variable mediating the effect of the treatment. The weights are there-

fore only intended to avoid selection effects which could result from later

treatments in the control group.6

6Based on a potential outcomes framework, similar reweighting procedures have been

discussed by Vikström (2014).
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In the second and third case, the occurrence of treatments in the control

group affects the distribution of X(tc) in temporal locations tc + d. This

can be seen as follows:

Pr(X(tc)=x |T1 ≥ tc+d, Tc > tc+d) = (26)

Pr(X(tc)=x |T1 ≥ tc, Tc > tc)

d−1
∏

k=0

1− r1(tc, k;x)

1− r1(tc, k)
λ(tc, k + 1;x)

where

λ(tc, k;x) :=
1− h(tc, k;x)

1− h(tc, k)
(27)

The first term on the right-hand side of (26) represents the initial distri-

bution of X(tc) in the control group at tc. The following factor takes into

account the selection process which is due to the occurrence of E1 events

in the control group. Note again, that this factor depends on all compet-

ing risks. Finally, λ(tc, k + 1;x) becomes relevant when the occurrence of

treatments in the control group depends on values of X(tc). This has to be

taken into account when being interested in versions of temporally remote

CTEs which are averaged w.r.t. a distribution of X(tc) (e.g., the initial

distribution of X(tc) in the treatment group). Instead of using r0j (tc, d),

one could use a sequentially reweighted hazard function

r̃0j (tc, d) =
∑

x
r̃0j (tc, d;x)

Pr(X(tc)=x |T1 ≥ tc+d, Tc > tc+d)

λ(tc, k + 1;x)
(28)

To the extent that one has observed all relevant confounding covariates, the

quantity r1j (tc, d)− r̃0j (tc, d) can be interpreted as a version of a temporally

remote CTE that is not distorted by treatments which occurred in the

control group.

5 Discussion

The paper considers the question of how to define treatment and control

groups in a dynamic setting where treatments can occur at any time (but

only once). When treatments as well as outcomes are conceptualized as

events occurring in temporal locations of a discrete time axis, it is natural

to think of effects as being dependent on both the time when and the time

since the treatment occurred.



21

An essential step in the argument depends on a temporally local con-

ception of effects. Given that a treatment occurred in temporal location

tc, effects should be defined separately for each temporal location tc + d

(d = 0, 1, 2, . . .). As discussed in Section 3, this also helps to understand

temporally extended effects as resulting from sequences of temporally local

effects.

Combining this approach with the idea that effects should be estimated

by comparing a treatment and a control group, these groups should be de-

fined separately for each tc + d. Since treatments can only occur once, a

treatment group, R1(tc, d), can easily be defined as the set of all units who

experienced the treatment at tc and are still at risk for experiencing the

outcome event in temporal location tc + d. Following a temporally local

view, the control group, R0(tc, d), should not contain units who experi-

enced a treatment before tc + d (postulate 1), but also should not exclude

units who might experience the treatment at a later time (postulate 2).

The second postulate can be justified with the argument that one is inter-

ested in causally interpretable effects, and their definition for a temporal

location tc + d must not depend on events which might occur later than

tc + d.

To find a causal interpretation one has to start from the question of

how treatments are generated. This paper considers two models. In model

M1, treatments are generated by an experimenter or institution, in model

M2, treatments are self-selected by primary agents. In both models, the

generation of treatments starts from a selection of units to be treated. Since

outcomes depend on properties of the units under consideration, the selec-

tion must be viewed as an essential part of the process which eventually

leads to treatment effects. This motivates the concept of a ‘comprehensive

treatment effect’ (CTE) resulting from both a division of units into two

groups and applying the treatment to the units in one of these groups.

The instantaneous CTE (if d = 0) can be decomposed into two parts: a

selection effect and a balanced treatment effect. However, the two compo-

nents cannot be observed separately and their separation must therefore be

understood as a theoretical construction. Since the process generating the

CTE begins with the selection of treated and not treated units, it seems
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natural to begin with the definition of the selection part of the CTE.

The selection part of the CTE results from variables which are rele-

vant for the outcome and differently distributed in the treatment and the

control group. In order to avoid a confounding with effects of the treat-

ment, its definition should hypothetically assume that the generation of

the treatment and the control group is not followed by actually applying

the treatment. This can be achieved by using the control group as a ref-

erence as done in (15). The remainder of the CTE can be viewed as a

constructed balanced treatment effect.

This is consistent with the idea that randomized experiments can pro-

vide estimates of a balanced treatment effect. The argument for random-

ized experiments simply is that such experiments intentionally avoid se-

lection effects. However, such experiments are no substitute for modeling

and understanding processes which actually begin with a nonrandom se-

lection of treated and not treated units. Moreover, also treatment effects

estimated with randomized experiments depend on the distribution of co-

variates in the sample of units selected for the experiment. This is true,

in particular, when treatments and covariates interact so that conditional

treatment effects, ∆j(tc, d;x), depend on X(tc) = x. Therefore, treatment

effects estimated with randomized experiments cannot easily be used for

decomposing a CTE into a selection and a treatment part.

A further difficulty is related to temporally remote CTEs. This requires

to consider time-varying covariates which can change their values after the

occurrence of the treatment and can be interpreted as mediating tempo-

rally remote effects of the treatment and any further conditions which are

fixed at the time when the treatment occurs. One also has to take into ac-

count selection effects resulting from the occurrence of all possible outcome

events (competing risks). Even if identical at the beginning, distributions

of covariates in the treatment and the control group will become different

due to outcome events whose occurrence depends on these variables. These

selection effects should therefore be considered, not as distorting, but as an

essential part of the treatment effect (even if balanced at the beginning).

This entails that balancing temporally remote treatment effects does not

lead to the construction of a ‘pure’ treatment effect.
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Selection effects which could distort the treatment effect can result,

however, from treatments occurring in the control group after its initial

formation. This will be the case when such treatments depend on variables

which are causally relevant for the outcome events. Treatments occurring

in the control group will then change the distribution of these variables

in the control group. As a possible approach to coping with this problem,

the paper considers a sequential reweighting procedure aiming at the con-

struction of a distribution of covariates corresponding to a hypothetical

situation in which treatments in the control group do not occur.
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