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Abstract

Recent years have witnessed an increased interest, both in statistics
and in the social sciences, in time dependent models as a vehicle for
the causal interpretation of series of events. The Humean and empiri-
cist tradition in the philosophy of science uses the constant temporal
order of cause and effect as a decisive delimitation of causal processes
from mere coincidences. To mimic the philosophical distinction, se-
ries of events are modelled as dynamic stochastic processes and the
precedence of cause over effect is expressed through conditional expec-
tations given the history of the process and the history of the causes.
A main technical tool in this development is the concept of conditional
independence.

In this article we examine some difficulties in the application of
the approach within empirical social research. Specifically, the role of
probabilistic concepts of causality and of conditional independence,
the nature of events that reasonably qualify as causes or effects, and
the time order used in empirical research are considered.
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1 The Tradition of Causal Analysis in

Sociology

The use of the concept of causality in sociology has been lingering between
neglect and over–reliance.1 Even though the concept was never wholeheart-
edly accepted by sociologists, it became a cornerstone of arguments in favour
of empirical research by the early 1970’s. The work of Lazarsfeld, Blalock,
Coleman, Duncan, and many others led to the predominance of path models
as the paradigmatic form of statistical analyses of causation, which was con-
ceived as a relation between statistical variables. The flowering of structural
equation modelling within sociology and psychology strengthened the tech-
nical applicability of the approach and gave impetus to the development of
statistics in general.2 But the increased statistical sophistication was accom-
panied by a growing isolation from the rest of applied social research as well
as from statistics (as a branch of applied mathematics). Critical discussions
within sociology and across disciplinary boundaries were prematurely cut off.
Even the debates in econometrics during the late 50’s and early 60’s3 on ‘au-
tonomy’ of causes, the meaning of simultaneous equations, and the concept
of exogeneity are rarely reflected in the textbooks on social statistics from
the late 70’s onwards. Moreover, developments in statistics, even when orig-
inating from concerns for questions of causality from other disciplines, were
largely ignored.4 And within sociology, the connection of causal analysis with
certain statistical techniques was met by a general scepticism concerning the
role of statistics and of ‘variables’ in general.

Sociologists outside the tradition of structural equation models often
downplay the role of causality in the social sciences in favour of other forms
of determination. In fact, the sociological literature abounds with examples
of explanations that are not strictly causal in an empiricist or positivistic
sense. Historical, functional, structural, teleological explanations—to name
just a few of the distinctions used—are often invoked. As far as causal rea-
soning is granted a place in sociology, many researchers agree with a view
of causality that depends on subject-matter considerations. There seems to
be wide consensus among sociologists that causality cannot simply and di-
rectly be inferred from empirical data, regardless of whether they are ob-
tained from randomised experiments, collected through ingenious research

1See Bernert (1983) for an account of its history in the American sociological literature.
2See Clogg (1992) for a partial review, including other areas of social statistics.
3See e.g. Epstein (1987).
4Holland’s discussion of Clogg’s 1992 paper and Clogg’s rejoinder may serve as an

illustration.
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designs or summarised by particularly advanced statistical models. Blumer’s
well known early (1956) diatribe against statistical ‘variable analysis’ is but
one example in the sociological tradition asking for more than a statistical
analysis of the relation between dependent and independent variables.

More recently, however, statisticians, sociologists, and philosophers have
begun to study the relation between statistics and causality more closely.
The renewed interest was sparked by advances in the formalisation of con-
cepts related to causation. Most of these developments are well documented
in a special volume of Synthese (vol. 121, 1999) and —with emphasis on
social science applications— in the proceedings “Causality in Crisis”, edited
by McKim and Turner (1997). Most of the contributions in these recent
publications concentrate on counterfactual or interventionist conceptions of
causation. Complementary, we will here investigate the prospects of a classi-
cal empiricist criterion of causality in the Humean tradition: the time order
of cause and effect.

2 Temporal and Probabilistic Criteria of

Causation

Since many theories of causal interdependence rely on empiricist criteria as a
prerequisite for the acknowledgement of causality, a strong argument against
the assumption of a causal connection can be made if some of the empiricist
criteria of causality do not hold. The empiricist conditions for the existence of
a causal relation, based on Hume’s analysis, require a) spatial and temporal
contiguity, b) constant conjunction between cause and effect, and c) temporal
succession. We will argue that suitably modified versions of the requirements
b) and c) can be used as starting points for empirical arguments concerning
causal claims.

The first criterion, that of spatial and/or temporal contiguity, is often
disputed. Effects do not need to follow immediately after a cause, nor do
they need to be spatially close to the cause. E.g. strikes and demonstrations
may be the (efficient) cause of a change of government, but the latter need not
follow immediately after the demonstrations, nor need there be any spatial
contiguity. Even though criterion a) cannot generally serve as a necessary
condition for causation in the social sciences, a formalism of cause–effect
relationships should be able to distinguish between ‘close’ and ‘remote’ causes
of effects. Otherwise it would be difficult to express the ideas of ‘spurious
cause’ and ‘causal chain’, both considered useful in the construction and
criticism of causal explanations.
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Condition b) cannot be expected to hold strictly with respect to social
interactions. People tend to react differently upon others actions, even in
otherwise similar situations. And, as Suppes (1970, p. 92) notes: “Empirical
studies of the sort done in psychology, sociology, and medicine hold little
hope of establishing complete deterministic chains for the causes of actions.
This is true whether we are analysing the sex habits of Eskimos, recidivism
among parolees over forty, or church attendance by illiterates.”

The ‘constant conjunction’ condition therefore must be reformulated.
Here we will simply replace the ‘constant conjunction’ condition by a prob-
abilistic relation: that the cause changes the probability of the effect.5 Note
that “[i]t is not a matter of presenting evidence for causality by offering prob-
abilistic considerations but it is part of the concept itself to claim relative
frequency of co-occurrence of cause and effect” (Suppes 1970, p. 45). The
incorporation of probabilistic aspects is thus not only of an epistemic na-
ture. It is not incorporated because the sociologist does not (yet) know, but
because ‘constant conjunction’ cannot reasonably be claimed in sociology.
Consequently, probability statements in this context should generally refer
either to frequencies or to propensities, as also fits the needs of an empiricist
program.

The condition c) requires a temporal framework for causal arguments.
This is not normally included in the formulation of ‘causal models’ in the
structural model literature. It is also not included in the formal representation
of observational studies6 in e.g. biometry nor in more recent counterfactual
or interventionist accounts. On the other hand, the temporal dimension of
causal connections has often been recognised in sociology. Tuma and Hannan,
introducing event–history analysis into sociology, acknowledge the interplay
between temporal and causal analysis (1984, pp. xi–xii, their italics): “Any
attempt at forging a systematic framework for the empirical study of social
change must confront two issues. One involves the development of dynamic

models—models that describe the time paths of change in phenomena. The
other involves the development of causal models—models that describe how
change in some properties induces change in still other properties. . . . we rely

5Suppes’ (1970) analysis starts from the assumption that causes should increase the
probability of the effect. The subsequent discussion in the philosohical literature has shown
that the concept of ‘increase of probability’ may not suffice for the analysis of probabilistic
causality (e.g. Eells 1991). But since the problem is not central to our discussion we will
content ourself with the simple minded principle of a change of probability.

6The definition of an observational study is a rather narrow one in this context. Rosen-
baum (1995, p. 1) states: “An observational study concerns treatments, interventions, or
policies and the effect they cause, and in this respect it resembles an experiment. A study
without a treatment is neither an experiment nor an observational study.” Following his
definition, many empirical sociological studies will not count as observational studies.
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heavily on the use of formal models to guide attempts at testing hypotheses
about the processes and causes of change.” And Blossfeld and Rohwer (1995,
p. 20) state: “ . . . the important task of event history modelling is . . . to
establish relevant empirical evidence that can serve as a link in a chain of
reasoning about causal mechanisms. In this respect, event history models
might be particularly helpful instruments because they allow a time-related
empirical representation of the structure of causal arguments.”

Suppes (1970) proposed one of the best known formalisations of proba-
bilistic causality. His account includes a condition of temporal precedence of
cause over effect, in contrast to many later attempts to clarify the concept
(e.g. Eells, 1991). His starting point is the theory of probability based on
systems of sets, called ‘events’. He adjoins a temporal indicator to these sets
to indicate temporal sequences. But as witnessed by later contributions (e.g.
Davis 1988), this strategy turned out to be rather limited. Savage (1972, p.
10) remarked with respect to the use of the term ‘event’ in probability theory:
“ . . . the concept of event as here formulated is timeless, though temporal
ideas may be employed in the description of particular events.” Arjas and
Eerola (1993, p. 384) note that in these formulations, “time is present (if at
all) only as an index, distinguishing between what comes ‘before’ and what
comes ‘after’.” Consequently, a more flexible representation of time order
is needed. In the absence of condition a), it should at least be possible to
formulate the timing of effects with respect to causes. Recent contributions
therefore seek to enrich the formulations by borrowing heavily from dynamic
theories of stochastic processes.

The program then is clear: to combine probabilistic models —re-expressing
the constant conjunction (condition b)— with the idea of ‘the cause precedes
the effect’ (condition c) to facilitate an empirical assessment of claims of
causality. Causal statements are translated into the mathematical language
of stochastic processes: Y = {Yt, t ∈ T } is a stochastic process with values
in a finite set Y . The values of Yt are interpreted as properties of units un-
der study and events are changes of properties at time points t. At any given
point in time t, the description of the evolution of the process may depend on
conditions and events that occurred in the past, i.e. before t, but not on what
is the case at t or in the future, after t. Causes acting on Y may then be intro-
duced by considering them as changes in a further process X = {Xt, t ∈ T }.
The process X may be treated as a time-dependent covariate and causal
statements are therefore formulated as probabilistic relations between two
(or more) stochastic processes. A time-dependent covariate records when a
causal factor has changed its state. It signifies that an event of kind X has
taken place. Consequently, we would not say that a process X is a cause of
a process Y , but that a change in X at time t (an event at time t) could be
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a cause of a change in Y at time t′, t′ > t (another event at a later time).
Often a canonical dynamic description of the stochastic processes can

be given, one relating the ‘past’ of the processes to their ‘future’, and en-
capsulating their relevant probabilistic features. In this case the classical
formulation of probabilistic causality (e.g. Suppes 1970) can be enhanced by
allowing for an explicit representation of the timing of effects, generalising
the Humean requirement of contiguity in time. Approaches along this line
were advocated by Granger (1969) in the context of time series analysis and
by Schweder (1970, 1986) for general Markov processes. These ideas were
taken up more recently by Aalen (1987), Arjas/Eerola (1993), Parner/Arjas
(1999), and Keiding (1999), providing a formal framework for probabilistic
causality with a clear relation to time order. Many of these articles use gen-
uinely epistemic notions for the interpretation of probabilities. This partly
reflects the naming conventions used in the technical literature on stochas-
tic processes and we will follow the convention here. But the mathematical
formulation does not force us to accept an epistemic interpretation, and the
possibility of interpretations in terms of propensities or frequencies should
be kept in mind.

3 Mathematical Models

A dynamic description of stochastic processes fitting the above program can
be outlined in the case of processes with discrete time parameters:7 Let
Y = {Yt, t = 0, 1, 2, . . . } be a stochastic process with values in a finite set
Y .8 Suppose one is interested in what happens just after time t− 1. A good
prediction is the conditional expectation of the change of Yt from Yt−1, con-

7Much of the discrete-time theory extends directly to the continuous-time setting. The
reason is that a continuous time martingale with respect to a right continuous filtration
can be modified to have nice sample path properties, i.e. right-continuous paths with left
hand limits. A thorough treatment presupposes a formidable technical machinery without
adding much insight to the present discussion. But it should be noted that the continuous-
time theory makes heavy use of continuity and of the denseness of the rationals within the
real numbers. Many mathematical models of time try to avoid such strong assumptions (see
Whitrow 1963, chap. III for an early review). Moreover, the combination of a continuous-
time theory using all the properties of the reals may collide with a concept of causality
that is based both on the time ordering of cause and effect and on the distinction between
direct and indirect causes (see e.g. Suppes 1970, p. 72).

8The assumption of a finite state space is not essential for the mathematical formula-
tions used here. But subsequent discussions of the appropriateness of the formal model
often presuppose a finite number of states.
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ditional on the previous history of the process, that is the random variable

Vt = E(Yt − Yt−1|Y0, . . . , Yt−1) (1)

Putting

Ut =

t∑

s=1

Vs =

t∑

s=1

E(Ys − Ys−1|Y0, . . . , Ys−1)

for the sum of the predicted values, one may write the original process Y t as
a sum of predictions in time and a remainder, the Doob decomposition: 9

Yt = Y0 + Ut +Mt (2)

The prediction part Ut is a function of the previous history up to and includ-
ing time t− 1 only, while Mt is a martingale, satisfying

E(Mt|Y0, . . . , Yt−1) = Mt−1 (3)

In fact, for the martingale difference Mt −Mt−1 one finds

E(Mt −Mt−1|Y0, . . . , Yt−1)

= E((Yt − Yt−1)− (Ut − Ut−1)|Y0, . . . , Yt−1)

= E(Yt − Yt−1|Y0, . . . , Yt−1)− Vt = Vt − Vt = 0

The decomposition (2) generalises the additive regression decomposition into
a ‘structural’ part Ut and a ‘random’ partMt that is used in much of empirical
social research. Accordingly, but somewhat ambiguously, the differences M t−
Mt−1 are sometimes called the innovations of the process. The predictions
Ut, depending only on Yt−1, . . . , Y0, are called predictable. Any other process
Zt that depends only on the values of Yt−1, . . . , Y0, the history of Y strictly
before t, will also be called predictable with respect to the process Y .

It may be instructive to see how a duration variable T , featuring promi-
nently in event-history analysis, fits into the present framework. In that case
one may put Yt = 1 if the event happened at time t or before, 0 otherwise.
That is, Yt = I[T ≤ t], where I[A] is the indicator variable of the event A. For
simplicity, one may also assume Y0 = 0. The prediction process is then given
by Vt = E(Yt − Yt−1|Y0, . . . Yt−1). This quantity is 0 if Yt−1 takes the value 1,
since then both Yt and Yt−1 must be 1. In other words: If the event happened
before time t, there will be no change in the prediction of Y t, because the one
possible change in state is known to have occurred.

9Williams (1991) provides a thorough and vivid exposition for the discrete time case.
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On the other hand, if there was no event at t − 1 or before, Yt−1 as
well as Yt−2, . . . , Y0 are 0 and Vt reduces to the probability Pr(Yt = 1|Y0 =
0, . . . , Yt−1 = 0) = Pr(T = t|T ≥ t). Thus Vt reduces to a random function
of the well known hazard function of T . If λ(t) = Pr(T = t|T ≥ t) denotes
the hazard function of T , Vt = I[T ≥ t]λ(t) = (1 − Yt−1)λ(t). Note that Vt

in the present discussion is a random variable, depending on Y t−1, . . . , Y0.
In contrast, the hazard function λ(t) treated in most texts on event–history
analysis is a non-random transform of the distribution function. Furthermore,
the accumulated prediction Ut is a random sum of hazard functions, the sum
extending over all s ≤ min(T, t), the times s before the event time T or the
observation time t, whatever comes first.

Following Aalen (1987), a dynamic statistical model is then defined as
a parameterisation of the prediction increments Vt. Since Vt depends on the
history of the process up to and including t − 1 only, it can be interpreted
as a description of the future, the likely events at time t, depending only on
the knowledge of all past events. Alternatively, it is (an approximation of)
the relative frequency of events at t among all sequences with this history.

To introduce concepts of interdependence between several processes, it
seems natural to embed the above concepts into a multivariate extension.
Basically, the history of the single process is replaced by one based on all
relevant information available before time t. In the case of two processes
(Yt, Xt) one might therefore define the conditionally expected increments as

V Y

t
= E(Yt − Yt−1|Y0, X0, . . . , Yt−1, Xt−1) (4)

and

V X

t
= E(Xt −Xt−1|Y0, X0, . . . , Yt−1, Xt−1). (5)

Interpreting the conditional expectations above as an increase in knowledge,
V Y

t
will be based not only on the pre-t history of Y itself, but also on the

knowledge of the development of X up to and including t − 1. Thus, the
expectation will change depending on the information provided by X . Sym-
metrically, V X

t
, the prediction of X based on the common history of X and

Y before t, will depend on the changes in Y up to t. One may represent the
two processes using the Doob decomposition with respect to the joint history
of the processes as:

Yt = Y0 +

t∑

s=1

V Y

s
+MY

t
and Xt = X0 +

t∑

s=1

V X

s
+MX

t
(6)

Then Xt is defined not to be causal for Yt in Aalen’s sense if and only if,
first, the prediction errors MX

t
and MY

t
are uncorrelated, and second, UY

t
,
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the prediction of Yt, may depend on Y0, . . . , Yt−1 but not on X0, . . . , Xt−1.
We will say that X and Y are locally autonomous if the first condition is
satisfied.10 If the second condition holds, Yt is said to be locally independent

of Xt. Otherwise, Yt is said to be locally dependent of Xt.
11

The condition of local (in-)dependence is asymmetric in the two pro-
cesses. Indeed, in the example of two duration variables Yt = I[T1 ≤ t] and
Xt = I[T2 ≤ t], the process Xt−1 may enter as a time dependent covariate
in the prediction (stochastic hazard) of the other, but not the other way
around. This is in accord with the basic asymmetry of causal relations and
also respects the notion of ‘cause precedes effect’.

The condition of local autonomy is introduced to ensure a certain auton-
omy of the two processes. When satisfied it is possible to envisage a change in
the behaviour of one process after time t without a change in its local relation
to the other process or a corresponding immediate change in the other pro-
cess. This should rule out processes that are merely related by definitions or
‘rules of the game’. Consider for example two gamblers throwing dice. Denote
by X1 (X2) the result of a throw of the first (second) player. If the throws are
independent, then also the prediction errors are independent and X 1 and X2

are autonomous. But one may also look at the result of the play, a win, a draw,
or a loss, for each player. Let Y 1 = I[X1 > X2] − I[X2 > X1] ∈ {−1, 0, 1}.
Then Y 2 = −Y 1 and the processes are clearly not autonomous.

4 Statistical Methods

An empirical strategy to show local dependence of Y on X at t is then to
show that the prediction process UY

t
with respect to the joint history of the

process is a non-constant function of Xt−1, . . . , X0. In the case of simple du-
ration models, V Y

t
= I[Y ≥ t]λθ(t;Xt−1, . . . , X0). That is, the process X

appears as a time-dependent covariate in the hazard function for Y at t,
which is assumed to be parameterised by some θ ∈ Θ. One therefore needs to
show that the pre-t history of X changes the hazard of Y at t. Often it is pos-
sible to factor the likelihood of (X, Y )t for θ in such a way that only the part
UY

t
(Yt|Yt−1, Xt−1, . . . , Y0, X0; θ) figures in the computation of statistics. This

10The notion of ‘autonomy’ has a long tradition in econometrics, especially in the context
of simultaneous equation models. Aldrich (1989) provides a review.

11A related concept is Granger non-causality, a concept often used within econometric
time series analysis. A process X is said not to cause Y in Granger’s sense at t iff Y t ⊥
(Xt−1, . . . , X0)|Yt−1, . . . , Y0, i.e. where Yt and the pre-t history of X , (Xt−1, . . . , X0) are
conditionally independent given the pre-t history of Yt alone. Note that in the context of
time series analysis the processes Yt and Xt need not refer to ‘events’. The concept has
been explored and extended in a series of papers by Florens and Mouchart (1982, 1985).
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is called a partial likelihood for θ since it does not depend on the specification
of the joint distribution of (Y,X)t. In particular, a model for the covariate
process X need not be specified. This allows for an attractive strategy to
demonstrate local dependence since one can concentrate on the model for
the conditional prediction of Y given X without worrying about the possibly
complicated nature of X . In the context of counting process methods, Slud
noted (1992, p. 97): “ ... that inferences could be made successfully without
parametric specification of any probabilistic objects other than the failure
counting process intensities. The latter point of view is especially liberating
in problems with randomly time-varying covariates, where one is usually in-
terested only in the effect of the covariates on the hazard of failure and where
one can usually not provide convincing models of the stochastic variation of
the covariates over time.”12

5 Events and their Descriptions

The formal frame of causal reasoning developed above has many merits with
regard to dynamic formulations of causality. Despite some conceptual short-
comings in the reformulation of the ‘constant conjunction’ condition it may
readily be used to formulate claims of (non-) causality. As it stands, it relates
to stochastic processes, i.e. collections of random variables. Often, statisti-
cians are satisfied with formal references to variables as causes and effects,
especially when arguing in the tradition of structural equation models. E.g.
Pearl and Verma (1992, p. 91) speak of “stable causal mechanisms, which on
a microscopic level, are deterministic functional relationships between vari-
ables, some of which are unobservable.” But neither variables nor what they
stand for are generally admitted as causes or effects by social scientists. Back-
ground variables like sex or religion are not considered to be (representations
of) possible causes.

One further prerequisite for the applicability of the above formalism in
the social sciences is therefore a restriction on the entities that may be causes
or effects. As Bunge (1963, p. 72, his italics) puts it, “there can be no causal

links among states, nor among any other systems of qualities. States are
not causes, but simply antecedents of later states. To regard states as causes
amounts consequently to committing the fallacy of the post hoc, propter hoc.”
Thus neither states nor things nor qualities of things can be causes or effects,
only events can.13

12Arjas/Haara (1984), Slud (1992) and Greenwood/Wefelmeyer (1998) have studied the
statistical properties of factorisations with time-dependent covariates.

13But see e.g. Mellor (1995, p. 129), who argues that “causation mostly links facts . . . .
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But what are events? Hacker (1982, p. 17) says that “[e]vents, unlike ob-
jects, are directly related to time. They occur before, after, or simultaneously
with other events. They may be sudden, brief or prolonged . . . None of these
temporal predicates apply in the same way to objects.” But this special con-
nection with time implies a difficulty for probabilistic theories of causality:
“it is manifest that no event ever happens more than once, so that the causes
and effects cannot be the same in all respects.”14 Therefore one cannot speak
about the constant conjunction of cause and effect unless it is possible to also
speak of kinds of events. While an event is something unique, events of the
same kind can occur several times. But how can one define kinds of events?
One possibility would be to delete some temporal descriptions from proposi-
tions about events. Such propositions might then be said to be about kinds
of events.15 The obvious shortcoming of this approach is that it concerns
propositions, not events, and propositions do not qualify as causes, at least
not in a realist account of causality. “Events presumably are not linguistic
entities; like trees and molecules, events can be talked about, referred to, and
described but they are not themselves statements, sentences, descriptions, or
any other kind of linguistic units. Nor are events propositions; propositions
are supposed to be abstract entities, whereas events are spatio-temporally
bounded particulars.”(Kim 1969, p. 198.) An alternative is to relate events
to changes in things. An event “is a ‘movement’ by an object from the having
of one to the having of another property, where those properties belong to the
same quality space, and where those properties are such that the object’s suc-
cessive havings of them implies that the object changes non-relationally.” 16

This fits nicely with the proposed mathematical formalisation: The random
variables Yt refer to properties of things. These properties are represented
by a definite set Y , the ‘property space’. And events are changes in things
represented by variables, {Yt−Yt−1 6= 0}. Events occur at a definite point in
time.17 Kinds of events may than be described by certain transitions between
elements of the set Y , or as classes of such transitions.

But this approach may be at once too general and too specific to serve its
purpose as a general guideline in the social sciences. It may be too specific

So no causation would be lost even if there were no particular events.”
14Maxwell, cited in Bunge 1963, p. 50
15See e.g. Scheffler 1994.
16Lombart 1986, p. 114. He argues that all events should be treated in this way.
17Since an event in general takes some time, it seems inappropriate to say that they

occur at a point in time. This creates considerable problems for a formalisation of time
sequences, especially if it is based on the continuous-time theory of stochastic process.
Hamblin argues that “the time-continuum, modelled on the real numbers, is richer than
we need for the modelling of empirical reality.” (cited in Galton 1984, p. 19)
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because the translation of ‘event’ into ‘change of property’ does not capture
the most general idea of event playing the role of an efficient cause. Parties,
strikes, wars etc. are certainly events, and they generally are considered to
have causal efficiency. Still, the notion of an event as a change of a property
can only be adapted to such events at the price of some distortion of the
event under study.

On the other hand, the notion of events and their probabilistic interde-
pendence in time does still not capture the realist notion that causes should
reflect mechanisms (Sørensen 1996), capacities (Cartwright 1989) or produc-
tivity (Bunge 1963). Events as changes of state may not involve mechanisms.
They may only be sequences like sunset after sunrise, so that the concept of
events as changes of properties of things is too general.

6 Agents, Actions, and Events

In the words of Bunge (1963, p. 46, his italics), “the reduction of causation
to regular association, as propounded by Humeans, amounts to mistaking
causation for one of its tests . . . . What we need is a statement expressing
the idea—common to both the ordinary and the scientific usage of the word—
that causation, far more than a relation, is a category of genetic connection,
hence of change, that is a way of producing things, new if only in number, out
of other things.” In statistical discussions, the exhibition of productivity of
proposed causes is often side stepped. Instead, many accounts view causality
through an analogy with planned, isolated experiments. Experiments are seen
as a deliberate manipulation of causes with the goal to provide a magnitude of
their effects. This magnitude is perceived as the difference between the value
of a measurement on a subject in the presence of the cause and the value
of the measurement on the same subject in the absence of the cause. The
difference can never be observed and so relates to a counterfactual question.
The theory therefore involves constructions of ‘similar worlds’ to identify
such magnitudes.18

Since all the criteria for deriving magnitudes of effects rest on empirically
untestable assumptions, they are met with scepticism from statisticians (e.g.
Dawid 2000) and sociologists alike. Furthermore, counterfactual accounts are
deterministic in that they refer to what would necessarily happen in the

18See Holland (1986), Pratt/Schlaifer (1984), Dempster (1990), Rubin (1990),
Galles/Pearl (1998), Pearl (1999) and Robins (1999) for discussions and refinements. These
approaches are closer in spirit to J.S. Mill’s attempts to codify methods of causal inquiry
(Holland, 1986, p. 950) than to elaborations of Humean criteria for the existence of causal
links.
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presence or absence of the cause. But such a deterministic outlook cannot
easily adapt to the variability generally observed in the social sciences.

On the other hand, the insistence on the experimental analogy points
to the importance of action based interpretations of causality. In fact, it is
sometimes suggested that causality should be defined in terms of human
actions and their impact on other humans. Von Wright (1972, chap. 2.9)
distinguishes between doing something and bringing about something and
goes on to define P as a cause relative to Q, and Q as an effect relative to
P , if and only if by doing P one could bring about Q, or by suppressing P
one could prevent Q from happening. Such a view partly reconciles Bunge’s
search for productivity with counterfactual analysis: The capacity of a human
agent to act and thereby to bring about certain events can hardly be denied.
And this capacity includes the possibility of deliberately abstaining from that
action. But the power to act and thereby to bring about an event is normally
understood to mean that, counterfactually, if the agent would not have acted
as, in fact, he did, then the event would not have happened.19

Many social phenomena are directly based on actions of individuals or or-
ganisations (see e.g. Blossfeld/Prein 1998). As far as sociology is concerned
with these phenomena, there is no need to refer to an omnipotent exper-
imenter or to seek rescue in designs that—always imperfectly—mimic the
experimental setup of other sciences. Within these fields, sociology does not
deal with associations among variables per se, but with events brought about
or done by acting people. And claims for causal connection among events
brought about by agents can be based on the causal capacities of the agents
themselves.

It is tempting to seek the causal connection directly in sequences of ac-
tions. But actions should not be treated like events that enter into causal
relations as causes and effects. There cannot be a similar connection between
actions. Otherwise, as Alvarez/Hyman (1998) point out, one would be led
to the idea that agents cause their actions, that actions are events caused
by agents. But then “an agent who performs one action performs an infinite
series of actions: he causes his action; he causes the causing of his action;
he causes the causing of the causing of his action; and so on.” (p. 222) We
will therefore say that agents cause the result of their action, that they bring
about events and that causal connection exist, not between actions, but be-
tween events done or brought about by actions.

19Kelsen (1982) argues that the notion of cause and effect originated from idealised
human action and reaction in society, that its origins lie in the projection of crime and
punishment, guilt and retaliation, onto nature. An action based reasoning about causal
connection would therefore be close to the ancient origins of the idea, but without pro-
jecting human capacities on God or nature.
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As Bach (1980) points out, the distinction between actions and events
also relieves us from specifying times and places for actions. “Once we have
specified all the relevant events in the act sequence and have described them
as stemming from a mental episode in the way appropriate to action, we have
said all we need to say about which actions were performed and what the
agent did.” (p. 118)

It is sometimes argued that since human actors act intentionally and
behaviour is goal-oriented, the intentions or motives of actors to bring about
some effect in the future causes the actor to behave in a specific way in
the present. Marini and Singer (1988, p. 377) say that “[a] major problem
with use of the criterion of temporal order in which behavior occurs, or in
which events resulting from behavior occur, is often not a good indication
of causal priority. Because human beings can anticipate and plan the future,
much human behavior follows from goals, intentions, and motives; i.e., it is
teleologically determined. As a result, causal priority is established in the
mind in a way that is not reflected in the temporal sequence of behavior or
even in the temporal sequence of the formation of behavioral intentions.” But
the connection of goals, intentions, and motives to acts and events seems to
be much looser than Marini and Singer suggest. In fact, von Wright (1972,
chap. 3) argues that in the ‘practical syllogism’ of the form: a) person P
wants to achieve Y ; b) P believes that Y can be brought about when he is
doing X ; c) Therefore P tries to do X ; the antecedences a) and b) cannot
be understood as causes of the person’s doing X . Based on observations of
goals, intentions, and motives one may try to give a teleological explanation
of behaviour. But such explanations are not causal, and they can coexist
with causal connections between events that are done and brought about
by agents. The fact that social agents can behave intentionally, based on
expectations, does not reverse the time order underlying causal statements.
The explanandum envisaged by Marini and Singer—why a certain person acts
as she chooses to act—is simply different from the explanandum of causal
analysis.

7 Conceptual Problems

In summary, we propose to investigate causal relations among events em-
ploying the concepts of local independence and local autonomy in those cases
where one is concerned with events brought about or done by agents. How-
ever, the execution of such a program is hampered as well by technical as
by philosophical problems. The latter concern the basic concepts of inde-
pendence and autonomy themselves and we will exhibit some of the more
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disturbing aspects below.

7.1 Local Independence

In his “Foundations of the Theory of Probability” Kolmogorov (1950, p. 9)
says that “one of the most important problems in the philosophy of the nat-
ural sciences is—in addition to the well-known one regarding the essence of
the concept of probability itself—to make precise the premises which would
make it possible to regard any given real events as independent.” The same
applies, we think, to the concept of local independence or similar attempts
to provide models for causal independence. Local independence cannot be
demonstrated from observations alone.20 Even though conditional indepen-
dence as well as local independence are not empirical concepts, it does not
follow that they cannot be used in an empiricist program for the assessment
of causality. They are needed as regulative ideas in modelling. The role of lo-
cal and conditional independence is to suggest the kind of relations one needs
to take into account, but not to describe the likely results of an investigation.

Second, observed relations between stochastic processes generally depend
on the number of processes that are considered. If a further process is in-
cluded, the local dependence between all processes may change. The theo-
retical background on which an analysis is grounded will to a certain extent
determine the variables and histories to be considered in an analysis. In the
words of Suppes (1970, pp. 74) “It is important to emphasise . . . that what
is to be taken as background or field will always be relative to the concep-
tual framework under discussion. In one theoretical approach to the causal
analysis of phenomena, the field will include only the consideration of macro-
scopic bodies and their characteristics, but in another, it will go deeper and
consider as well atomic objects and their properties.” In this sense, there
may exist several valid causal analyses based on different sets of stochastic
processes. Arguments for the exclusion of certain processes will partly rely on
ideas of causal non-dependence, which can be translated into local indepen-
dence within the mathematical model. On the other hand, the theoretical
background will rarely be specific enough to determine exactly what pro-
cesses are to be considered. In consequence, results cannot be expected to be
unique.

Third, and perhaps most disturbingly, the probabilistic concept of local
independence does not fully conform with most notions of ‘explanations’21:

20A similar point has often been made in connection with the role of conditional inde-
pendence in structural equation models. See e.g. Sobel (1997) and Holland in his discussion
of Clogg (1992, p. 199).

21See Dawid 1979a, 1979b, 1980 for some examples concerning the ‘unexpected’ be-
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• There may be two different histories H1 = {Yt−1, At−1, . . . } and H2 =
{Yt−1, Bt−1, . . . } that make the respective predictions for Yt locally in-
dependent of {Xt−1, . . . , X0}, showing that Xt is at most an indirect
cause of Yt. But neither H1 ⊆ H2 nor H2 ⊆ H1 need to hold so that
explanations (of spuriousness) are not unique.

• Perhaps even worse, it may happen that Yt is locally independent of Xt

with respect to a history H1 = {Yt−1, At−1, . . . }, but that it ceases to
be so with respect to a larger history, say H2 = {Yt−1, At−1, Bt−1 . . . }.
Including more information for the prediction of Y t might destroy local
independence. The work of Clogg and Haritou (1997) contains some
valuable examples.

• Finally, local dependence is not antisymmetric. Both processes may be
locally dependent on each other. In this respect, the concept is weaker
than many accounts of causality would require. On the other hand,
if X and Y are mutually locally independent, then under slight reg-
ularity conditions (including uncorrelated innovations) X and Y are
stochastically independent (e.g. Schweder 1979, p. 404). But stochas-
tic independence is a much stronger concept than causal unrelatedness
would seem to require.

7.2 Autonomy

The principle of local autonomy was introduced to ensure that the processes
under consideration are not just expressions of a sole underlying process, so
that it is meaningful to assess the properties of one process without regard
to the other. The condition is formulated in terms of the uncorrelatedness
of the martingales MX

t
and MY

t
, expressing the intuitive notion that what

happens next to X , say, should not be directly related to what happens to
Y at the same time. The condition excludes two stochastic processes that
are functionally related. In that case it may well be that the first process is
locally independent of the second, while the second is locally dependent on
the first, but it would contradict common sense to say that the first process
is a cause of the second.22

But the condition fails in deterministic situations: Granger (1969, p. 430)
used two deterministic processes as an example: If Yt = bt and Xt = c(t+1),
then V Y

t
= b (independent of X0, . . . , Xt−1). But one can as well write V Y

t
=

(b/c)(Xt−1−Xt−2), which is dependent on X0, . . . , Xt−1. Certainly one would

haviour of conditional independence relations.
22See Aalen (1987, p. 188) for an example.
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not like to call Xt a cause for Yt even though the martingales corresponding
to the two processes are trivially uncorrelated.

Second, in the context of counting process models, the assumption of
autonomy is often replaced by the assumption of no common jumps of the
two processes. This in turn implies that the martingales M Y

t
and MX

t
are

uncorrelated and that MX

t
MY

t
is again a martingale (Fleming/Harrington

1991, p. 75). The condition of no common jumps is often easy to handle, but
it may obscure somewhat the role of the condition. Schweder (1970), who
starts with a common (Markov–) process with state space X × Y , uses the
assumption of no common jumps in X and Y explicitly as a condition for
the existence of processes that can formally be partitioned into processes X
and Y .

On the other hand, the condition of no common jumps is often used for
quite a different purpose: It can justify the construction of partial likelihoods.
But the statistical considerations that lead to the use of only U Y

t
(Yt|Yt−1, Xt−1,

. . . , Y0, X0; θ) for likelihood construction and statistical inference should be
carefully distinguished from considerations of the role of the two processes
within a causal connection. If one is only willing to specify U Y

t
(Yt|Yt−1, Xt−1,

. . . , Y0, X0; θ) for statistical purposes one cannot analyse or simulate the
dynamics of the compound process even if one might be willing to impute
values for allXt. This point was stressed both by Strotz and Wold (1960) and
Cox (1992). Solving the estimation problem by concentrating on only a part
of the system, even if justified, need not suffice to answer causal questions.

8 Conclusions

The discussions on causality, whether originating from a statistical perspec-
tive or from the methodology of the social sciences, have only rarely reflected
the philosophical insight that a causal connection is a relation between events
but not between variables, things, or qualities. Similarly, an agent based
theory of causes that suggests itself in many parts of sociology was largely
ignored in favour of counterfactual or system theoretic accounts. We have ar-
gued here that an agent based idea of causal connections between events can
be supplemented by dynamic descriptions of series of events. When series of
events of different kinds are represented by autonomous stochastic processes,
the absence of a causal connection can be explicated by the concept of local
independence. These concepts should be useful at least in those areas of em-
pirical social research that are directly concerned with events brought about
by agents.

We have not treated here a problem of central importance: the problem
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of spurious causes and of confounding. While the dynamic characterisation of
series of events seems to allow for a better understanding and a more flexible
formulation of these rather intuitive concepts (e.g. Parner and Arjas 1999),
the variety of background conditions and situations generally encountered
in social research may well preclude a comprehensive theoretical treatment
of confounding. An examination of earlier attempts of demonstrating non-
spuriousness in sociology, similar to Goldenberg’s (1998) article, will certainly
enrich further theoretical developments.
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