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ABSTRACT

Buckley and James (1979) extended the least-squares estimator to
cover the case of censored dependent variables. I consider a gener-
alisation of their estimator to the multivariate case based on a non-
parametric estimator of the joint distribution of the residuals.
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1 INTRODUCTION

Buckley and James (1979) introduced a regression technique suitable for
censored dependent variables. Their estimator uses the least-squares esti-
mating equations and an updating mechanism based on a non-parametric
estimator of the residual distribution to deal with the censoring. The pro-
cedure is attractive because the use of the least-squares technique allows
for an easy interpretation of results and the use of residual analysis, while
the updating scheme is general enough to accommodate various forms of
censoring and grouping. Consequently, many generalisations of the basic
technique have been proposed.

In this paper I explore a possible extension to multivariate dependent
variables. Related work, especially that of Lin and Wei (1992), Lee, Wei
and Ying (1993), Pan and Kooperberg (1999), and Hornsteiner and col-
laborators in a series of papers (1996, 1997, 1998), is mainly inspired by
the literature on generalised estimating equations. It concentrates on the
estimation of the marginal effects of covariates on each of the dependent
variables. Accordingly, the least-squares estimating equations are modified
to accommodate the multivariate character of the dependent variables. Less
emphasis is put on the updating scheme that deals with the censoring prob-
lem. The authors suggest to use non-parametric estimators of the marginal
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distributions of the residuals only. I propose to incorporate the multivariate
information from the residual distribution into the updating scheme.

In the next section I introduce Buckley and James’ approach to regres-
sion estimation with censored observations and, in section 3, indicate why it
works. Next I consider the multivariate case. Generalisations of the missing
information principle are treated in section 5. This leads to a multivariate
extension of Buckley and James’ approach that uses the multivariate infor-
mation also for the updating scheme. In the final section I examine the
performance of the estimator through examples.

2 BUCKLEY-JAMES ESTIMATORS

Suppose that conditionally on some covariates x, the random variable Y
follows a linear regression

Y = xβ + ǫ , (1)

where x is a 1×p vector of covariates including a constant, β is a p×1 vector
of unknown regression coefficients, and ǫ is a random variable with mean
zero and finite variance. If Y is the logarithm of a positive random variable
representing a duration or time to an event, this model is sometimes called
accelerated failure time model (Cox and Oakes 1984, chap. 5.2).

In many applications only censored observations from Y are available.
More precisely, suppose that the observations are given by the censored
variable Z and censoring indicator δ:

Z := min(C, Y ) , δ := I[C ≥ Y ] ,

where I[.] is the indicator function and the censoring variable C is (condition-
ally) independent of Y . The observations are n independent and identically
distributed realizations from (x, ǫ, C). The n× (p+ 2) data matrix is given
by (zi, δi, xi)i=1,...,n.

In the absence of censoring one can estimate β by minimising the least-
squares criterion

n∑

i=1

(yi − xiβ)
2 = n

∫
e2 dF̂n(e) =

n∑

i=1

∫
(y − xiβ)

2 dF̃ni(y) , (2)

where F̂n(e) is the empirical distribution function of the residuals e i =
yi − xiβ, and F̃ni(y) = I[yi < y] is the empirical distribution of just one
observation yi.

Miller (1976) and Leurgans (1987), using the second and third represen-
tation respectively, proposed replacing the empirical distributions by ver-
sions appropriate for censored data. Instead of taking the least-squares
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criterium (2) as their starting point, Buckley and James (1979) suggested
to modify the least-squares estimating equations

n∑

i=1

x′i(yi − xiβ̂) = 0 or

n∑

i=1

x′iyi =

(
n∑

i=1

x′ixi

)
β̂ . (3)

In the presence of censoring they proposed to replace the censored observa-
tions Z by the conditional expectation of Y given the observed (censored)
data Z and the covariates:

Y ∗ = Eβ (Y | z, δ, x) = δz + (1− δ)Eβ (Y | Y ≥ z, x) . (4)

Note the dependence of the conditional expectation on the unknown pa-
rameter β. Replacing Y in expression (3) by its conditional expectation
gives

1

n

∑

i

x′iEβ̂ (Y | zi, δi, xi) =
1

n

(
n∑

i=1

x′ixi

)
β̂ . (5)

In other words, the Buckley-James estimator β̂ solves the normal score func-
tion for β when the expectation on the left hand side is computed using β̂.

Using the model formula (1) and a fixed β, an empirical version of the
conditional expectation can be evaluated:

Êβ (Y | zi, δi, xi) =: ŷi(β) (6)

= δizi + (1− δi)Êβ (Y | Yi ≥ zi, xi)

= δizi + (1− δi)

(
xiβ +

∫∞
ei

e dF̂β(e)

Ŝβ(ei)

)

= δizi + (1− δi)

(
n∑

k=i

vik(β)(zk − xkβ) + xiβ

)

where F̂β is an estimator of the distribution function of the residuals (e.g.

the Kaplan-Meier estimator), Ŝβ is the estimated survivor function 1− F̂β,
and I have put

vik(β) =





wk(β)

Ŝβ(ei)
if ei < ek

0 otherwise

and
wk(β) = P̂β(ǫ = ek) ,

so that wi(β) is the height of the jump of the estimated distribution at the
i-th residual.1 A solution β̂ of the estimating equation (3) therefore satisfies:

β̂ =

(
n∑

i=1

x′ixi

)−1( n∑

i=1

δix
′
izi +

n∑

i=1

(1− δi)x
′
iŷi(β̂)

)
. (7)

1For ease of notation it is assumed here that the observations are ordered according to
the magnitude of the corresponding residuals.
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This leads to a straightforward iterative procedure for the computation of
β̂:

1. Assign starting values β̂0.

2. Compute ŷi(β̂
j) according to (6) using the Kaplan-Meier procedure as

an estimator for the distribution of the residuals.

3. Compute β̂j+1 using the right hand side from (7).

4. Go back to step 2 unless some convergence criterion is met.

To be numerically effective, this simple iterative strategy needs elaboration.
Following the steps of the algorithm, the basic choices are:

1. Starting values may be obtained using the least-squares estimator
treating all observations as uncensored. This was suggested by Buckley
and James (1979). Other choices, e.g. using only uncensored obser-
vations, are of course possible, but do not seem to have a decisive
influence on the procedure.

2. The Kaplan-Meier estimator is not uniquely defined on the whole real
line if the largest residual is censored. Buckley and James suggest to
always treat the largest residual as uncensored. This will lead to an
underestimation of the regression constant, but should scarcely affect
the other regression estimators. Other choices are discussed by Efron
(1988), while Lai and Ying (1991) propose to smooth the risk sets.

4. The iteration may not converge to a unique value. This is due to the
fact that the right hand side of (7) is a piecewise linear function in
β. Changing β does not change the weights vik(β) unless the ranks of
the residuals change. Therefore, the iterations may oscillate between
several values β̂. The discontinuity of (7) hampers the analytic treat-
ment of the estimator. Moreover, the number of limiting values in
finite samples is not predictable, but may potentially be rather large
(Currie, 1996). Fortunately, the phenomenon seems to be of practical
interest only in rather small samples, in situations where the effect
of covariates is small, or when the convergence criterion is very strict
(Wu/Zubovic, 1995).2

2Wu and Zubovic (1995) suggested to use the arithmetic mean of all limit values of
the algorithm as estimator. This suggestion may be useful in situations where a unique
estimator is required (e.g. simulations, using the procedure as building block for more com-
plicated models, etc.). Otherwise, the different values of the limiting cycle of estimators
are often very close and it may suffice to report just one of them.
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3 SCORE FUNCTIONS AND CENSORING

To appreciate why the Buckley-James procedure is a “good” generalisation
of estimating equations to censored variables it is helpful to consider it from
a more general point of view. Especially the relation between score functions
with and without censoring is revealing. Write ℓ̇(β) = ℓ̇(β;Y, x) = x′(Y −xβ)
for the score function from the normal linear regression model (1). The
expectation satisfies

Eβ (ℓ̇(β;Y, x)) = 0 . (8)

Moreover, the root β̂ of the empirical version of the expectation (8),

1

n

∑

i

ℓ̇(β̂; yi, xi) = 0 ,

is the maximum likelihood estimator. Even if the distribution is not normal
— so that the root of the score function need no longer be a maximum
likelihood estimator — β̂ is consistent and often highly efficient. In the
presence of censoring, the censored normal score function ℓ̇∗ can be expressed
as

ℓ̇∗(β;Z, δ, x) = E(ℓ̇(β;Y, x) | Z, δ, x) , (9)

the conditional expectation of the score function with complete observations
given the incomplete observations (see e.g. Ibragimov/Has’minskii, 1981,
chap. I.7). This relation between score functions for complete and incom-
plete observations makes the score function an attractive starting point for
the construction of estimators.

It remains to consider the computation of the conditional expectation.
From the perspective of the normal linear regression model one might try to
use the normal distribution. This was proposed by Schmee and Hahn (1979)
and Aitkin (1981). However, one can only expect the good properties of the
estimators even outside the normal distribution to extend to censored data
situations if the conditional expectation is computed from a non-parametric
estimator. In the case of right censored observations, the Kaplan-Meier
estimator, being a non-parametric maximum likelihood estimator solving a
self-consistency equation, seems to be an appropriate choice. In fact, Lai and
Ying (1994), following Ritov (1990) and Severini and Wong (1992), provide a
general argument for the use of self-consistent estimators in the computation
of conditional expectations for censored and truncated observations.3 To
outline the reasoning it is best to regard the estimation problem as one
involving both β and the distribution of ǫ, F , as unknown parameters. Here,
β is the parameter of interest and F is treated as a nuisance parameter. In

3The argument extents to estimating equations that are not derived from likelihood
functions. See Bickel et al. (1998, chap. 7.7) for a general discussion of the construction
of estimators along these lines.
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such a context, one may consider the score function corresponding to the
profile likelihood. The profile log-likelihood is derived from the log-likelihood
ℓ(β, F ) by replacing F with an estimator F̂β treating β as known. It is thus
a function of β only. Symbolically, then, one may write

d

dβ
ℓ(β, F̂β) =

∂

∂β
ℓ(β, F )|(β,F̂β )

+
∂

∂F
ℓ(β, F )|(β,F̂β)

∂

∂β
F̂β (10)

for its score function. If F̂β is of maximum likelihood type, the sample mean
of the second term vanishes. One needs only to consider the score function
for β that would result if F was known.

This holds for all unbiased estimating equations for Fβ . But an estima-

tor F̂β that maximises the likelihood ℓ(β, F ) in F for β fixed automatically

provides an estimator of the least favourable submodel β 7→ (β, F̂β) for the
estimation of β and therefore (10) approximates the efficient score function,
making efficient estimation of β feasible. Thus one would like to use an esti-
mator F̂β that simultaneously solves an estimating equation and maximises
a non-parametric likelihood.

Taking Fβ(u)−I[Y −xβ ≤ u] as a score function for Fβ in the uncensored
case, one is led via the projection of scores (9) to an estimator of Fβ that
satisfies the corresponding self-consistency equation, namely

0 = En ℓ̇
∗(F̂β) = En(EF̂β |Z,δ,x

(ℓ̇(F̂β)|Z, δ, x)) = F̂β(u)−
1

n

n∑

i=1

F̂β(u|zi, δi, xi) .

(11)
But the estimator F̂β that solves the self-consistency equations and max-
imises the non-parametric likelihood is the Kaplan-Meier estimator. On the
other hand, considering E (∂ℓ(β,F̂β ;Y, x)/∂β | Z, δ, x) as the profile score
function in the presence of censoring, one is led to the estimating equations

0 = EnEF̂
β̂

(ℓ̇(β̂;Y, x)|Z, δ, x)

=
1

n

n∑

i=1

x′i(xiβ̂ − EF̂
β̂
(Y |zi, δixi))

=
1

n

n∑

i=1

x′i(xiβ̂ − ŷi(β̂)) ,

leading back to (5). From this perspective, then, both the choice of the
normal score function ℓ̇(β) = x′(Y − xβ) as a starting point and the use of
the Kaplan-Meier estimator are the appropriate extension of an estimating
equation technique to censored data.
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4 MULTIVARIATE EXTENSIONS

To consider the multivariate situation I write Y = (Y1, . . . , Yk)
′ for the

column vector of k dependent variables. The covariates are given by a
k×kp matrix x where the j-th row corresponds to the p covariates xj of the
j-th dependent variable Yj with zeros padded in the appropriate places. The
regression coefficients are given by a column vector β of dimension kp × 1.
The multivariate linear model can then be presented as

Y = xβ + ǫ =




x1 0 . . . . . . 0

0 x2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . xk







β1
β2
...
βk


+ ǫ (12)

with residual vector ǫ. The mean of the residuals is E (ǫ) = 0 and the
covariances are given by E (ǫǫ′) = Ω. As before, the covariate vectors xj

are assumed to contain a constant. Note that in the case of equal effects
β1 = β2 = . . . = βk the x matrix can be reduced to a k × p matrix.

Now suppose that the data are censored by a k-dimensional variable
C = (C1, . . . , Ck)

′. Instead of Y only the vectors Z = (Z1, . . . , Zk)
′ =

(min(Y1, C1), . . . ,min(Yk, Ck))
′ = min(Y, C) and δ = (I[C1 ≥ Y1], . . . ,

I[Ck ≥ Yk])
′ = I[C ≥ Y ] are observed. Note that here and in the sequel

minima, indicator functions, and (in-)equalities are interpreted component-
wise.

To render the conditional distribution of Y identifiable from the censored
version (Z, δ) I will assume that the censoring vector C and the vector Y are
(conditionally on x) independent. Moreover, the support of Y is assumed
to be contained in the support of C.4

Using this model, Lin and Wei (1992), Lee, Wei and Ying (1993), and
Hornsteiner and collaborators (1996, 1997, 1998) proposed extensions to the
one-dimensional Buckley-James estimator. In these papers, a solution to an
equation similar to (7) is used. Both Lin and Wei (1992), and Lee, Wei and
Ying (1993) use k least-squares estimating equations disregarding possible
correlations. Hornsteiner et al. (1996, 1997, 1998) and Pan and Kooperberg
(1999) use a working correlation matrix V (α) (of dimension k × k) in a
generalised least-squares estimating equation

n∑

i=1

x′
iV (α̂)−1(yi − xiβ̂) = 0 (13)

4Some of the censoring patterns of interest in event history analysis, e.g. censoring of
the recurrence times in a semi-Markov process by a fixed observation interval, are not
easily represented in this setup. Reference to an underlying process would be necessary
to line up censorings and durations according to their timing on a common time scale.
See Dabrowska and Lee (1996), Li and Lagakos (1997), and Tsai and Crowley (1998) for
some discussion.
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in an attempt to gain efficiency. To deal with the censoring, all these pro-
posals use an updating scheme parallel to the one-dimensional case, namely
the conditional expectations

Y ∗∗
j = Eβj

(Yj | zj , δj , xj) (14)

= δjzj + (1− δj)Eβj
(Yj | Yj ≥ zj , xj), j ∈ {1, . . . , k}

from the j-th model equation. This leads to the correct mean structure
while using only the marginal distributions of the residuals. The conditional
expectations are then computed from the marginal Kaplan-Meier estimators
of the distribution of the residuals. While Lin and Wei and Lee, Wei and
Ying simply use the marginal Kaplan-Meier estimators, Hornsteiner (1998)
also considers pooled and weighted versions to increase efficiency in certain
situations. In addition to the contributions of Y ∗∗

j in the updating scheme,
both Hornsteiner et al. and Pan and Kooperberg (1999) also base their
estimating equations for α on the values of Y ∗∗

j . As Hornsteiner (1998,
p. 49) notes, this approach is approximately valid only if the amount of
censoring is small.

5 THEMISSING INFORMATION PRINCIPLEANDNON-

PARAMETRIC ESTIMATION OF CENSORED MULTI-

VARIATE OBSERVATIONS

Starting with a score function ℓ̇(β) derived from a likelihood ℓ(β), the miss-
ing information principle suggests to use the conditional expectation of ℓ̇(β)
based on all the available information, not just the information from the
marginal distributions. Thus one may consider the conditional expectations

Y ∗
j = Eβ (Yj | z, δ,x) (15)

= δjzj + (1− δj)Eβ (Yj | Yj ≥ zj , (z, δ,x)), j ∈ {1, . . . , k}

instead of (14). This conditional expectation is based on all the informa-
tion on Y available from the data while (14) uses only the information
from the distribution in the j-th dimension. Extending the argument from
section 3 one would expect (15) to give an appropriate generalisation of one-
dimensional censored regression if it was possible to exhibit a self-consistent
estimator of the multivariate distribution of the censored residuals. Also,
from a more practical point of view, it seems advantageous to use as much
information as possible in dealing with the censoring process without impos-
ing strong extraneous assumptions. If the degree of censoring is high and if
there is considerable correlation within Y or C, one might expect (15) to
perform better than (14).

In the context of multivariate proportional hazards models this approach
was implicitly suggested by Prentice and Hsu (1997) and Cai and Prentice
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(1995). On the other hand, this extension has not been discussed in the
context of the Buckley-James approach. This is not by accident: in the
computation of E (Y |Z, δ,x) one would need a non-parametric estimator of
the joint distribution of ǫ from censored data that additionally should solve
a self-consistency equation, maximise a non-parametric likelihood, and, for
practical reasons, should allow for easy computation of conditional expecta-
tions along half-lines or orthants.

In dimension 2 or higher, there is no unique self-consistent non-parametric
maximum likelihood estimator (NPMLE) of the distribution function of ǫ.
In fact, the EM type argument leading to (11) will not even result in a
consistent estimate. To fix ideas, consider the two-dimensional problem,
k = 2, disregarding covariates for the moment. Suppose one observes
(z1, z2, 0, 1), censored in the first component, but exactly observed in the
second. This says that the underlying tuple (y1, y2) is located on the ray
{(y1, y2)|y1 > z1, y2 = z2} parallel to the first axis. But if the distribution
of (Y1, Y2) is absolutely continuous, the probability of obtaining another
uncensored observation lying on this ray is 0.

Without uncensored observations on the ray there is no empirical sup-
port for the computation of the distribution function along this ray. To com-
pute a self-consistent estimator, one needs an expression for Pr((Y1, Y2) ≤
(u1, u2)|(Y1, Y2) ∈ {(y1, y2)|y1 > z1, y2 = z2}), the last term in the self-
consistency equation (11) based on a current estimate of the joint distribu-
tion. If there are no uncensored observations on the ray, the conditioning
event has probability 0 for all sensible starting estimates. Therefore the con-
ditional probability can be defined arbitrarily. But updates of the estimator
based on the self-consistency equation will not change due to probability
mass transferred from the censored observation to uncensored observations,
thus leading to inconsistent estimators.

In response to these difficulties several alternative estimators of the
joint distribution of multivariate censored observations have been developed.
Pruitt (1993) describes six estimators, summarises their known properties,
and compares their small sample behaviour in a limited Monte Carlo exper-
iment. Further comparisons are contained in van der Laan (1997). Some
of these estimators are based on a decomposition of the joint distribution
into conditional times marginal distributions. The approaches then pro-
ceed using the one-dimensional Kaplan-Meier estimator. But the result-
ing estimators will generally depend on the ordering of the decomposition.
Other approaches use smoothing techniques for singly censored observations,
thus depending on the choice of a smoothing parameter. The proposals of
Dabrowska (1988, 1989) and Prentice and Cai (1992) use special represen-
tations of the multivariate survivor function, both representations giving
rise to explicit estimators of the distribution function. Gill (1992) provides
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a lucid introduction to these methods, and both are discussed in Pruitt’s
1993 article. Though computationally attractive, both estimators are nei-
ther solutions to some self-consistency equation nor are they of maximum
likelihood type.

All these approaches may yield negative mass for the increments of the
estimated distribution function (Pruitt 1991). This property is especially
disturbing when one is interested in computing conditional expectations
EF̂ (Y1|Y1 > z1, Y2 = y2) which may result in values≤ z1 for these estimators.
Moreover, the implied computation of conditional expectations used in (15)
are indetermined in general and cannot directly be used in a generalisation
of the Buckley-James procedure.

In contrast, there is an essentially unique non-parametric estimator for
discrete censored data maximising a likelihood. It was first considered by
Campbel (1981a,b). This let van der Laan (1995, 1996, 1997) to consider
a non-parametric MLE based on discretised censored observations. In the
two-dimensional case, let D = D1 ×D2 be a rectangle covering the observa-
tions so that (z1i, z2i) ∈ D for all observations. Partition the side of D1 into
q1 intervals of equal length, i1,l, l = 1, . . . , q1. Partition D2 into q2 intervals
i2,l, l = 1, . . . , q2, also of equal length. This partitions D into q1q2 congruent
rectangular boxes i1,l× i2,m. Now coarsen the observations as follows: if the
observation is uncensored ((δ1, δ2) = (1, 1)) or censored in both dimensions
((δ1, δ2) = (0, 0)), keep the data as (z1, z2, δ1, δ2). If the observation is cen-
sored in only one dimension ((δ1, δ2) = (0, 1) or (δ1, δ2) = (1, 0)), replace
the uncensored dimension by the interval it falls into. That is, if the ob-
servation is censored in the first dimension, (z1, z2, 0, 1), replace z2 with the
interval i2,l to which z2 belongs. The corresponding (y1, y2) are therefore
assumed to lie in the strip {(y1, y2)|y1 > z1, y2 ∈ i2l}. Moreover, the strip is
restricted to the domain D, {(y1, y2)|y1 > z1, y2 ∈ i2l} ∩ D. Similarly, ob-
servations only censored in the second dimension, (z1, z2, 1, 0), are grouped
into (i1,l, z2, 1, 0) ∩D.

In figure (1) five observations are depicted. The filled circles represent
uncensored observations while the hollow ones represent singly and doubly
censored observations. Feasible values of (y1, y2) in the case of singly cen-
sored observations lie on the rays indicated by solid lines, while values corre-
sponding to the doubly censored observation lie in the orthant indicated by
the brocken line. The box around the figure indicates the domain D which
is partitioned by intervals of equal length along its two sides. The resulting
grid is shown by light lines. The coarsening of the observations does not
change the uncensored or doubly censored observations. However, the val-
ues of (y1, y2) corresponding to the two singly censored observations are now
assumed to lie in the shaded strips. While the rays do not contain any un-
censored observations, the strip corresponding to the observation censored
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in the second dimension now contains an uncensored observation. For the
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Figure 1: Coarsening censored observations

reduced data the self-consistency equations contain the term Pr((Y1, Y2) ≤
(u1, u2)|(Y1, Y2) ∈ {(y1, y2)|y1 > z1, y2 ∈ i2,l(z2)}) for observations singly
censored in the first dimension, where l(z2) = {l ∈ {1, . . . , k}|z2 ∈ i2l}.
In general, there will be uncensored observations in the strips correspond-
ing to the conditioning event. Thus, changes in the mass attributed to
the uncensored observations will be reflected in the updating scheme for
the singly censored observations. One may hope that this recaptures the
properties of self-consistent estimators in the discrete multivariate and the
one-dimensional case, albeit at the cost of throwing away some data.

In fact, van der Laan (1996) showed that the self-consistent MLE based
on the reduced data is uniformly consistent and asymptotically normal5. To
achieve asymptotic efficiency of the reduced data MLE, he shows that the
length of the coarsening intervals i in the two-dimensional case have to shrink

5In his simulations and the proofs van der Laan uses a slightly more complicated method
of data reduction than the one proposed above. It involves a simultaneous coarsening of
the censoring variables C in addition to the coarsening of the uncensored dimensions. If
Y is independent of C this is no longer true for the coarsened data version, since Pr(Y1 ∈

i1,l, δ1 = 1) = Pr(Y1 ∈ i1,l, C1 ≥ Y1) =
∫
i1,l

1 − G1(u−
)dF1(u), where F1 and G1 are the

(marginal) distributions of Y1 and C1, respectively. Thus the likelihood no longer factors
into a term only containing F and another only depending on the censoring distribution
G. Van der Laan’s proposal retains the orthogonality between C and Y and thus allows
asymptotic arguments based on a sequence of identical models. From a practical point of
view and considering that the independence of the censoring scheme cannot be ascertained
from the observations one may as well assume that the non-parametric likelihood in the
coarsened model factors. One should then bear in mind that different models for the
original and coarsened experiment are used, and that one changes models when changing
the coarsening grid.
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to 0 at a rate slower than n−1/18 (van der Laan 1996, Theorem 5.1). This
does not provide much guidance for sample sizes practically encountered. His
simulations (1997) suggest that a small interval length of 0.02 for the square
[0, 1] × [0, 1] and n = 200 works well. Our limited experience indicates that
in order to attain stable estimates of conditional expectations for the use
in Buckley-James iterations it is expedient to use rather larger coarsening
intervals.

The procedure is easily generalised to k dimensions. All observations
with 0 <

∑k
l=1 δl < k are coarsened to a lattice inD = D1×. . .×Dk induced

by a partition of the Dj into intervals of equal length. This will ensure that
the conditioning events in the self-consistency equations will have positive
k-dimensional contents. The estimation procedure for the non-parametric
self-consistent MLE of the reduced k-dimensional data can be summarised
as follows:

1. Choose a regionD = D1×. . .×Dk. I useDl =]mini zli−σ,maxi zli+σ].
Note that the choice σ = 0 will exclude observations that are either
right censored in this component at the maximum, or are uncensored
in this component at the minimum of the observations.

2. Choose the number ql of intervals il for each dimension l. Partition
each side Dl into ql intervals il,1, . . . , il,ql . I use left open and right

closed intervals. Partition D accordingly in
∏k

l=1 ql boxes i1,m1
× . . .×

ik,mk
.

3. Choose starting values. The NPMLE is discrete. It suffices to spec-
ify point masses for P̂r(Y = y). We choose to put mass 1/n on all
uncensored observations. The mass of 1/n of censored observations
is equally spread over the strips implied by the censoring pattern of
that observation. To all uncensored observations in the strip and to
all intersections of the strip with other strips or with the boundary of
D the appropriate part of 1/n is added. This will produce a super-
set of the support points of the NPMLE. Pruitt (1993), Betensky and
Finkelstein (1999), and Prentice (1999) discuss the exact determina-
tion of the support points of the NPMLE in the two-dimensional case,
but the formulation does not easily generalise to higher dimensions.

4. Iterate the self-consistency equations: For each support point y com-

pute the new value P̂r
j+1

(Y = y) as the mean of the conditional prob-

abilities given the observed information, 1/n
∑

i P̂r
j
(Y = y|Zi, δi),

where the probability of the conditioning event is the sum over the

probabilities P̂r
j
(Y = y) lying in the strip determined by (Z, δ)i.

5. Stop the iteration using some convergence criterion. I use the max-

imum of |P̂r
j+1

(Y = y) − P̂r
j
(Y = y)| over all support points as

12



convergence criterion.

This EM algorithm generally converges very slowly. Especially the mass
of points not in the support of the MLE, but given positive mass by our
determination of starting values, decreases only slowly to 0. Prentice (1999)
and Betensky and Finkelstein (1999) proposed to use a direct constraint
maximisation algorithm based on the likelihood function. But the approach
will fail if the maximum of the likelihood is not unique. This happens if
there are strips (or orthants) corresponding to censored observations that
intersect D without intersecting other strips or uncensored observations.
Region of non-uniqueness can be ascertained in the two-dimensional case,
though the procedure is quite tedious. Excluding these region from the
maximisation problem would make direct maximisation algorithms very ap-
pealing. Unfortunately, we did not find a feasible formulation for the regions
of non-uniqueness in the k-dimensional case. In contrast to the direct max-
imisation approaches the EM algorithm is not hampered by the possible
non-uniqueness of the NPMLE. It simply does not change estimates in the
regions of non-uniqueness. Since the estimator is to be used repeatedly based
on changing data in the Buckley-James procedure, it seems appropriate to
use the slow but reliable EM algorithm.

6 THEMULTIVARIATEBUCKLEY-JAMES ESTIMATOR

With a NPMLE for the distribution of multivariate censored data at hand,
an algorithm for the computation of multivariate regression estimators in the
model (12) using the Buckley-James approach can be described as follows:

1. Compute starting values for β. I use the least-squares estimator treat-
ing all observations as uncensored.

2. For the j+1-th iteration, compute the NPMLE of the residuals based

on the data (zi − xiβ̂
j
, δi).

3. Compute new values of the dependent variable as Y ∗(j+1) = ŷ(β̂
j
)

according to (15). The conditional expectations of the censored resid-
uals ei are evaluated as the weighted means of the residuals ek. The
estimates from step 2 are used as weights and the summation is over
the regions determined by the censoring pattern.

4. Compute new regression coefficients β̂
j+1

using a least squares regres-
sion of Y ∗(j+1) on x.

5. Go back to step 2 unless some convergence criterion is met. I use the
maximum of |β̂j+1

m −β̂j
m|/max(|β̂j+1

m |, 1), wherem indexes the elements
of β.
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The distinctive feature of the estimator is the use of the joint distribu-
tion of the residuals to compute expected values in step 3. To illustrate
the effectiveness of the computations, I generate n = 300 bivariate nor-
mal observations with Y1 ∼ N(0, 1), Y2 ∼ N(0, 1) and corr(Y1, Y2) = 0.8.
These are censored in the second dimension only by C2 ∼ N(2.4, 1). Fig-
ure (2) compares the estimated expected values of the censored observa-
tions (circles) based on the joint distribution (diamonds) with those based
on the marginal distribution only (crosses). The estimates based on the
joint distribution are clearly better in mimicking the underlying distribu-
tion than are the estimates based on the marginal distribution only. Figure

-3 -2 -1 0 1 2 3
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-1

0

1

2

3

Figure 2: Conditional expectations: Correlation 0.8

(3) compares the two approaches in the case of independent components
Y1 ∼ N(0, 1), Y2 ∼ N(0, 1), once again with n = 300 and C2 ∼ N(2.4, 1). In
this situation the estimates based on the joint distribution may be thought
to fare less well. While the joint distribution cannot supply any additional
information over the marginal distribution, the estimator based on the joint
distribution looses information due to the coarsening. In this (and the pre-
vious) example I partitioned the first dimension into 10 intervals. It seems
apparent from figure (3) that the estimates based on the joint distribution
do not suffer strongly from the coarsening.

As an example for the effect of joint versus marginal estimation on the
regression coefficients I use data from Wei, Lin and Weissfeld (1989, table
1). The data give natural logarithm of the number of days, zli, to virus pos-
itivity in the l-th serum sample of the i-th patient, l = 1, 2, 3; i = 1, . . . , 36.
There are thus three time dimensions. Patients were treated with ribavirin.
There are three treatment groups: placebo, low dose, and high dose. This
covariate information is coded in two dummy variables indicating low dose
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Figure 3: Conditional expectations: Correlation 0

group and high dose group, respectively. There are six observations with
missing values in one of the zli. These were excluded from the analysis. Ta-
ble (1) compares the estimated regression coefficients from a model using a
marginal Kaplan-Meier estimator with the proposed method using the joint
distribution estimator. The latter was computed using a coarsening to five
intervals of equal length in each of the three dimensions. The procedure
converged after four Buckley-James iterations in each of which the compu-
tation of the NPMLE took four to five iterations. The resulting estimated
coefficients are all slightly smaller than the coefficients from the marginal
estimator.

Table 1: Dependent variable: natural logarithm of days to virus positivity

marginal joint

Constant 1 1.893 1.893
Constant 2 2.170 2.166
Constant 3 2.179 2.149

low dose 1 0.692 0.674
high dose 1 0.542 0.530

low dose 2 0.168 0.128
high dose 2 0.028 0.021

low dose 3 0.596 0.530
high dose 3 0.252 0.229
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7 DISCUSSION

The suggested multivariate Buckley-James estimator seems to be a feasible
alternative to approaches based on the marginal distribution of the residuals.
I have tried it with real and simulated datasets with up to 4000 observations
and up to 10 dimensions. The most time consuming part of its computation
is the estimation of the joint distribution of the residuals, which may often
take 20 to 30 iterations. It would therefore be of interest to develop reliable
direct maximisation procedures for the NPMLE.

An obvious obstacle to the use of the estimator is the lack of a variance
estimator for regression coefficients. This is due to the fact that there is
no variance expression for the NPMLE. Nevertheless, it might be possible
to obtain variance estimators from a numerical approximation of the score
function.
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