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Abstract

Labour market participation, consumer behaviour, and many other

phenomena exhibit strong periodic patterns that result from cyclic be-

haviour, constraints on the timing of events, or seasonal variation. While

these periodicities can generally be neglected when dealing with small data

sets or coarsely grouped event times, they pose challenges to the analysis

of large data sets with precise recordings. It seems natural to require that

statistical models used in the analysis of such data sets reproduce any

underlying periodicities. In particular, the conditional hazard rate given

covariates should be periodic for all possible values of the covariates. We

show that this requirement severely restricts the class of covariate effects

models.

We define periodicities by points of zero crossings of the derivative of

the hazard rate. We then develop the concepts of hazard envelope and es-

sential extrema. These allow the construction of classes of covariate effect

models with time varying coefficients that respect the underlying periodic

structure.

Keywords: periodic hazard rates, accelerated failure time model, time de-

pendent covariate effects, hazard envelope

1 Introduction

Labour market participation, consumer behaviour, and many other phenomena
exhibit strong periodic patterns that result from cyclic behaviour, constraints on
the timing of events, or seasonal variation. These phenomena become apparent
when large data sets with precise recordings of the timing of events become
available. Figure 1 exhibits the hazard rate of the inter-purchase time of an 1-
litre ice-cream package. The estimate is based on data provided by the German
Homescan Panel of A.C. Nielsen. The data contain information on the day of
purchases for some 8.400 households over a period of three years.
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Figure 1: Hazard rate of inter-purchase times (days) of ice-cream packages.

The (discrete) daily hazard rate oscillates with maxima at 7, 14, 21 days and
so on. It is plausible to assume that the reason for this behaviour is the weekly
purchase schedule of most households. This argument is supported by the fact
that these patterns occur across sociodemographic subgroups, e.g. regardless of
whether there are children present in the household or not, cf. Figure 2.
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Figure 2: Conditional hazard rate of inter-purchase times (days) of ice-cream
packages. Households without children: solid line, Households with children:
dotted line.

As a second example, Figure 3 presents the estimated hazard rate of job
durations in Germany for the years 1975 to 1990. The estimate is based on a
subsample of records of the social security administration (see Bender et al.,
1996) covering some 400,000 job spells. The hazard rate shows large annual
peaks, somewhat smaller quarterly peaks and also monthly peaks. However, the
number of job durations away from these peaks is still considerable. Again, the
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findings are similar across subgroups (e.g. men and women). An obvious reason
for this pattern is that institutional and juridical regulations in general restrict
ending a job to the end of a quarter or to the end of a (calendar) year. Of course,
such regulations ought to be the same for all socio-demographic subgroups. In
fact, the impact of the regulations is extremely strong: Figure 4 depicts the total
number of job exits per calendar day for the period 1990–1999. The numbers are
based on the complete data of the social security administration. The number
of job exits not coincident with a month’s end is generally below 100.
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Figure 3: Hazard rate of job durations (days) in Germany 1975–1990.
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Figure 4: Total number (in million) of job exits by day in Germany 1990–1999.
Number for 31.12.1992 truncated.

2 Marginal and Conditional Hazard Rates

In both examples, strong external influences cause both the conditional and the
marginal hazard rates to oscillate. These influences are common in the sense
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that local maxima and minima appear at the same times for the marginal as
well as for the conditional hazard rates. Regression models should account for
this periodic behaviour: The conditional hazard rates implied by the models
should exhibit the same periodicities for all values of the covariates. Moreover,
the periodicities of the conditional hazard rates should be the same as those of
the implied marginal hazard rates. Surprisingly, however, no regression model
strictly satisfies these requirements.

Let T > 0 and X be random variables on a common probability space
representing duration and covariate information. Denote by λ(t) = f(t)/(1 −
F (t−)) and λ(t|x) = f(t|x)/(1−F (t−|x)) the marginal and conditional hazard
rates. Here, the conditioning is on the events {X = x}, f(t) and f(t|x) are the
marginal and conditional densities, and F (t) and F (t|x) are the marginal and
conditional cumulative distribution functions.

For simplicity, we assume that λ(t|x) is twice continuously differentiable with
respect to t. If t1, t2, . . . are the locations of minima and maxima of λ(t|x), then
λ̇(ti|x) = 0, i = 1, 2, . . ., where λ̇(t|x) is the derivative of the conditional hazard
rate with respect to t. A possible though rather strict formulation of the above
requirements becomes: There is a sequence 0 < t1 < t2 . . . such that

λ̇(ti) = 0 = λ̇(ti|x), for i = 1, 2, . . . and for all x. (1)

To see that in fact no non-trivial model can satisfy this condition, we need to
consider the relation between marginal and conditional hazard rates and their
derivatives. The marginal hazard rate is given by a time-dependent “convex
combination” of the conditional hazard rates:

λ(t) = E
(

λ(t|X)
∣

∣T ≥ t
)

(2)

where the expectation is with respect to the distribution of X conditional on
the event {T ≥ t}.

Differentiating this relation leads to

λ̇(t) = E
(

λ̇(t|X)
∣

∣T ≥ t
)

+
[

λ(t)2 − E
(

λ(t|X)2
∣

∣T ≥ t
)]

(3)

When the derivatives λ̇(ti|x) vanish for all x, the first term becomes 0. By
Jensen’s inequality, the second term is negative unless λ(t|x) is constant in x.
Thus, if all derivatives of conditional hazard rates vanish at a point t i, then the
derivative of the marginal hazard rate has to be negative.

To illustrate, consider two subgroups distinguished by the covariate X ∈
{0, 1} and assume

P0 := P (X = 0) =
1

2
= P (X = 1) =: P1,

λ0(t) := λ(t|X = 0) =
5

4
+ sin t,

λ1(t) := λ(t|X = 1) = 2 · λ0(t),

Then

λ(t) =
λ0(t) · exp

(

−Λ0(t)
)

+ λ1(t) · exp
(

−Λ1(t)
)

exp
(

−Λ0(t)
)

+ exp
(

−Λ1(t)
) ,
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where

Λi(t) :=

∫

t

0

λi(s) ds, i = 0, 1,

are the cumulative hazard rates of the subgroups. Figure 5 displays the different

0 1 2 3 4 5
0

1

2

3

4

5

Figure 5: Due to the time-dependence of (2), the marginal hazard rate (dashed
line) does not have the same extrema as the conditional hazard rates (solid
lines).

extrema of the marginal hazard rate λ(t) and the conditional hazard rates λ0(t)
and λ1(t). Although λ(t) ∈ [λ0(t), λ1(t)] holds due to (2), the time-dependence
of the convex combination causes the derivative λ̇ to vanish at different times
than λ̇0 and λ̇1.

3 Hazard Envelopes

On the other hand, if the conditional hazard rates λi(t), i = 0, 1, oscillate
strongly and commonly in the sense that (w.l.o.g.)

λ̈0(t2i) < 0, λ̈1(t2i) < 0,

λ̈0(t2i−1) > 0, λ̈1(t2i−1) > 0,

λ0(t2i) > λ1(t2i−1), λ0(t2i) > λ1(t2i+1), ∀i ≥ 1,

hold, then the marginal hazard rate λ(t), being a pointwise convex combination
of λ0(t) and λ1(t) as well as a differentiable function of t, must have a local
maximum in each interval (t2i−1, t2i+1), i ≥ 1, and a local minimum in each
interval interval (t2i, t2i+2), i ≥ 1. Qualitatively speaking, λ(t) oscillates as
well, cf. Figure 6.

Thus the marginal hazard rate will oscillate in a similar way as the condi-
tional hazard rates if the latter have common minima and maxima and if they
oscillate strongly enough. To bound the behaviour of the marginal hazard rate,

5



0 5 10 15 20
0

1

2

3

4

5

Figure 6: The marginal hazard rate necessarily oscillates between the two dashed
lines.

we introduce the concept of the hazard envelope (λ(t), λ(t)):

λ(t) := inf
x

{λ(t|x)} , λ(t) := sup
x

{λ(t|x)} (4)

Note that in general neither λ(t) nor λ(t) need to correspond to any member
of the family of conditional hazard rates. Nevertheless, it follows from (2) that
the marginal hazard rate at a given t is bounded by the extreme points of the
conditional hazard rates. Thus

λ(t) ≤ λ(t) ≤ λ(t) ∀t (5)

Suppose next that maxima of the hazard envelope occur at even numbered
times t2i while minima occur at odd numbered times t2i−1. Suppose further
that the conditional hazard rates have common minima and maxima at t 2i and
t2i=1, respectively. We say that the conditional hazard rates have an essential

maximum at t2i if
λ(t2i−1) < λ(t2i) > λ(t2i+1) (6)

We say that the conditional hazard rates have an essential minimum at t2i+1 if

λ(t2i) > λ(t2i+1) < λ(t2i+2) (7)

An essential maximum implies at least one maximum of the marginal hazard
rate in the interval (t2i−1, t2i+1), while an essential minimum implies at least
one minimum of the marginal hazard rate in the interval (t 2i, t2i+2).

4 Consequences for Model Choice

We are now in the position to formulate more reasonable requirements for regres-
sion models in situations with strong periodicities: Suppose there is a sequence
of time points t2i, i ≥ 1 at which maxima of the hazards are to occur. Think of
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the weekly maxima in the hazard rate of inter-purchase times or the quarterly
maxima in the hazard rate of job durations. Then one might want to restrict
attention to models of covariate effects that, firstly, admit maxima of the con-
ditional hazard rates at the t2i for all values of the covariates, that, secondly,
admit the existence of common minima of the conditional hazard rates at some
sequence of times t2i−1, and that thirdly, admit essential maxima at all the t 2i
even in the presence of non-trivial covariate effects.

Consider the class of proportional hazards models with

λ(t|x) = λ0(t)ψ(xβ), ψ(xβ) > 0 (8)

For this class the envelope hazard coincides with certain conditional hazard rates
if the support of the distribution of the covariates is compact. The situation
is then very similar to that depicted in Figures 5 and 6. The first and second
requirements are easily met. In fact, they simply depend on the choice of an
appropriate baseline hazard rate λ0(t). Whether or not a local maximum is
essential will depend both on the extend of covariate effects and the amplitude
of the baseline hazard rate. Thus proportional hazard rate models are certainly
feasible candidate models.

But what happens if one wants, for some good reason, use non-proportional
hazards models? Consider the accelerated failure time model. This model posits
a scaling effect of covariates: Suppose that Tx is a random variable representing
duration conditional on the covariate value x. Suppose further that there is a
random variable T0 on the same probability space as Tx such that

Tx = T0/ψ(xβ), ψ(xβ) > 0 (9)

and such that the T0 have identical distributions for all values of the covariates.
The conditional hazard rates are then of the form:

λ(t|x) = ψ(xβ) · λ(ψ(xβ) · t), ψ(xβ) > 0 (10)

But in such a model, maxima and minima of conditional hazard rates for dif-
ferent values of the covariates cannot coincide, except in the trivial case of no
covariate effect, ψ(xβ) ≡ 1.

Does this rule out the use of accelerated failure time models and many other
non-proportional hazards models? Not if one is prepared to allow the effects
of covariates to change with time. But how does one allow for time-varying
covariate effects without destroying the defining features of the accelerated fail-
ure time model? After all, if one allows for general time dependent effects β(t)
and plugs this into (10), then the “scaling the time axis” property is destroyed,
while there is no obvious way of plugging a time indexed β(t) into (9).

There is, however, a quite natural way to define changing covariate effects
that respects the scaling interpretation of accelerated failure time models. One
has to change the global “ change of scale” interpretation of covariate effects
into a local property at a point in time. That can be done by using derivatives.
Starting with the “scale change” interpretations in terms of random variables
as in (9), one can consider the derivative of the baseline duration with respect
to duration with covariate value x. That derivative should be influenced, at a
point in time, by the covariate effect at that same point in time. One might
thus write

∂t0
∂tx

∣

∣

∣

tx=u

= ψ(xβ(u)) (11)
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But then

t0 =

∫

tx

0

ψ(xβ(u)) du =: Ψ(tx; β̄)

where β̄ contains the covariate information and the changes in covariate effects.
Therefore

Tx = Ψ−1(T0; β̄)

The hazard rate corresponding to this model of covariate effects is

λ(t|x) = ψ(xβ(t)) · λ0(Ψ(t; β̄)) (12)

Note that this differs from the naive idea to plug in some β(t) into (10) while
it preserves the interpretation of the effects of covariates as a (local) scaling of
the time axis.

With this definition of varying covariate effects it is now easy to exhibit
versions of the accelerated failure time model that do respect the requirements
formulated at the beginning of this section. If we choose

Ψ(t2i; β̄) = t2i

Ψ̇(t; β̄) > 0

Ψ̈(t2i; β̄) = 0 and λ̇0(t2i) = 0

then

λ̇(t2i|x) = ψ̇(xβ(t2i)) · λ0(Ψ(t2i; β̄)) + ψ(xβ(t2i))
2 · λ̇0(Ψ(t2i; β̄)) = 0

With this choice of Ψ(t), β(t), and λ0(t), all conditional hazard rates will have
the same points of maxima as the baseline λ0(t). As in the case of proportional
hazards models, whether the maxima are essential depends on the amplitude
of λ0(t) and on the covariate effects process ψ(xβ(t)). But since the envelope
hazard will in general not coincide with any of the conditional hazard rates, one
needs to compute the envelope hazard explicitly.
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